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Introduction 
The term “optical flow” is now widely used in the 
literature: perceived motions of bright images ob-
served when objects are moving in front of a camera 
or camera’s motions in stationary environment. As-
suming that in normal cases the optical flow doesn’t 
significantly differ from a motion field, we can eval-
uate displacements on the time-measured images 
subsequence. Sufficiently complete overview of vari-
ous methods to determine the optical flow and their 
quantitative comparison is given in paper [1], which 
specificates correlation [2], differential [3-5], phase 
(frequency) [6] and other approaches. 
The optical flow computation algorithms are widely 
used in different research areas and practical tasks, 
particularly, to evaluate velocity profiles in liquid– or 
gas flows using the Particle Image Velocimetry (PIV) 
method [7], video data compression [8], in transport 
robotic guidance systems [9].
The Digital Image Correlation (DIC) method is one of 
the most prospective approaches to study strain and 
structurally nonuniform materials destruction pro-
cesses. Its operating principle is to build the displace-
ment vectors based on determination of the optical 
flow followed by computation of strain components 
using a numerical differentiation procedure. 
When investigating the deformation behavior of struc-
tural material patterns using the optical flow compu-
tation method [10], one of the main factors limiting 
the strain evaluation is the increment external load re-
sulting to variance of the surface topography. In case 

when the change in the optical surface topography 
between two images is large enough, it’s not possible 
to match image subsets.  In this regard the use of tradi-
tional displacement algorithms becomes unrealizable 
since there is no opportunity to correctly build the 
displacement vector field or separate vectors thereon. 
There are some works well known in this area [11, 12] 
in which the authors solve similar problems. Thus, in 
paper [11] two approaches, i.e. the reference-frame 
approach (RFA) and the incremental difference ap-
proach (IDA), have been proposed to search the op-
tical flow.
Not least important is the problem of the algorithm 
performance. Multi-scale approaches using the im-
age decomposition by Gauss pyramid and enabling to 
significantly shorten a computation time, have gained 
widespread acceptance in the image processing and 
computer vision literature. Approaches based on the 
use of parallel computations and multiprocessor sys-
tems [13-15] are also well known. On the contrary, we 
know relatively few works dedicated directly to algo-
rithmic optimization of the optical flow computation.  
In particular, we should note the paper [16] which 
deals with development of the D recursive search 
(DRS) method for the block estimation of displace-
ments considering the spatial and temporal relation-
ship of neighboring displacement vectors.
This paper solves the problem of how to increase ro-
bustness of the displacement computation algorithm 
on the images characterized by noticeable changes 
in the surface topography, as well as opportunities to 
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use theD recursive search (DRS) algorithm to build 
the displacement vectors in the task of materials strain 
evaluation. Comparative studies of robustness of these 
algorithms were carried out in model and experimen-
tal optical image subsequences.

