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Introduction 
Most image recognition systems are based on finite-el-
ement methods for constructing the lower-dimension 
feature space. One of the most common methods to 
reduce image dimensions is PCA (Principal Compo-
nent Analysis) [1]. Many algorithms using PCA are 
currently offered to solve the search and face recogni-
tion problem. 
  The image recognition technique using finite-element 
methods involves two steps. The first step includes 
construction of a classifier using a training set of im-
ages. At the second step the recognition of unknown 
images using the constructed classifier is performed.
Different methods are used to construct the classifier; 
among them we may specify LDA (Linear Discrim-
inant Analysis) [2,3]. LDA allows us to convert the 
original image space into the low-dimensional feature 
space in which images are grouped in classes around 
their centers, and class centers are removed from each 
other insofar as possible.

Papers [4,5] propose an approach for solving image 
recognition problems, which is based on PCA and 
LDA joint usage. The training set is formed for prin-
cipal components calculation consisting of the images 
grouped in classes. Images of one class describe a face 
of one person. A class can contain dozens or even hun-
dreds of images of the same face. First, we use PCA to 
reduce image dimensions and then LDA is applied to 
separate image classes.
Processing of preliminary images is usually performed 
during images recognition that leads them to a stan-
dard form (scaling, centering, background intercept-
ing, brightness adjustment). It is also undesirable 
to have glasses, beards, facial expressions, etc. since 
during recognition the algorithm begins to response 
more sensitive, for example, to the existence of glass-
es than to interclass differences. Image normalization 
requires some extra computations; this is not critical 
at the step of constructing the classifier, but at the sec-
ond stage it is not always acceptable in systems that 
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can operate in real time. Besides, image normalization 
can lead in some cases to the loss of image informative 
value that may restrict the growth of recognition qual-
ity. Therefore, one of the tasks of interest is to develop 
face recognition systems without preliminary image 
processing (normalization). The paper considers 
the unnormalized face image recognition technique 
using PCA+LDA. One of the factors improving face 
recognition quality is the increase of a number of 
images per class. If the number of images per class is 
small, the training set may be expanded by the imag-
es obtained through mirroring, rotation and scaling 
of original face images. This method has little effect 
on recognition quality in the case of face image nor-
malization since the normalization procedure aims 
at reducing such differences between images. How-
ever, in the case of unnormalized images such meth-
od may be useful when the training set contains a 
small number of images. The proposed unnormal-
ized image recognition technique provides good 
recognition quality only when the number of images 
per class is large that increases time costs for con-
structing the classifier, but reduces costs for recog-
nition of unknown images, since it does not require 
the normalization procedure.
Due to the fact that at the step of constructing the 
classifier the training set can reach large sizes, the 
computational complexity of principal components 
may substantially increase. Therefore the paper con-
siders the problem of computational efficiency of 
principal components for lots of images. Papers [6-8] 
describe approaches reducing the computational com-
plexity of principal components for large image sets. 
Algorithms of the two-dimensional principal compo-
nent analysis are investigated in paper below [6]. Main 
components of two-dimensional PCA reflect differ-
ences between image rows and columns, and do not 
take into account differences between individual image 
points which can be meaningful in image recognition. 
The main advantage of two-dimensional PCA is that 
it can reduce matrix dimensions when computing the 
principal components. The principal component syn-
thesis approach is based on partitioning the image set, 
obtaining particular solutions and synthesizing princi-
pal components from particular solutions [7]. The lin-
ear condensation method [8] uses matrix deflation in 
computing the principal components. Matrix deflation 
ideas for calculating the eigenvalues have shown high 
efficiency of solution of the generalized eigenvalue 
problem using frequency-dynamic [9] and frequency 
condensation [10] methods. The linear condensation 
method adapts these ideas to the standard eigenvalue 
problem. This paper offers to use a block-orthogonal 
condensation algorithm, which is considered to be the 

development of a multilevel linear condensation algo-
rithm, to calculate the principal components of large 
sets of high-dimensional images [8].

