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Introduction 
In paper The Axicon: A New Type of Optical El-
ement by J.H. McLeod 1954 [1] the axicon meant 
any optical element possessing an axial symme-
try which, due to its image and/or diffraction, 
transfers the light from the point source located 
on the optical axis to an axial segment. Later on, 
the classical axicon gave its name to an optical 
element, the phase function of which has linear 
dependence on the radius – the linear or conic 
axicon [2]. At the same time different options 
were proposed for axially symmetrical optical 
elements forming an axial light section with cer-
tain properties including the logarithmic axicon 
[3-5], the generalized axicon [6] and the axilens 
[7]. Tandem of the lens and the axicon – the 
lensacon [8-10] also possesses some interesting 
properties, which allows to form conic axial dis-
tributions. 
Thus, the basic difference between the axicon and 
the lens that shows a point source as a point is to 
form a long length focus. Unfortunately, this advan-
tage of the axicon is accompanied by a low quality 
image of extra-axis points [11-13]. Another advan-
tage of the axicon, i.e. the image of the point with a 
smaller transverse dimension than that provided by 
the lens with the same numerical aperture, has also 
a disadvantage since it is accompanied by a higher 
level of side lobes that prevent to obtain a quality 
image.

Therefore, usually, the axicon is efficiently used in 
other applications: in metrology [14, 15], in nonde-
structive testing of materials and devices [16, 17], in 
scanning biometric systems [18-22], in optical mi-
cromanipulation [23-26].
In paper [27] a new diffractive optical element was 
proposed, the phase function of which is represent-
ed in the form of exponential function of the radius. 
Since the exponent  was supposed to be any posi-
tive real number, including a fractional number, the 
element was named the fracxicon. The conical axi-
con and the parabolic lens are particular cases of the 
fracxicon. 
Depending on its parameters, the fracxicon can act 
similarly to the lensacon, i.e. it can form a longitudinal 
light segment of a conical form (with a scale-changing 
dimension) or to the logarithmic axicon. In general 
cases, the fracxicon is a new optical element and in-
creases opportunities of the known elements men-
tioned in the above applications.
In paper [28], based on the geometrical-optical 
analysis, it was shown that the fracxicon with the 
exponent << formally allows to produce an in-
finitely large value of the intensity on the optical 
axis. Within the framework of the paraxial wave 
model this caustic effect was not found [29]. In 
this paper we consider the effect of the fracxicon 
as a transition element between the parabolic lens 
(=) and the axicon (=) in a nonparaxial wave 
model.

[1] Fracxicon 
as a hybrid element between the 
parabolic lens and the linear axicon
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a)   b)   c)
Fig. 1. Dependence function of the stationary point r

0
 and the distance z

1. Axial distribution while illuminating the fracx-
icon by the plane wave in a nonparaxial wave 

model for  < < 
Let us consider a field on the optical axis under condi-
tions of the radial symmetry:
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where E0 (r) – is an input field limited with a pupil 
with the radius R, k=/ – is a wave number, and – 
is the wave length. 
In paper [30] it was shown that for the correct analysis 
the formula (1) can be conveniently represented in the 
following form: 

E z

E ikz E R
z ik R z

R z

z
E

( , , )

( ) exp ( ) ( )
exp

( )

0 0

0

0

0 0

2 2

2 2

0d
dd

d
r

ik r z

r z
r

R exp
.

2 2

2 2
0

 (2)

In case of diffraction of the plane wave on the 
fracxicon [27, 29] in the approximation of a thin 
element the input field has the following view: 

E r i r0 ( ) exp ( )  (3)

where  = (k0), 0 – is a dimensionless coefficient 
related to the numeric aperture of the optical element 
and defining the focusing degree.
Then, the formula (2) would be written down in the 
following way:
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We can approximately calculate the formula (4) using 
the modified method of a stationary phase [29]:
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here r0 – is a stationary point which is determined 
from the following equation:
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In the general case, the equation (9) can not be solved 
analytically, therefore the specific values  should be 
considered for the theoretical analysis. In paper 
[30] such analysis was carried out for  < <= . 
The range  <  <  is considered hereby below.

