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Introduction
Spectroscopy methods of scattering systems are widely 
applied in monitoring of natural and technical objects 
which can both dissipate and absorb the light. These 
problems can arise when sounding the atmosphere [1], 
analyzing biological [2] and food products [3], study-
ing and optimizing solar cell batteries [4] and optical 
detonators [5-10], etc. When analyzing experimental 
results the most often used are diffusion approxima-
tion [11,12], Kubelka-Munk theory [11,13] and the radi-
ative transfer equation using Monte-Carlo methods [14]. 
The reason for their prevalency is their relative simplicity 
(diffusion approximation and Kubelka-Munk theory) 
or accessibility of ready-made simulation codes (Monte 
Carlo methods). At the same time, diffusion approxima-
tion and Kubelka-Munk theory are applied only in the 
extreme case of a very strong light scattering [11] and 
only approximate boundary conditions may be identified 
for them [11]. As a result, their prognoses may result in 
significant errors [11,13].
Most papers on the radiative transfer theory have used 
Marshak boundary conditions [15] which may be applied 
as approximate conditions when considering the bound-
ary, where the refraction index cannot be changed (clouds 
in atmosphere). This type of boundary conditions cannot 
be used in the case of systems where the refraction index 

is changed at the boundary: colloids, metal nanoparticles 
dispersed in a transparent matrix, solar cells, etc. In this 
case it is necessary to identify Fresnel boundary condi-
tions [16-19]. Solution of the radiative transfer equation 
with Fresnel boundary conditions using the discrete or-
dinate method was implemented in [17]. In paper [18] 
the radiance transfer simulation was executed in a solar 
energy concentrator in case of spherical and frame lumi-
nescent quantum dots. We have proposed in our paper 
[19] to adapt the spherical harmonics method to solu-
tion of the radiative transfer equation in a homogeneous 
slab calculating integral absorption indexes, and reflec-
tion and transmission coefficients. As an object we used 
some pressed polycrystalline samples of pentraerythrite 
tetranitrate (PETN) with nanoscale aluminum additives. 
Benchmarking of the theory and the experiment enabled 
to estimate the complex nanoparticle refraction index at 
the laser radiance wavelength of 643 nm [19].
Thus, application of the radiative transfer theory to 
specified objects is relevant for development of spec-
troscopic research methods. Most papers consider the 
integral characteristics such as the diffuse reflectance 
and transmission factors. Their use doesn’t allow us 
to determine all unknown parameters of the scattering 
medium; it becomes necessary to use additional infor-
mation about the system that reduces opportunities of 
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this method. In order to improve the information qual-
ity, we may use angular distribution of the reflected 
and transmitted light which was not considered in our 
previous paper [19].
Paper objective: the radiance angular distribution sim-
ulation of the transmitted and reflected light in the 
transparent medium containing metal nanoparticles. 
As a model system we used PETN samples containing 
aluminum nanoparticles of different radius. Selection 
of this system has been stipulated by the possibility 
to apply it as a detonable composition for optical det-
onators [5-10], as well as by the fact that the matrix 
material (PETN) can be compressed with obtaining a 
dense and optically transparent sample with no visi-
ble defects. Calculations have been performed at the 
wavelength of 1064 nm (the first harmonic of neo-
dymium laser) that corresponds to initiation condi-
tions of detonable compositions for optical detonators 
in experimental works [8-10].

1. The spherical harmonics method 
with Fresnel boundaries

Let us consider the transparent material slab wherein 
metal particles are uniformly distributed with a rather 
low concentration, so that their interaction may be ne-
glected. Stationary distribution of unpolarized light in 
such system may be described by the radiative transfer 
equation which has the form [11]:

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,
4
kI kI I x d q

        l r l r l r l l l l r l  (1)

where  lr ˆ,I  – is the light intensity in point r in l̂
– direction, k – is the linear attenuation coefficient, 

scak k  – is the albedo of single interaction be-
tween light quantum and the scattering medium,  ll ˆ,ˆx  
– is the scattering indicatrix,  lr ˆ,q  – is the function 
of light sources. A left member of the equation has 
a meaning to change the intensity into l̂  – direction 
when changing D coordinates. The first summand in 
the right part indicates the reason for intensity reduc-
ing, i.e. the light extinction; the second summand in-
dicates the reason for its increasing due to its scattering, 
and the third member shows the intensity increase due to 
light sources located within the light scattering medium. 
Suppose that the beam broadening due to scattering pro-
cesses is much smaller than the beam radius falling per-
pendicular to the top surface of the sample that enables 
to transfer to the one-dimensional problem. Taking into 
consideration these simplifications, the radiative transfer 
equation will take the following form [15,19]:

       
ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ, , ,
4
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l l l l l l  (2)

Proceeding to the dimensionless coordinate kx   
and introducing the spherical angle cosine  cos  

between the direction of the beam initial incidence 
angle, which is perpendicular to the sample upper 
boundary, and the direction of interest, we reduce the 
equation (2) to the following form [15,19]:

       
1

1

,
ù

2
ù

I x I x x d
d


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        (3)

In order to solve the equation (3) we used the spherical 
harmonics method in which the angular distribution of 
light intensity was searched in the form of a superposi-
tion of spherical harmonics [15,19]. Since we neglect the 
light beam broadening and the dependence on the polar 
angle  is missing, the spherical harmonics may be re-
placed in terms of Legendre polynomials (Pl):

         
0 0

2 1 2 1ˆ,
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N

l l l l
l l
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where N – is the maximum considered harmonics in-
dex, Сl – means expansion coefficients depending on 
coordinates. The scattering indicatrix may be arranged 
in terms of Legendre polynomials [15,19]:
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After we have converted the second member of equa-
tion (1) and applied recurrence relations for Legendre 
polynomials, the equation system for the intensity ex-
pansion coefficients will take the form [15,19]:

  1 11 1 1 0
2 1 2

m m m
m

dC dC xm m C
m d d 

                  
(6)

Equation (6) is known as the spherical harmonics 
equation system. It is difficult to directly apply the 
equation system (6), since if take into consideration 
the boundary conditions which express the external 
radiation falling down to the sample, the angular dis-
tribution will be greatly extended in the direction of 
the initial beam. In order to avoid this disadvantage, it 
was suggested to deduct a part of the solution directly 
relating to the falling light 0I  [15,19] and to calculate 
only the scattered component sI :

0 sI I I   (7)
The non-scattered intensity component (I0) is reduced 
in accordance with the Bouguer law. Since in some 
cases we will study reasonably thin samples, the reflec-
tion from the sample’s rear boundary shall be taken 
into consideration. Therefore, the non-scattered com-
ponent of the solution will take the following form:

    0 exp exp 2fI J R L       (8)

where J – is the density of radiation power penetrated 
through the sample, fR  – is the Fresnel reflection co-
efficient at normal beam incidence. The equation sys-
tem for the scattered component is as follows:
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Let us identify the boundary conditions for the equa-
tion system (9). We will assume that particles are not 
directly on the sample surface. Then the interaction of 
light with the surface will be described by the Fresnel 
formulas [16-19]:
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where  R  – is the angle dependence of the Fresnel 
reflection coefficient. The equations (10) give the con-
ditions on the front and rear boundaries of the sample, 
respectively. They need to be converted into interac-
tions of harmonics contributions on the surface. For 
this purpose we use the intensity expansion in terms of 
Legendre polynomials:
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By multiplying the equation by  lP   and integrat-
ing between  and  (angles fall into the medium), 
we’ll get the following for the front and rear boundar-
ies, respectively:
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where the matrix elements are as follows:
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In accordance with the Fresnel formulas the an-
gular dependence of the reflection coefficient at 

21 n    is determined as follows:
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Since the light is considered to be non-polarized, 
the equation (14) contains contributions of s– and 
p-polarization which correspond to the first and 
second members in square brackets, respectively. 
At 21 n    the total internal reflection is taking 
place and  R  =.
The equation (9) may be presented in the following form:

       1 2

0
exp exp exp

N

m ml l l p p
l

C a C C C    


    
 
(15)

The last two terms are a particular solution of the 
non-homogeneous equation. The coefficients 1

pC  and 
2
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The degree “” means to take the inverse matrix from 
the matrix, the elements of which are shown in square 
brackets; the matrix multiplication operation is per-
formed between multipliers in square brackets.
The first right summand (15) corresponds to the solu-
tion expansion by private vectors of the matrix pmA  
(matrix mla ) with respective spectral numbers (ei-
gen values) l . The expansion coefficients lC  shall 
be determined in terms of the boundary conditions 
(10). These boundary conditions form the system 
consisting of N+ equations, from which N are 
linearly independent. The number of determined co-
efficients equals to N+, i.e. the system is overdeter-
mined. Therefore, we used minimization of the sum of 
squared deviations (SSD) of values in left parts (10) 
from zero. As a result, we get the following equation 
for coefficients written in a matrix form:
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An alternative approach to determine coefficients lC  
involves the application of matrix singular value de-
composition Z [20]. This method also provides a sat-
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isfactory approximation but it means an arbitrary rule 
when excluding small eigen values which can affect the 
result accuracy.
The scattering medium parameters were calculated 
using the Mie theory [5-7,9,21,22] regarding alumi-
num nanoparticles as spherical. This theory allows us 
to calculate both absorption and scattering cross sec-
tions and the scattering indicatrix. The complex metal 
refraction index for the wavelength of  nm (the 
first harmonic of neodymium laser) was 0.96 – i 
[23], the matrix refraction index was equal to  
The number of harmonics used in calculations was 
determined based on the anisotropy of the scattering 
indicatrix. The more indicatrix anisotropy, the greater 
number of harmonics is to be used for its correctly de-
scribing and obtaining reliable results. The maximum 
radius of aluminum nanoparticles in our calculations 
was  nm that resulted to the strongly anisotropic 
scattering indicatrix, for the approximation of which 
we used N = . With less number of harmonics the 
angular component attained an oscillating structure 
which disappeared when increasing the number of 
harmonics. Similar calculation characteristics were 
noted also by other authors [24]. 