1. Basic interrelationship between PCA and LDA 
The method based on PCA and LDA consists of two 
steps: first, we project a facial image from the orig-
inal features space into the facial eigenvalues sub-
space using PCA; then we use LDA to obtain the 
linear classifier. Let us suppose that there exists the 
set of images each of which can be described by the 
vector ix ( i =,..., m ), where m  – is the number 
of different images in the training set. The dimension 
n  of the vector ix  equals to the number of pixels in 
the image. Therefore all images can be represented as 
a matrix whose rows are the vectors ix . 
The average vector of training images 

1 m

i
= xim

 
is subtracted from each image in the training set. 
Thus, a new space 0X  is obtained with the dimension 
of nm  whose rows are  ii xx0  vectors.
The PCA+LDA approach can be considered as a 
phased linear transformation of the original image 
space to the projection of a smaller-dimensional space. 
The first step includes the transformation which al-
lows us to reduce the dimension of each image from 
n  to p  ( np << ). The principal component method 
is a dimension reducing technique based on extract-
ing the desired number of principal components from 
multi-dimensional data. The first principal compo-
nent is a linear combination of original features (pix-
els) which has a maximum variance, and the i -prin-
cipal component is the linear combination of original 
features (pixels) with the highest variance among 

1 im  principal components and orthogonal to 1i  
first principal components.
It is known that     the matrix 0X  may be represented as 
the singular value decomposition.

0 T
PCA PCA X U V  (1)

where PCAU ( pm ) and PCAV ( pn ) – are matrices 
of left and right eigenvectors 0X ,   – is the diagonal 
matrix ( pp ) whose diagonal element s p ,...,, 21  
are positive eigenvalues of the matrix 0X . Here p  – 
is the number of eigenvectors; usually p  should not 
exceed the matrix range 0X .
The key element of PCA is the calculation of the 
principal component matrix PCAV . The principal 
component matrix PCAV  is formed by the right 
eigenvectors 0

PCA
iV , which correspond to the largest 

eigenvalues.
The eigenvector matrix PCAV  may be determined as 
follows: 

1 0T T
PCA PCA

 V U X  (2)
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The left eigenvector matrix PCAU  is formed from the 
eigenvectors of the following equation:

0( )u 0PCA A I  (3)
where I  – is an identity matrix with the order m , 

0uPCA  – is the eigenvector, and   – is the eigenvalue, 
001 )( XXA T

m=  – is a covariance matrix.
The main image components are calculated by the 
following formula:

0
PCAZ X V  

where Z — is the matrix ( pm ) of image principal 
components whose i – row represents the principal 
component vector of the i -image. We shall further de-
note the image principal component vector as k

iz , 
where k— is a class number, i  — is an image number.
Let us denote the mean vector of image principal com-
ponents belonging to k  class as k , and the mean val-
ue of the principal components of all images as 

1

1 z
km

k
k i

ik

=
m 

  ,
 1

1 1 z
kmK

k
i

k ik

=
K m 

    (4)

Here K  – is the class number, and km  – is the number 
of facial images per class k .
The interclass differences matrix bA  can be calculated as

1 1

1 (z )(z )
kmK

k k T
i k i k

k im  
 

  A  (5)

The intraclass differences matrix is determined as 

1 ( )( )
K

T
b k k k

k
m

m
     A  (6)

LDA tries to find such transformation which would 
maximize the relationship between interclass and in-
traclass differences as shown below:

arg max
n r

T
b

lda T
R  


V

V A V
V

V A V
 (7)

In order to determine ldaV  the eigenvalue problem is 
to be solved

0v)( 0  
lda

b AA  (8)
Solution of the above equation (8) represents the gen-
eralized eigenvalue problem. Paper [11] shows that in 
order to solve the above equation (8) we should effi-
ciently use the general Jacobi eigenvalue method.
Combining PCA and LDA we shall obtain the linear 
transformation matrix which first projects the image 
to the subspace of principal componentsZ and then to 
the classification space:

pcaldaVVW   (9)
where ldaV  – is the linear discriminant transformation 
in the principal components space. Image recognition 
shall be performed after this linear transformation in 
the discriminant components space using different 
metrics such as Euclidean distances.