1.1. Distribution in the illuminated portion 
of the optical axis
 We can deduce from the formula (9) an implicit de-
pendence function of the stationary point to the dis-
tance. Function z(r0) has the following form:

z k r r2
2 2

2
0
2 0

4 2
0
2  (10)

Given that  <  – <, the degree of the first sum-
mand is less than that one of the second summand, so 
the situation will be significantly different from <  
<  [30]. The type of the function (10) for different 
value ranges of the parameter  is shown in Fig. 1. 
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a)  b)  c)
Fig. 2. View of the phase function with a different number of stationary points 

The radical expression in (12) is less than 1, when 
 > , and, if otherwise, is more than or equal to . To 
observe the focus, this point must get inside the pu-
pil: R > r0,max, i.e. the angle, at which the pupil is seen 
at the focus, will satisfy the following inequation: 

tg ( / ) ( / ) ( ) / ( )max ,max maxR z r z0 2 1  
In particular, when  = , the angle should be 
greater than 45°.
Let us return to the question of the amplitude val-
ue in the focus. In fact, there is no infinity existed; 
it is necessary to consider only the following nor-
mally rejected summand of the Taylor series for 
the phase (7):

( ) /r r r r r0 0 0
3 6  (13)

To understand the properties of the fracxicon within 
this range we shall consider a specific value  =  
(a general case will be considered later), for which 
the equation (10) is algebraically solvable with re-
spect to r0. If substituting =  in (10), the follow-
ing equation will be obtained:
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 In this case, the curve in Fig. 1 will be symmetric 
with respect to the vertex (parabola). The equation 
has the following solution:
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The focus is located in the point zm = ka3
0 , and 

it corresponds to the stationary point r0m with the 
same value (it also follows from the equation (12)). 
In the future, the values for the phase function at 
this point shall be used: 
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Let us estimate the size of r of the “almost hori-
zontal” segment of the phase function (Fig. 2). 

For the given value of z we may have,  or  station-
ary points. The highest value of z, for which there is a 
stationary point, equals to the following:

z
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This is the right shadow boundary, and its nature is 
different from the similar boundary for the range 
 <  < . The shadow turned out there just because of 
the availability of a confining pupil (the formula for 
the shadow line included also its radius). Here the 
shadow will appear as desired for a fairly large pu-
pil, and its appearance corresponds to the boundary 
of full internal reflection in the geometric-optical 
consideration [28].
At the same time zmax is the distance when, if ap-
proaching it leftward, two stationary points run 
into one another that is plotted in Fig. 2 as almost 
a horizontal interval. In the formal application of 

the classical method of the stationary phase we ob-
tain an infinite amplitude to the left on the shadow 
boundary (since f’’ (r0)=), and a zero – to the right. 
The modified method of the stationary phase will 
formally also give an infinite value. Here below, cor-
rect values will be calculated based on more precise 
analysis. 
This effect is similar to the infinite intensity if con-
sidering the geometric-optical analysis of the gener-
alized lens within the same range  [28]. Note that 
within the framework of the paraxial approximation 
this effect is not expected and not observed [29]. Let 
us call a point located at a distance (11) from the el-
ement as the focus point. Here is the relevant value 
of the stationary point. 
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Proceeding from the fact that the phase changes on 
it by not more than  (more precisely: (r0,max ± r) 
= (r0,max)±  /  and the formula (13), we will find 
that (the module is not written since the third deriv-
ative is positive):
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In the first approximation of the amplitude evalua-
tion we will take the phase constant in this interval, 
and the remainder of the integration interval will 
not be taken into account:
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More accurate solution, whereas for any <  <, 
will be evaluated if proceed similarly to the classical 
method of the stationary phase, i.e. expanding the 
limits to the infinites:
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The latest equation in (19) is deduced with regard to 

the equation t t t2 3

0

3 1 3 2/ cos ( / ) /d  [31].

Thus, the result (18) is obviously an approximation 
to excess.
Beyond the range of the focus neighborhood, if the 
two stationary points r01 and r02 are not too close 
to each other, then for each point individually you 
can use the formula (5), taking into account that 
the signs of the second derivative in the stationary 
points are just the opposite. The limits of integration 
for the summands will be as follows: [ ; ( ) / ]0 201 02r r  
and [( ) / ; ]r r R01 02 2 .