2. Computer implementation
For computer implementation of the solution of the ra-
diative transfer equation using the spherical harmonics 
method in the slab with Fresnel boundaries a special soft-
ware package has been developed. According to the state-
ment of the problem the calculations were performed for 
the transparent medium containing metal nanoparticles. 
As software input parameters we used the radius of metal 
nanoparticles, the light wavelength, the complex metal 
refraction index and the transparent medium refractive 
index at the same wavelength, the material slab thick-
ness, densities of metal and the transparent medium, and 
a mass fraction of metal nanoparticles.
The software package included the following major com-
ponents:
1. Calculating the absorption and scattering efficien-
cy factors, as well as the scattering indicatrix within the 
framework of the Mie theory for the specified nanoparti-
cle radius and material.
2. Calculating the linear absorption and scattering coeffi-
cients at the specified nature, mass fraction and radius of 
metal nanoparticles. Determination of the single scatter-
ing albedo. Approximation of the scattering indicatrix in 
terms of Legendre polynomials.
3. Calculating the matrices of coefficients in the spher-
ical harmonics equation system (9), the matrices of the 
boundary conditions (14), the matrices of coefficients 
in equations (15)-(16) describing the radiative transfer 
equation solved in terms of derivatives, and the specific 

solution of the nonhomogeneous equation.
4. Solving the matrix equations (12) using the formula 
(17) and determining the homogeneous equation solu-
tion expansion coefficients by eigenvectors in terms of 
Fresnel boundary conditions.
5. Calculating the angular distribution of the radiation 
intensity in defined points, graphing the calculated de-
pendencies, and calculating the slab transmission and 
reflection.
In order to test the software the test calculation has been 
performed for distribution of the radiation energy ab-
sorbed at Qsca = , Qabs = . In this parameter region 
the light scattering diffusion mode shall be observed 
[11], where the observed dimensionless absorption index 
should be close to   13 . The obtained value of the 
observed dimensionless absorption index amounts to 
 and differs by% from the predicted theoretical 
value that may testify to the calculation correctness.

3. Results and discussion
Fig. 1 and 2 show the results of simulation of the angu-
lar dependence of reflected and transmitted light for the 
samples containing aluminum nanoparticles of different 
radius with the mass fraction of %. As a direction 
from which the angle is to be measured out, we have 
identified the direction of incidence perpendicular to the 
front sample surface. We defined the sample thickness 
equal to the extinction length multiplied by 4 in order to 
obtain comparable results. Let us consider the main fea-
tures of the angular dependencies obtained. In case of re-
flected light the intensity distribution has a sloping min-
imum within< (the direction is into the sample’s 
interior perpendicular to the front surface) with further 
increase up to a nearly stationary value. For large parti-
cle radiuses we can further observe the increase until the 
maximum occurs at= . 

Fig. 1. Angular intensity distribution in reflected light
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These features  depend on two reasons,  i .e . 
the Fresnel  dependence of  the l ight  ref lec-
tion index on the incidence angle  and the 
scattering anisotropy factor.  The Fresnel 
dependence of  the ref lection index with 
the used medium refraction index is  shown 
in Fig.  3 .  Within the incidence angles 
0.23     the ref lection index is  equal  to 
one,  i .e .  the total  internal  ref lection takes 
place.  The boundary transmission sharply 
increases  and the ref lection index decreas-
es  by   t imes when varying the incidence 
angle  from   to   .  I t  decreases  more 
thereafter  and becomes minimum at  =0 and 
equal  to     22 11  nn  =    Comparing 
Fig.  1  and Fig.  3  we recognize that  the in-
crease in  the ref lected l ight  intensi ty  takes 
place in  the same range of  incidence angles 
that  the increase of  the ref lection index.