2. Quality research of unnormalized 
facial recognition via PCA+LDA

The ORL database contains images of  persons, 
each of which is described with  different facial 
images with different facial expressions, perspec-
tives and detailed silhouettes. All images in the da-
tabase are in grayscale with  brightness grada-
tions. The size of each image is  pixels. Fig. 1 
shows examples of images of eight faces taken from 
the ORL database.
The size of facial images in the Feret (Facial Rec-
ognition Technology) database is  pixels 
[12]. However, in experiments we have used images 
of  pixels in size thus to reduce computa-
tional costs. Therefore each image was represented 
as the vector of  in dimension. Facial images 
are extracted from the Feret database and describe 
 persons. Facial images are selected using the Vi-
ola-Jones’ face detection algorithm, but they don’t 
undergo the geometric normalization procedure. 
There are 10 images of various sizes for each per-
son obtained in different light intensity at different 
shooting angles with improvised facial expressions. 
The total number of images in the training set is 
. Figure 2 shows eight facial images taken from 
the Feret database.
The PCA+LDA approach is used for image recog-
nition and includes two stages. Principal compo-
nents of the training set are calculated at the first 
stage thus reducing the dimension of each image up 
to p  of principal components. In order to form the 
principal components the eigenvectors of equation 
(1) shall be used with the largest eigenvalues. Then 
interclass and intraclass difference matrices ( pp
) are formed and pr   of discriminant components 
are calculated. The nearest class-center classifier 
shall be used in image recognition. The images not 
included in the training set are used as a test set.
The quality of facial image recognition is described 
with a recognition rate which is numerically equal to 
a proper percentage of correctly recognized images of 
the total amount of all presented images. The recog-
nition rates testK

 
 shall be determined for the test set.

The first part of experimental researches is carried 
out with the ORL database images. Experiments 
are performed to study how the number of images 
in the training set class can influence on the recog-
nition quality. The first three series of experiments 
are conducted for training sets containing 2, 3 and 4 
images per each class which are randomly selected. 
When using PCA+LDA methods for image recog-
nition, the nearest neighborhood classifier shall be 
applied [11].
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Fig. 1. Examples of facial images selected from the ORL 
database

Fig. 2. Examples of facial images selected from the Feret 
database

In experimental researches a cross-validation procedure 
is used which averages the recognition rates obtained 
while classifying the set of images into training and test 
sets. The training set images are randomly selected from 
the ORL database. All remaining images have formed the 
test set. Ten experiments are performed per each series.
In paper [13] experimental researches of normalized 
images from the ORL database have been performed 
using the following different methods: PCA (Princi-
pal Component Analysis), LDA (Linear Discriminant 
Analysis), DLA (Discriminative Locality Alignment 
[14]), NDLPP (Null Space Discriminant Locality Pre-
serving Projections [15]), RLPDA (Regularized Local-
ity Preserving Discriminant Analysis [13]). 
Table 1 shows the recognition rates obtained using the 
aforementioned methods [13]. The same table shows 
the recognition rates obtained by the classifier con-
structed using PCA+LDA. Unnormalized face images 
have been used when constructing the classifier. The 
obtained results are in good agreement with experi-
mental data proposed by other authors.
As Table 1 shows, the recognition rates obtained us-
ing PCA+LDA methods without image normalization 
have rather high values though they are inferior to 
such methods as NDLPP and RLPDA. 

Table 1. Comparing the recognition rates of the ORL database 

Method
Number of images per class 

2 3 4

PCA [13] 69.6 78.6 83.6

LDA [13] 80.1 88.0 91.5

DLA 73.3 87.1 92.6

NDLPP 83.0 91.3 94.6

RLPDA 80.7 90. 4 94.8

PCA+LDA 82.2 90 94.2

The following series of experiments shall be conduct-
ed on training sets of the first three test series which 
are supplemented with the images obtained by rotat-
ing, scaling, and mirroring of original images of the 
training set. The obtained training sets are used to 
construct classifiers using PCA+ LDA.
Table 2 shows the recognition rates obtained using the 
constructed classifiers. The number of images per class 
resulted from expanding sets is given in brackets. The 
first row contains the results obtained by the training 
set supplemented with mirrored images. The number 
of images per class shall be doubled, and the recogni-
tion rates can also slightly be increased. The second 
row contains the results obtained by expanding the 
training set with the images decreased and increased 
by %. The number of images per class is increased 
three times, and the quality of facial recognition is sig-
nificantly improved.
The third row contains the recognition rates obtained 
by expanding the training set with the images rotated 
by clockwise and counterclockwise. The number of 
images per class is increased three times.
The fourth table row gives the results obtained by 
expanding the training set with the images which are 
first mirrored and then rotated by o clockwise and 
counterclockwise. The number of images per class 
in this case is increased 6 times, and the recognition 
rates are slightly higher than the results obtained 
by expanding the training set with only mirrored or 
only rotated images.
The fifth row contains the results obtained by 
the following expansion of the training set. First, 
we supplement the images obtained from origi-
nal images through reducing and increasing by 
%. Then the expanded set shall be supplement-
ed with the images obtained through rotating by 
4o clockwise and counterclockwise. The result is 
that the number of images per class is increased 9 
times, and the recognition rates are considered to 
be the greatest.