Let us find the proximity criterion for the stationary 
points. We shall assume that the stationary points 
are close to each other, if their low-phase change 
neighborhoods overlap:

r r r r01 1 02 2  (20)

Reasoning similarly to the formula derivation (17), 
we shall obtain that

r r1 2 01 2, ,/  (21)

If roots are similar, then in order to maintain the 
continuity in the transition to the focus point, we 
shall take the weighted sum of the result of the for-
mula (5) and the result of the formula (18) or (19). 
We take the weight function of the first summand 
equal to ( ) / ( )r r r r02 01 1 2 , and the second weight 
function will be a complement-on-one.
For  =  we would obtain the most direct quan-
titative results. Length of a straight line in (17) is 
equal to r k( / )2 3 20

2 3 6 . Then, we will have 
in (18) the following: 
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Respectively, (19) will be converted to 
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Stationary points will be considered as similar (see 
the condition (20)), if the following inequation is 
solved

z
k
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The in equation (24) is obtained a s s u m ing that 
z/zmax is small, that is similar to the requirement to 
have the following low value 0

2 23
0
281 4 5 847/ ,

Let us find out how much will be the amplitude at 
the focus point compared with the amplitude at 
the boundary of the proximity to stationary points. 
With no regard to integrated summands in (2) and 
assuming that the factors multiplying the integral 
are approximately equal, we can only compare the 
values of the integrals. The value at the focus is 
given by the formula (23). The value at the bound-
ary is obviously equal to the sum of contributions 
of both stationary points. Using the fact that at the 
boundary the point r0,max lies in the middle of the sta-
tionary points, it can be proven that by assuming 
from the inequation (24) the multiplication factors 
A r e ri r( ) / | ( ) |( ) 2  in the resulted equation could 

be considered similar when using the method of the 
stationary phase. In this connection the multipli-
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cation factors without derivatives are taken at the 
point r0, max, and the second derivatives are taken in 
the stationary points themselves. They are equal in 
module, but opposite in sign:

r r
k

k z02 01

2
0
9 227

4 2

/

Let us note that the equation is approximate, since 
the phase function contrary to the graph (10) 
does not become symmetric with respect to the 
point r0, max. 
For estimation we apply the classical method of the 
stationary phase. Due to different signs of the sec-
ond derivative, the overall contribution of two sta-
tionary points will be not two times, but only 2  
times more, than that of the one point. If we consid-
er that on the area boundary the inequation (24) be-
comes the equation, the value of the integral would 
equal to the following: 
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By dividing the values of (23) and (25) we shall 
find that the amplitude at the focus exceeds the 
amplitude on the boundary of the proximity by 
( / ) / ( ) ,1 3 6 1 3573 6  times. Thus, the peak of 

the focus is not very sharp.
For other values of  nothing has fundamentally 
changed within this range, except, perhaps, the sec-
tions located in proximity of or. The significant 
qualitative change, though quantitatively it may not 
be very large, shall be the lack of the symmetry of 
stationary points related to position corresponding 
to the focus. 

1.2. Distribution in the shadow 
Let us now consider the calculations in the shad-
ow area on the right, when z > zmax. This is a more 
difficult task if compared with the shadow from the 
entrance pupil. In case of the shadow of the pupil 
the modified method of the stationary phase can 
be applied, which, in contrast to the classical one, 
does not require a stationary point to be located 
inside the interval of integration. However, the 
accuracy of the approximation will fall while fur-
ther proceeding deep into the shadow area. In the 
case under consideration, no stationary point is 
available in the shadow, but it does exist outside 
the shadow area in contrast to 1 , 0 1 , where 
it does not exist in any situation. Therefore, it is 
desirable to maintain the transition persistence in 
calculations.
The easiest way that should work in proximity to the 
shadow boundary is the formal substitution of a non-

real number r0 in the formula (5). Nevertheless, the 
formula type will not change, but you can not assume 
that the accumulation factor ei r( )0  is equal in absolute 
value to one. 
If there is no need to proceed far enough to the area, 
the issue will be simplified: in the vicinity of the 
maximum the curve (10) will be brought nearer by 
the parabola, that would provide an explicit formu-
la, though an approximation, similar to (15), with 
arbitrary . 
It can be shown that when properly choosing the sign 
of the imaginary component, while extracting a root, 
the amplitude in the shadow area (without regard 
to integrated summands) shall decay exponential-
ly to zero while increasing the distance from the 
shadow boundary. This is similar to the case of 
 = , 0 >  [32].