Fig. 3. Dependence of the reflection index on the incidence 
angle

Let us compare this characteristic of the angular 
distribution with those ones obtained by other au-
thors. As an example, we consider the paper [12] in 
which the angular distribution of the scattered 
radiation has been calculated in diffusion ap-
proximation at different light incidence angles 
on an infinite flat-parallel slab of the scatter-
ing, but not absorbing, medium. It is shown 
in [12] that in case of normal light incidence 
the angular distribution is symmetrical within 
the surface. The higher the angle of incidence 
(in respect to a surface vertical alignment), 
the more asymmetrical distribution is; more-
over, the asymmetry degree is reduced while 
increasing thickness of the scattering slab. The 
reason is that when having a thin slab, the sin-
gle scattering prevails, and when having a thick 
slab – the multiple with “erasing memory” of the 
original direction.
We have examined in our calculations only the 
case of normal radiation incidence on the scat-
tering medium and, in contrast to paper [12], 
the asymmetrical angular distribution has been 
found. The asymmetry of the intensity angular 
distribution is related to the angular dependence 
of the Fresnel reflection coefficient which wasn’t 
discussed in paper [12]. It should also be noted 
that diffusion approximation cannot be used to 
solve the radiative transfer equation with Fres-
nel boundary conditions. The diffusion approxi-
mation is equivalent to using only two terms of 
intensity expansion of interaction in terms of 
Legendre polynomials in (4). This approximation 
doesn’t allow accurately estimate the dependence 
of the light reflection coefficient on the boundary 
using the same interaction. Therefore, inaccurate 

Fig. 2. Angular intensity distribution in transmitted light
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boundary conditions based on the energy conser-
vation law which don’t take into consideration the 
angular dependence are always applied in diffu-
sion approximation [11,12].
Influence of the anisotropy factor is demonstrated 
by the sharp increase of the reflected light intensity 
a   . As the radius of nanoparticles increases, 
the anisotropy factor which is equal to the cosine of 
the average scattering angle cosg   decreas-
es from - to – . So the larger the radius 
of nanoparticles, the more radiation is reflected in 
the opposite direction. This characteristic is reflect-
ed not only on intensity angular dependences at 
the boundaries, but also inside of the sample. Fig. 
4 shows the example of the intensity angular distri-
bution in the center. Dependencies calculated for 
large-radius nanoparticles have two local max val-
ues at 0 and  which are related to the dom-
inating scattering direction. In case of low-radius 
nanoparticles (100 nm), these local max values are 
not observed, and the intensity-angle dependence is 
very weak. 

Fig. 4. Intensity angular distribution in the sample’s center 

In physics of light scattering systems we often 
use a concept of the Lambertian surface, i.e. the 
surface in which the intensity reflection is the 
same in all directions. According to Fig. 1, the 
radiative intensity doesn’t practically depend 
on the angle within the range of      
in case of small-radius aluminum nanoparticles 
that relates to low light scattering anisotropy.  
Thus, if the light scattering anisotropy is small, 
regardless of Fresnel boundary conditions the 
reflection of the wide scattering medium will be 
close to isotropic. Increase or decrease of the 
anisotropy factor will lead to still greater devi-

ations from the Lambert surface approximation.
Let us consider the informative value of the ra-
diation angular distribution in solving the in-
verse problem. We have previously identified 
in paper [19] the optical properties of alumi-
num nanoparticles in the medium with Fresnel 
boundaries using a photometric integrating 
sphere. Based on experimental reflection and 
transmission coefficients measured in accor-
dance with the sample thickness and the mass 
fraction of aluminum nanoparticles (average 
radius is 50 nm), the complex aluminum refrac-
tive index was determined. As follows from the 
results of this work, the main parameter influ-
encing the radiation angular distribution at the 
sample boundary is the anisotropy factor of the 
scattering indicatrix. Therefore, it is reasonable 
to experimentally determine the intensity angu-
lar dependence if the strongly anisotropic scat-
tering is expected.

Conclusion
The paper has considered the solution of the 
radiative transfer equation in the scattering 
medium slab with Fresnel boundaries using the 
spherical harmonics method. We used as ex-
ample the propagation of light in the dielectric 
medium containing aluminum nanoparticles. 
The basic blocks of the developed software have 
been identified in order to simulate the radia-
tive transfer.
The angular intensity distributions have been 
calculated at the slab center and boundaries. It 
has been concluded that Fresnel boundary con-
ditions may result to the asymmetric angular 
intensity distribution within the slab bound-
aries. It is shown that in case of the strongly 
anisotropic scattering indicatrix the intensity 
distribution on sample surfaces is extended in 
the direction of a normal line oriented from the 
surface into the environment that may be used 
to solve inverse problems of spectroscopic mea-
surements of light scattering systems.
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