Mokeyev V.V. et al… COMPUTER OPTICS, 2014: 38(4), 871-880

Image processing, pattern recognition 875

Table 2. Comparing the recognition rates when expanding the 
training set of the ORL database 

Training set 
expansion 

method

Number of original images per 
class

2 3 4

Mirroring 84.3 (4) 91.1 (6) 94.5 (8)

Scaling 85.6 (6) 96.4 (9) 95.8 (12)

Rotating 85.4 (6) 91.8 (9) 94.6 (12)
Mirroring 

and rotating
85.7 (12) 92.2 (18) 95.1(24)

Scaling and 
rotating 

 85.6(18) 96.4 (27) 96. 5 (36)

Mirroring, 
rotating 

and scaling
85.6 (36) 96. 3 (54) 94.1 (72)

The combination of image mirroring, scaling and 
rotating can lead to the maximum expansion of the 
training set. However, the classifier constructed on 
the basis of this set does not show the highest facial 
recognition quality.
The second part of experimental researches is per-
formed on the image training set from the Feret da-
tabase. The set includes  facial images of  
persons. There are 10 images of various sizes for 
each person obtained in different light intensity at 
different shooting angles with improvised facial ex-
pressions. 
Experiments with varying number of facial images 
per class are performed. The first three series of ex-
periments are conducted for training sets which con-
tain 3, 4 and 5 images in each class of the Feret da-
tabase. When performing researches, the cross-vali-
dation procedure is also used. The specified number 
of images selected from the training set is randomly 
selected from the Feret database. All remaining im-
ages have formed the test set. Ten experiments are 
performed in each series. 
Paper [16] gives the results of investigating the ac-
curacy of facial recognition performed in several 
databases including the Feret database. Facial imag-
es undergo the normalization procedure including 
centering, rotating, scaling, brightness alignment, 
etc. Different methods are used for image recogni-
tion, i.e. PCA (Principal Component Analysis), LDA 
(Linear Discriminant Analysis), NPE (Neighbor-
hood Preserving Embedding [17]), MFA (Margin-
al Fisher Analysis [18]), LSDA (Locality Sensitive 
Discriminant Analysis [19]), RLPDE (Regularized 
Locality Preserving Discriminant Embedding [16]). 
Table 3 shows the recognition rates calculated by 
the following methods, i.e.: PCA, DLDA, NPE, 
MFA, LSDA, RLPDE and PCA+LDA. The recogni-

tion rates obtained by these methods are compared 
with the results of PCA+LDA without images nor-
malization.

Table 3. Comparing the recognition rates of the Feret database 

Method
Number of images per class

3 4 5

PCA 59.7 60 60

LDA 64 63.7 64

NPE 61,3 60 61.3

MFA 66.4 61.3 63.3

LSDA 64 63.6 65.6

RLPDE 75.4 75.4 75.4

PCA+LDA 52.6 59.3 65.6

As shown in the above table, increasing the number 
of images per class does not result to significant im-
provement of facial recognition quality if the following 
methods are used, i.e. PCA, LDA, NPE, MFA, LSDA, 
RLPDE. This may be due to the fact that the normal-
ization procedure does not only eliminate facial differ-
ences, but can also distort facial images. For classifica-
tions constructed by means of PCA+LDA using unno-
rmalized images, the facial recognition quality shall be 
considerably improved with increasing the number of 
images per class.
The next three series of experiments are performed 
for training sets of unnormalized images which are 
increased by supplementing images obtained through 
rotating, scaling and mirroring the original images. 
Ten experiments shall be performed per each series; 
the results thereof shall be averaged. Table 4 shows 
the recognition rates obtained by LDA+PCA classifi-
ers constructed through expanded training sets. The 
number of images per class resulted from expanding 
the set is given in brackets.
The table shows the results which have been obtained 
when the training set has been expanded by mirrored 
images (the first row), by the images increased and 
decreased by % (the second row), and by the imag-
es rotated by o clockwise and counterclockwise (the 
third row).
The fourth row gives the results obtained by ex-
panding the training set with the images which 
are first increased and decreased by 5% and then 
all image of the expanded training set are rotated 
by o clockwise and counterclockwise. As can be 
seen from the table below, the classifications con-
structed on such training set can provide the best 
recognition results.
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Table 4. Comparing the recognition rates when expanding the 
training set of the Feret database 