2. Axial distribution of the parabolic lens
while illuminating by the plane wave 

For this particular case the function ( = 2) z (r0) has 
the following form:

z
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r2
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The graph for (26) is the parabola with a node on the 
axis r0 =  (Fig. 3). 

Fig. 3. Dependance function of the stationary point r
0
 and the 

distance z, where  =  

For specified value of z it may be only one, or not a 
single, stationary point. The explicit solution is given 
as follows: 

r
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The maximum value equals to r k0 0
21 2,max / . If the 

radius R of the entrance pupil is smaller than this 
value, the shadow area will appear in prox-
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imity of the optical element. Along with the 
range of  <  <  at any radius R there will be the 
shadow at the area z z kmax /1 2 0

2 . The shad-
ow boundary corresponds to a multiple root; the 
second derivative of the phase function equals 
to zero, however, unlike the range of  <  < , 
when applying the stationary phase method, there 
will be no infinite amplitude, even formally. The 
thing is that the shadow boundary is reached at 
the stationary point which equals to zero, and the 
fraction is reduced. Let us give explicit expres-
sions provided that at  =  a slowly varying factor 
equals to r r z/ 2 2 :
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Substitution to (5) gives the following result: 
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Thus, when using the modified method of the sta-
tionary phase, the amplitude at the given point will 
not only be formally infinite, but it would be equal 
to zero (without regard to integrated summands) 
since both integration limits will equal to zero, too. 
By ignoring the edge summands we shall obtain the 
linear growth of the amplitude, if keeping in view 
the nodal line. 
If we want to find a more accurate (non-zero) val-
ue of the amplitude in proximity of the “focus”, we 
can argue as in the beginning of section 1.1. The 
difference of section 1.1 is that the third derivative 
at the point r0 =  also equals to zero, so we have 
to use the fourth derivative and represent the phase 
as (r)  (r0) + IV(r0)(r-r0)4/The dimension 
r of the “almost horizontal” segment of the phase 
function equals to

r
f r kIV

12
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4 4

0
3 2( ) /  (30)

The slowly varying accumulation factor r r z/ 2 2  
can not be taken out from the integral sign even in the 

first approximation (there will be a zero), but as in 1.1, 
let us assume the phase in this segment as stationary, 
and the rest of the integration interval will not be tak-
en into account: 
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In the last equation the explicit expressions have been 
substituted for zmax and r. In other words, in proxim-
ity of the shadow boundary we have

E z E z ik z i r( , , ) ( ) exp .0 0 22 0 0  
(32)

The last summand in (32) happened to be not so 
small as we had expected; it is only by 2  times less 
in modulus than if we would have in (29) in the clas-
sical method of the stationary phase. 
In the shadow area we can operate in the same manner 
as in 1.2 substituting nonreal values r0, especially as 
there is an explicit formula (27). In proximity of the 
shadow boundary it will give a continuous transition. 
If proceed further deeply into the shadow area, then, 
starting from a certain point, in (29) the main contri-
bution will be given by the first two integrated sum-
mands. 

3. Results of numerical simulation 
In numerical simulation we compared the opera-
tion of the axicon ( = ), the fracxicon ( = ) 
and the parabolic lens (= ) for high values of 
numerical aperture. The calculation was carried 
out based on the numerical integration using 
Rayleigh’s-and-Sommerfeld’s formulas without 
any approximations. 
The value of the parameter 0 in each case was select-
ed according to a predetermined maximum numerical 
aperture of the optical element NAmax: 

0 1

1

1
NA
kR
max ,  (33)

where R – is the radius of the optical element.
Numerical simulation was performed with the follow-
ing designed parameters:  = μm , the maximum nu-
merical aperture NAmax = , the radius R = . 
Fig. 4 shows the results of diffraction of a flat 
limited beam on microelements at different val-
ues of .
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a)   b)   c) 

d)   e) 

f) 
Fig. 4. Fraсxiсon phase at (a)  = , 

0
 = 0,95, (b)  =, 

0
 = , (c)  = 2, 

0
 =  and the relevant 

spatial spectral distributions (d); as well as distribution sof intensity along the optical axis (e) and in the plane 
of the maximum value (f) ( =  – is a continuous line,  =  — is a dash-and-dot line,  =  – is a dotted line)

As seen from Fig. 4 a–c, the frequency of circular lines 
for the axicon is uniform, while it is condensed in periph-
ery for the fracxicon  >  and the lens. It is clearly seen 
from the spatial spectrals that the fracxicon occupies an 
intermediate position between the lens, whose spectrum 
is almost uniformly distributed in the frequency range 
from 0 to 0.8 and the axicon, the spectrum of which is 
concentrated about the frequency of . 
The longitudinal propagation of intensity shows that in a 
nonparaxial mode it is possible that the fraxicon provides 
much better energy concentration than the lens (Fig. 4d). 
In this case the dimension of a focal spot turns out to be 
smaller in the plane of the maximum intensity than at the 
lens (Fig. 4e); the lens light-spot diameter equals, by a 
level of the intensity halftime, to  – for the lens at 
the distance of z = , to  – for the fracxicon at 
the distance of z =  and to  – for the axicon at 
the distance of z =. 
For the parabolic lens in section 2 the right boundary of 
a light segment has been evaluated, which can be con-
sidered as a focal length z kmax / ( )1 2 0

2 . For considered 
parameters it turns out to be 10.5  that is by% more 
than if obtained numerically. 
For the fracxicon we can use the formula (11), from which 
the plane of the maximum intensity shall be forecasted at 

a distance of zmax = , that is by % more than if ob-
tained numerically. 
In paper [30] we considered the axicon in the nonparax-
ial case and obtained an expression for the boundary 
of the light segment, which had coincided with a well-
known formula of the length of the light segment gener-
ated by the axicon [33] z Rmax 1 0

2
0 . Using this 

formula we can roughly determine the distance of the 
maximum intensity which, for the considered parame-
ters, is zmax = , that is almost two times higher than if 
obtained numerically. 
Such overestimated evaluations of theoretical values re-
late to the fact that they predict not the position of the 
maximum intensity, but the beginning of the shadow 
boundary which is located right-handed of the maxi-
mum. 
Let us, however, note that the parabolic lens is not opti-
mal for the beam focusing in the nonparaxial case. It is 
known that the best focusing can be provided by an aber-
ration-free (hyperbolic) lens: 

lens r ik r fexp 2 2  (34)

where f – is a focus distance.
Fig. 5 shows the results of focusing the plane beam 
limited with a radius R= =with a microlens (34) 
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a)   b)   c) 

d)   e) 
Fig. 5. Phase of the hyperbolic lens (34) at (a) f = , (b) f = , (c) f =  

and the relevant distributions of intensity (d) along the optical axis, and (e) in planes of focuses (f =. – 
is a continuous line, f = – is a dash-and-dot line, f =  — is a dotted line) 

The comparison of the longitudinal distribution of 
intensity (Fig. 4e and Fig. 5f) shows that the lens 
(34) provides better energy concentration than the 
above considered microcomponents. However, the 
situation with a dimension of the light spot is am-
biguous. Diameter of the light spot of the hyperbol-
ic lens with f =  equals to that is by % 
greater than that of the axicon when the intensity is 
double increased. Results for the lens (34) and the 
fracxicon with  =  are very close to each other 
both by the energy concentration, and also by the 
dimension of the light spot (for f =  the light 
spot dimension equals to  that is by 1% higher 
at the increase of intensity by %). For the focus 
f =  the dimension of the light spot is the same 
as that one of the parabolic lens , when the in-
tensity is increased by %.
Thus, we can conclude that in the nonparaxial area 
the fracxicon with an exponent within the mid-range 
of <  < is actually an analogue of the hyperbol-
ic lens optimally focusing the incident beaming. Let 
us here by note that when using the fracxicon the 
sharper shade is provided at the right of the max-

imum, if compared to that one, when using the hy-
perbolic lens (Fig. 4e and 5d compared).

Conclusion
In this paper we have examined the effect of the fracxicon 
as a transition element between the parabolic lens and 
the axicon in the nonparaxial wave model. 
Based on the modified method of the stationary phase, 
the approximate analytical expressions have been ob-
tained for distribution of the complex amplitude on the 
optical axis in the diffraction of the plane wave on the 
fracxicon with an exponent of  <  < . 
 Numerical simulations have shown that at high numeri-
cal apertures the fracxicon with an exponent close to 3/2 
is actually an analogue of the hyperbolic lens optimally 
focusing the incident beaming. 
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at different focus distances. The foci were cho-
sen so as to correspond to distances of the maxi-
mum intensity of the above components – f =. 
(Fig. 5а), f =. (Fig. 5b), f = (Fig. 5c). By 
comparing Fig. 4a–c and Fig. 5a–c we can see that the 

structure of the element phase concentrating the beam 
on defined planes is very similar, even up to and includ-
ing the transformation of the hyperbolic lens (34) to the 
axicon at low values of the focus distance f. 