Training 
set expansion method

Number of images per class 

3 4 5

Mirroring 58.2 (6) 64.2 (8) 70 (10)

Scaling 64.4 (9) 70.5 (12) 75.3 (15)

Rotating 64 (9) 70 (12) 72 (15)

Scaling and rotating 65.7 (27) 73 (36) 76 (45)

Mirroring and rotating 65.5 (18) 69.9(24) 74.5 (30)
Scaling, rotating 

and mirroring
67.7 (54)72.8 (72) 75.6 (90)

The combination of image rotating by 4o clockwise and 
counterclockwise and mirroring of all obtained images 
allows us to get the results shown in the fifth row of 
the table.
The combination of all three ways of expansion of the 
training set results to the maximum increase of the num-
ber of images per class, however the classifier construct-
ed therethrough cannot demonstrate the best results.
As the above table shows, the expansion of the training 
set by means of derivative images obtained through 
rotating and scaling of original images shows a steady 
rise of the recognition rate. Images mirroring along 
with their scaling and rotating does not improve the 
recognition quality. This may be due to the fact that 
such extension of the training set may result to the 
growth of similar images that reduces the information 
content of the testing set and the quality of classifiers 
constructed therethrough.
It should be noted that expansion of the image training 
set obtained by rotating, scaling and mirroring can be 
reasonable only in case of lack of a large number of 
original images.
Thus taking the aforesaid into consideration, it may be 
said that increase of the number of images per class al-
lows us to construct rather high-quality classifications 
based on PCA+LDA methods with no image normal-
ization procedure applied.
The increasing number of images per classes results to 
increase of computational costs when constructing the 
classifier, which is related to the fact that the compu-
tational complexity of the principal components shall 
significantly rise with increasing number of images in 
the training set.

3. Calculation of the principal components 
of large image sets 

The main computational complexity of the principal 
components is related to computation of the eigenvec-
tors in equation (3). If there are many images in the 
training set, the matrix order in (3) becomes larger 

and considerable computational resources shall be re-
quired to compute the principal components. 
We can select the following groups of methods among 
the eigenvalue problem-solving techniques: iterative 
similarity transformation methods [20]. The group 
of iterative methods includes the power method, the 
Lanczos method, etc. The main disadvantage of itera-
tive methods is that the convergence rate of solutions 
can affect the ratio of the desired eigenvalue to the 
nearest eigenvalue. 
Similarity transformation methods are applied to 
obtain from the original matrix a new matrix with 
the same eigenvalues but of a simpler form. The 
most well-known methods are Jacobi, Givens and 
Householder methods. The Householder method 
allows us to obtain the desired result faster than 
the Givens method since it is related to performing 
fewer but more complex transformations.  Matrix 
deflation methods (condensation methods) refer 
to the group of similarity transformations methods 
since their purpose is to obtain a lower-order ma-
trix which would be similar to the original matrix 
in the sense that the eigenvalues of these matrices 
within the given range would coincide with the given 
accuracy.
Due to the fact that the eigenvalues are close enough 
to each other, especially at the top of a spectrum, iter-
ative methods are ineffective when calculating eigen-
vectors of large matrices. In paper [8] it is shown that 
the Householder method demonstrates a higher rate 
than the power method.
The effective way to solve a noncomplete problem 
of the eigenvalues for large matrices is the matrix 
deflation. Since the number of required eigenvec-
tors is usually much less than the matrix order, this 
approach is particularly effective for large matrices. 
The frequency-dynamic condensation method is 
proposed in paper [9], which reduces the matrix 
order when solving the generalized eigenvalue 
problem. The method has been thereafter widely 
used to solve various engineering analysis prob-
lems [10]. The idea of the frequency-dynamic 
condensation method has provided background 
for the linear condensation method which, when 
solving the standard eigenvalue problem, reduc-
es the matrix order while maintaining its eigenvalues 
within the given interval [8].
Let us introduce the equation (3) in the following 
form:

0( ) 0pcau I A  (10)

where  /1 . Then the problem shall be formulated 
as follows: to determine the smallest eigenvalues and 
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their corresponding eigenvectors of the equation (10).
Paper [8] describes the multilevel linear condensation 
algorithm for calculating the eigenvalues within the 
interval from 0 up to 2  and their corresponding 
eigenvectors. The algorithm includes five steps. 
The first step represents a multilevel matrix defla-
tion procedure which starts with the fact that all 
elements of the vector pcau0 , which will be further 
called the features, shall be sorted in descending or-
der of diagonal coefficients of the covariance matrix
A . A group of features with minimal diagonal co-
efficients is to be selected at each level of the matrix 
deflation procedure. The decision to exclude the se-
lected features shall be made if the following condi-
tion has been fulfilled:

2min  ck  (11)

Here maxmin /1   – is the smallest eigenvalue of a 
block of variables 

k
ssA  to be deleted, and ck  is called 

the intercept parameter. If the condition (11) has been 
fulfilled, the matrix deflation shall be performed. The 
condition (11) can be rewritten as c /2max .
As is known, the sum of matrix diagonal coefficients is 
equal to the sum of the eigenvalues  . Therefore the 
set of the features to be deleted is formed from the 
features which correspond to the smallest diagonal 
coefficients of the matrix A . In fact, it is assumed 
that the smaller the sum of the eigenvalues  , the 
smaller the maximum eigenvalue of the matrix being 
analyzed. In matrix deflation we will consecutively 
obtain the matrices

1A , 2A ,…, 
k

bsbb
k k k

sssb

 
  
 

A A
A

A A ,
 

where k  – is the deflation level of the matrix A .
The effectiveness of the multilevel linear condensation 
algorithm depends on how much the matrix order 
is deflated, however the deflation degree is not 
always high enough. Paper [8] demonstrates per-
formance of the multilevel linear condensation al-
gorithm via examples of calculation of 67 princi-
pal components of sets with different dimensions 
(from  to ). However further researches 
have shown that in calculation of the large num-
ber of principal components (several hundred) we 
fail to considerably deflate the matrix order. This 
is because the eigenvalues near the upper bound-
ary 2.  are very tight and we fail to select the 
features to be excluded without violating the above 
condition (11).
Therefore, the multilevel linear condensation al-
gorithm ceases to be effective. In order to speed up 
calculation of the eigenvectors it is suggested to use 
the block-orthogonal condensation algorithm.

The block-orthogonal condensation algorithm is 
based on the multilevel matrix deflation procedure. 
However the block of features (candidates to be de-
leted) at each level shall be reduced to a diagonal form 
using the orthogonal transformation.
Let the equation (10) in the k -level of the matrix de-
flation has the following form:

0)( 1  
pca
kkk uAI  (12)

We represent the matrix kA  and the vector pca
ku 1  in the 

following form:
k
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k k k
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Here the index b  refers to the features to be held, and 
the index s  refers to the features to be deleted.
Matrix diagonalization of the features to be deleted 
shall be performed by using the orthogonal transfor-
mation

sss
k
ss

T
s ÓPAP   (13)

The matrix sP  is the orthogonal matrix which is com-
posed of the eigenvectors of the matrix k

ssA  obtained 
when the following equation has been solved:

0)(  s
k
sss pAI  (14)

Thus,
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Let us note that sP  is the orthogonal matrix, so the 
following relation is meaningful:

ss
T
sss

T
s IPPPIP   (16)

Substituting equation (15) to equation (12) and mul-
tiplying on the right by the matrix TP  with regard to 
(16), we receive 

0)( *  pca
kkk uAI  (17)

where PAPA k
T

k 
* .

In view of set dividing and the aforementioned equa-
tion (13), the matrix kA  may be represented as

* 0 0
0 0

T k
b rbb bs

k k k
s ssb ss

k k
bb bs s

T k
s sb ss
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If diagonal coefficients of the matrix ss  are ar-
ranged in descending order, the reciprocal value of 
the first diagonal coefficient of the matrix ss  will 
be equal to the smallest eigenvalue of the block 
of features to be deleted ( min ). Testing of the 
condition (11) allows determine whether it is pos-
sible to remove features included in the block of 
features to be deleted. If it is impossible to de-
lete features, the condition (11) shall be checked 
for the second diagonal coefficient. In fact, this 
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means that we reduce the set of features being de-
leted per unit and make a decision to delete a re-
duced block of features. If the condition (11) has 
not been fulfilled, we again reduce the block of 
features per unit, i.e. the condition (11) is to be 
checked up to the third diagonal coefficient of the 
matrix ss , etc. If the condition (11) has been ful-
filled, it means that we have identified the block 
features which can be deleted. If the condition 
(11) has not been fulfilled, it means that the de-
flation process has been completed.
The remaining steps correspond to the steps of the 
multilevel linear condensation algorithm [8]. The 
only difference that occurs at the stage of recov-
ery of the eigenvectors relates to introduction of 
orthogonal transformations (15) when calculating 
values of the features to be deleted.
The block-orthogonal condensation algorithm along 
with the multilevel linear condensation algorithm 
provides an approximate solution of the eigenvalues 
problem. The point is that the eigenvectors of the 
equation (4) form the orthogonal basis mm , while 
the eigenvectors computed by the block-orthogo-
nal condensation algorithm constitute the orthog-
onal basis with the dimension of pm . Thus, the 
eigenvectors error calculated by the block-orthog-
onal condensation algorithm is related to the fact 
that they are not orthogonal eigenvectors starting 
with 1p  and more. The error of the solutions to 
be obtained may be reduced by using the intercept 
parameter. Increasing the intercept parameter we 
reduce the eigenvectors error. However, the degree 
of matrix contraction is herewith reduced and the 
solution time is increased.
It is offered to evaluate the eigenvectors error cal-
culated by the block-orthogonal condensation algo-
rithm using the following formula:

* 2
0 0

1

2
0

1

(v v )
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ik ik
k

i N

ik
k
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


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


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where *
0v i  – is the i -eigenvector calculated by the 

block-orthogonal condensation, i0v  – is the i -ei-
genvector obtained using the Householder method.
The eigenvectors computational accuracy is evaluat-
ed based on the ORL database. The eigenvectors are 
calculated using the block-orthogonal condensation 
algorithm and the Householder method. The eigen-
vectors computational accuracy using the block-or-
thogonal condensation algorithm, as shown above, 
depends on the intercept parameter. Table 5 shows 
how the eigenvectors computational error may vary 
depending on the intercept parameter.

Table 5. The eigenvectors computational error depending on 
the intercept parameter

Intercept 
parameter 

Eigenvectors error, %

80 PC 200 PC
1.1 75.06 82.5
1.5 20.98 26.7
2 3.12 2.56

2.5 1.02 1.32
3 0.29 0.46

As Table 5 shows, the more is the eigenvectors com-
putational error, the less the intercept parameter. 
However, for any value of the intercept parameter the 
eigenvectors calculated by the block-orthogonal con-
densation algorithm represent the set of orthogonal 
vectors, therefore they may be used as the principal 
components.
Efficiency evaluation of the principal components 
calculated by the block-orthogonal condensation al-
gorithm to solve the facial image recognition problem 
shall be performed on the ORL database. Images stored 
in the database are divided into training and test sets. 
The cross-validation procedure is used to investigate the 
facial image recognition which averages the recognition 
rates obtained from different training sets. The training 
set shall be formed from 8 images of each class of the 
ORL database which are randomly selected. All remain-
ing images shall draw the test set. The nearest neighbor 
classifier is used for facial recognition and provides high-
er values of the recognition rate if compared to the near-
est class-center classifier [11].
So, 10 experiments shall be performed with the princi-
pal components obtained by the Householder method, 
and 10 experiments shall be performed with the principal 
components calculated by the block-orthogonal conden-
sation algorithm at different values of the intercept pa-
rameter. The recognition quality for each test is evaluated 
according to the recognition rate of the test set. Based on 
the processed experimental results we obtain the mean 
values Kmn and the root-mean-square deviations Kmsd of 
recognition rates of the test set.
Table 6 shows the results obtained using the principal 
components calculated by the block-orthogonal con-
densation algorithm (the intercept parameter is equal 
to 1.1, 2 and 3). The results obtained by the House-
holder method fully coincide with the recognition 
rates calculated by the block-orthogonal condensation 
algorithm with the intercept parameter equaled to 3.
As Table 6 shows, despite the fact that the eigenvectors 
computational error is the greatest when the intercept 
parameter is 1.1, their usage as principal components 
allows to obtain even higher recognition rate.