Diffractive optics, Opto-IT

Ustinov A.V. et al… COMPUTER OPTICS, 2014: 38(3), 402-411

410

References
1. McLeod, J.H. The axicon: a new type of optical element / J.H. 

McLeod // Journal of the Optical Society of America. – 1954. – Vol. 

44. – P. 592-597.

2. Fujiwara, J. Optical properties of conic surfaces. I. Reflecting 

cone / J. Fujiwara // Journal of the Optical Society of America. – 

1962. – Vol. 52. – P. 287-292.

3. Sochacki, J. Annular-aperture logarithmic axicon / J. Sochac-

ki, Z. Jaroszewicz, L.R. Staronski and A. Kolodziejczyk // Journal of 

the Optical Society of America. – 1993. – Vol. 10. – P. 1765-1768.

4. Jaroszewicz, Z. Apodized annular-aperture logarithmic axi-

con: smoothness and uniformity of the intensity distribution / Z. 

Jaroszewicz, J. Sochacki, A. Kolodziejczyk and L.R. Staronski // 

Optics Letters. – 1993. – Vol. 18. – P. 1893-1895.

5. Golub, I. Characterization of a refractive logarithmic axicon / 

I. Golub, B. Chebbi, D. Shaw, and D. Nowacki // Optics Letters. – 

2010. – Vol. 35. – P. 2828-2830.

6. Sochacki, J. Nonparaxial design of generalized axicons / J. 

Sochacki, A. Kolodziejczyk, Z. Jaroszewicz and S. Bara // Applied 

Optics. – 1992. – Vol. 31. – P. 5326-5330.

7. Davidson, N. Holographic axilens: high resolution and long 

focal depth / N. Davidson, A. Friesem and E. Hasman // Optics 

Letters. – 1991. – Vol. 16(7). – P. 523-525.

8. Koronkevich, V.P. Lensacon / V.P. Koronkevich, I.A. 

Mikhaltsova, E.G. Churin and Yu.I. Yurlov // Applied Optics. – 

1993. – Vol. 34(25). – P. 5761-5772.

9. Parigger, C. Spherical aberration effects in lens axicon dou-

blets: theoretical study / C. Parigger, Y. Tang, D.H. Plemmons [et 

al.] // Applied Optics. – 1997. – Vol. 36(31). – P. 8214-8221.

10. Khonina, S.N. The lensacon: nonparaxial effects / S.N. 

Khonina, N.L. Kazanskii, A.V. Ustinov, S.G. Volotovskiy // Journal 

of Optical Technology. – 2011. – Vol. 78 (11). – P. 724-729.

11. Bin, Z. Diffraction property of an axicon in oblique illumina-

tion / Z. Bin and L. Zhu // Applied Optics. – 1998. – Vol. 37. – P. 

2563–2568.

12. Burvall, A. Axicon imaging by scalar diffraction theory / A. 

Burvall. – PhD thesis. – Stockholm. – 2004.

13. Khonina, S.N. Axicons application in imaging systems for 

increasing depth of focus / S.N. Khonina, D.A. Savelyev // Bulletin 

of Samara Scientific Center of RAS. – 2011. – Vol. 13(6). – P. 7-15. 

(In Russian).

14. Van Heel, A.C.S. Modern alignment devices // Advanced 

Optical Techniques; Ed. By A.C.S. Van Heel. – North-Hollandю – 

1967. – P. 319.

15. Wang, K. Influence of the incident wave-front on intensity 

distribution of the nondiffracting beam used in large-scale measure-

ment / K. Wang, L. Zeng, and Ch. Yin // Optics Communications. 

– 2003. – Vol. 216. – P. 99-103.

16. Fortin, M. Optical tests with Bessel beam interferometry / M. 

Fortin, M. Piche and E.F. Borra // Optics Express. – 2004. – Vol. 

2(24). – P. 5887-5895.

17. Reichelt, S. Self-calibration of wavefront testing interfer-

ometers by use of diffractive elements / S. Reichelt, H. Tiziani 

and H. Zappe // Proceeding of SPIE. – 2006. – Vol. 6292. – P. 