Mokeyev V.V. et al… COMPUTER OPTICS, 2014: 38(4), 871-880

Image processing, pattern recognition 879

Table 6. Mean values and root-mean-square deviations 
of recognition rates of the test set

Number 
of principal 
components 

Intercept parameter

1.1 2 3

Kmn Kmsd Kmn Kmsd Kmn Kmsd

24 95.5 0.87 95.2 0.98 95.2 0.98

26 96.1 0.92 96.1 0.92 96.1 0.92

28 97.2 1.15 97.1 1.02 97.1 1.02

30 97.2 0.79 96.8 0.65 96.7 0.87

32 97.3 0.40 97.2 0.98 97.1 0.84

34 97.2 0.79 97.2 0.79 97.2 0.79

36 97.6 0.92 97.6 0.92 97.6 0.92

38 97.6 0.71 97.5 0.83 97.5 0.83

40 97.6 0.92 97.6 0.92 97.6 0.92

42 98.1 0.66 98.0 0.87 98.0 0.87

44 98.0 0.65 97.8 0.84 98.0 0.64

46 97.6 0.71 97.3 0.92 97.3 0.92

48 97.7 0.79 97.38 0.922 97.3 0.92

50 97.6 0.71 97.75 0.791 97.6 0.92

In some experiments the principal components cal-
culated by the block-orthogonal condensation algo-
rithm with the intercept parameter 1.1 demonstrate 
a better recognition quality that indicates the pros-
pects of this approach for calculating the principal 
components.
Performance of the block-orthogonal condensation 
algorithm is investigated by comparison of the com-
putation time of the principal components of image 
sets stored in the Feret database. By the computa-
tion time we mean the calculating time for the prin-
cipal components 0

pcau  by solving the equation (3) 
using PC. 
To demonstrate the performance of the block-or-
thogonal condensation algorithm we evaluate  
principal component matrices of various sizes, and 
the results are compared with the results obtained 
by the Householder method.
Table 7 shows how the computation time of 290 
matrix principal components of various dimensions 
may vary. The results obtained by the Household-
er method, the multilevel linear condensation and 
block-orthogonal condensation algorithms are pre-
sented herein for reference. 
As seen from the table, the block-orthogonal 
condensation algorithm exceeds in its perfor-
mance not only the Householder method but also 
the multilevel linear condensation algorithm.

Table 7. Relative computational time for principal components 
depending on matrices’ dimensions 

Matrix 
order

House-
hold 

method

Multilevel 
linear con-
densation

Block-
orthogonal 

condensation
1210 61 12 12
4080 4742 776 477
4832 9000 1283 879
5793 19103 2298 1122
6899 35411 3467 1320

Conclusion
Some aspects of the Principal Component Analy-
sis and the Linear Discriminant Analysis have been 
considered to solve the facial recognition problem. 
The classifier construction technique has been of-
fered using the training set of unnormalized images 
that reduces the costs at the stage of recognition of 
unknown images through eliminating the normal-
ization procedure.
The quality research of unnormalized facial imag-
es has been performed depending on the number of 
samples per class according to the ORL and FERET 
databases.
The performed researches have shown that the us-
age of unnormalized facial images in construction of 
classifiers using PCA+LDA is a promising direction in 
construction of facial recognition systems, since it al-
lows to reduce recognition costs of new images due to 
partial or complete cancellation of the facial normal-
ization procedure. A good quality of facial recognition 
by unnormalized images can be achieved by increasing 
the number of images per class. If the number of imag-
es per class is not large, the training set may be supple-
mented with images obtained through their rotating, 
scaling and mirroring.
The problem of increasing the computational effi-
ciency of the principal components of large image 
sets has also been considered hereby. In this case it 
is proposed to use the block-orthogonal condensa-
tion algorithm for calculating the principal compo-
nents. It is shown that this algorithm allows signifi-
cantly reduce the computational complexity of the 
principal components.
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