629205-10.

18. Arimoto, R. Imaging properties of axicon in a scanning op-

tical system / R. Arimoto, C. Saloma, T. Tanaka and S. Kawata // 

Applied Optics. – 1992. – Vol. 31(31). – P. 6653-6657.

19. Lu, J. Diffraction-limited beams and their applications 

for ultrasonic imaging and tissue characterization / J. Lu and 

J.F. Greenleaf // Proceeding of SPIE. – 1992. – Vol. 1733. – 

P. 92-119.

20. Ding, Z. High-resolution optical coherence tomography over 

a large depth range with an axicon lens / Z. Ding, H. Ren, Y. Zhao, 

J.S. Nelson and Z. Chen // Optics Letters. – 2002. – Vol. 27. – P. 

243-245.

21. Leitgeb, R.A. Extended focus depth for Fourier domain op-

tical coherence microscopy / R.A. Leitgeb, M. Villiger, A.H. Bach-

mann, L. Steinmann and T. Lasser // Optics Letters. – 2006. – Vol. 

31(16). – P. 2450-2452.

22. Lee, K.-S. Bessel beam spectral-domain high-resolution op-

tical coherence tomography with micro-optic axicon providing ex-

tended focusing range / K.-S. Lee and J.P. Rolland // Optics Letters. 

– 2008. – Vol. 33(15). – P. 1696-1698.

23. Arlt, J. Optical micromanipulation using a Bessel light beams 

/ J. Arlt [et al.] // Optics Communications. – 2001. – Vol. 197. – P. 

239-245.

24. Garces-Chavez, V. Simultaneous micromanipulation in 

multiple planes using a self reconstructing light beam / V. Garc-

es-Chavez [et al.] // Nature. – 2002. – Vol. 419. – P. 145-147.

25. Khonina, S.N. DOE for optical micromanipulation / S.N. 

Khonina, R.V. Skidanov, A.A. Almazov, V.V. Kotlyar, V.A. Soifer, 

A.V. Volkov // Proceedings of SPIE: Lasers and Measurements. – 

2004. – Vol. 5447. – P. 304-311.

26. Shao, B. Size tunable three-dimensional annular laser trap 

based on axicons / B. Shao, S.C. Esener, J.M. Na scimento, M.W. 

Berns, E.L. Botvinick and M. Ozkan // Optics Letters. – 2006. – 

Vol. 31. – P. 3375-3377.

27. Khonina, S.N. Fractional axicon as a new type of diffractive 

optical element with conical focal region / S.N. Khonina, A.V. Usti-

nov, S.G. Volotovsky // Precision Instrument and Mechanology. – 

2013. – Vol. 2(4). – P. 132-143.

28. Ustinov, А.V. Geometrooptic analysis of generalized refrac-

tive lenses / A.V. Ustinov, S.N. Khonina // Bulletin of Samara Sci-

entific Center of RAS. – 2012. – Vol. 14(4). – P. 28-37. (In Russian).

29. Ustinov, A.V. Generalized lens: сalculation of distribution 

on the optical axis / A.V. Ustinov, S.N. Khonina // Computer Op-

tics. – 2013. – Vol. 37(3). – P. 307-315. (In Russian).

30. Ustinov, A.V. Analysis of flat beam diffraction by divergent 

fracxicon in nonparaxial mode / A.V. Ustinov, S.N. Khonina // 

Computer Optics. – 2014. – Vol. 38(1). – P. 42-50. (In Russian).

31. Ditkin, V.A. Integral transforms and operational calculus / 

V.A. Ditkin and A.P. Prudnikov. – Мoscow: “Fizmatlit” Publisher. – 

1961. – Charters VII, VIII. (In Russian).

32. Ustinov, A.V. Analysis of laser beam diffraction by axicon 

with the numerical aperture above limiting / A.V. Ustinov, S.N. 



Ustinov A.V. et al… COMPUTER OPTICS, 2014: 38(3), 402-411

Diffractive optics, Opto-IT 411

Khonina // Computer Optics. – 2014. – Vol. 38(2). – P. 213-222. 

(In Russian).

33. Durnin, J. Diffraction-free beams / J. Durnin, J.J. Miceli 

and J.H. Eberly // Physics Review Letters. – 1987. – Vol. 58(15). – 

P. 1499-1501.