1. Algorithm description
The integrated algorithm is supposed to be the basic 
algorithm, on which modifications proposed in the pa-
per are based. We used the classical correlation pro-
cedure in the algorithm to determine pixel accurate 
displacements [17] and Lucas-Kanade algorithm 
[4,5] to qualify displacements to pixel bits. This 
combination is provided, first of all, by good robust-
ness of the correlation algorithm in computation of 
large displacements, as well as by Lucas-Kanade dif-
ferential algorithm in computation of displacements 
with sub-pixel accuracy. Computation of the dis-
placement using the correlation algorithm is based 
on identifying an extremum of the cross-correlation 
function of two image subsets. We assume maximum 
or minimum values as being the extremum depend-
ing on the used proximity measure of image subsets. 
The first case relates to application of the correlation 
coefficient:
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where Fi, Gi – are light intensities of two images in 
point i of the image subset B; ,F G  – is the averaging 
light intensity of subsets. The second case relates to 
the sum of absolute differences
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Lucas-Kanade algorithm refers to differential optical 
flow computation algorithms. The algorithm calcu-
lates the motion between two images taken at time-
points t and t + t in each pixel. The differential algo-
rithms are based on the signal approximation by Tay-
lor expansion. Therefore, they use partial derivatives 
with respect to time– and space coordinates:
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Lucas-Kanade algorithm is based on the assumption 
that in local surroundings of each pixel a value of the 
optical flow is the same, thus it is possible to record 
the basic equation of the optical flow for all pixels in 
the surroundings and to solve the resulting system of 
equations using the least-square method:
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where Ix, Iy, It – are partial derivatives of the image 
light intensity with respect to coordinates x, y and time 
t; Vx, Vy – are the required displacements. 
In the process of applying loads to a measurement 
object the surface topography is formed on its 
surface, besides the object can be highly strained, 
extended or compressed. This has resulted in sig-
nificant differences in images of the object surface 
in real time if compared to the image of its initial 
condition. Besides, time-neighboring images in the 
subsequence may have insignificant changes. In 
order to eliminate displacement detection errors 
related to forming the strain surface topography and 
other processes on the material surface, it has been 
proposed to evaluate the subsets displacement of 
neighboring image subsequences with regard to those 
ones determined for the previous image pairs. This has 
ensured the possibility to track displacements of the 
same surface area not only in space, but also in time, 
that allowed us to improve robustness of displace-
ments computation. The incremental approach has 
been offered to determine the displacements. A po-
sition of the desired subset in the previous image (in 
regard to the current image subsequence) is identified 
with the sub-pixel accuracy, so it is necessary to deter-
mine light intensity values of pixels in this subset that 
is carried out using B-spline interpolation.
The classic correlation algorithm enables to com-
pute each coefficient of the cross-correlation func-
tion that leads to high computational efforts. There-
fore, the further algorithm modification was aimed 
at reducing computational efforts. For this purpose 
it was proposed to use the -D recursive search 
(DRS) method [16]. The DRS approach has been 
widely used in data videostreams processing and it 
helps to significantly reduce the build time of the 
displacement vectors field [16]. Each displacement 
vector is built based on selection of candidate vec-
tors out of the subset using the minimum similari-
ty measure searching procedure for which the sum 
of absolute differences (SAD) of image segments 
– current and previous – is used. The method has 
a probabilistic nature – candidate vectors indicate 
the assumed direction of the image subsets displace-
ment. The set of candidate vectors includes either 
time (the given subset displacement vector on the 
previous image) or spatial components (neighbor-
ing vectors), as well as update vectors resulting from 
spatial displacement vectors (Fig. 1) [16].
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Fig. 1. Arrangement of candidate vectors. C – is the displace-
ment vector of the current image area. S1, S2 – are spatial 
candidate vectors. T – is the time candidate vector.

The update vectors are defined as the sum of ran-
dom vectors throughout a small range (for exam-
ple, - in x and y-direction) and the displace-
ment vectors determined for the previous adjacent 
sections S1 and S2. For each of the candidate vec-
tors the similarity measure of the sum of absolute 
differences (SAD) is computed. The minimum val-
ue of the sum of absolute differences (SAD) will 
define the displacement vector. Thus, the amount 
of computations of the similarity measure of the 
sum of absolute differences (SAD) is considerably 
reduced.
The displacement vector field is computed line-
by-line from left to right starting with the top left 
image subset. When reaching the lower right image 
subset, the direction of image processing is reversed 
(right-to-left and bottom-up). So, several passes are 
performed in this way (usually  through  passes 
are set up). The displacement of each subset is con-
firmed in each subsequent pass including the dis-
placement computed in the previous pass.
With regard to opportunities proposed by the fore-
going approaches, we have estimated in this paper 
the computational efforts and robustness of the dis-
placement vector fields computation for the follow-
ing algorithms: the incremental algorithm (I); DRS 
with the similarity measure of the sum of absolute 
differences (SAD) (DRS); the incremental algo-
rithm withDRS (IDRS).

2. Method of testing algorithms 
The evaluation of computational costs and robustness 
of the displacement vectors of the investigated algo-
rithms was performed on model and experimental im-

ages. To estimate errors of the displacement vectors 
on model images the respective model fields of the 
displacement vectors have been used.
In the course of experiments, in addition to a form 
variance in the measurement object surface (com-
pressions, expansions, etc.), the reflecting capacity 
of its subsets can also change as a result of formation 
of the strain surface topography and other process-
es. Material samples, as well as real objects, because 
of their specific design features, often have stress 
concentrators (e.g. notches , holes). In the presence 
of these stress concentrators and in the absence 
thereof, some cracks can be formed in fragile mate-
rials within the field of view, which, in turn, would 
lead to discontinuity of the displacement field.
The above processes worsen the conditions in which 
the optical flow computation algorithm performs, 
and are considered to be constraints in displacements 
computation. On the basis thereof, the model image 
subsequences were formed to quantify algorithms ro-
bustness.

Model image subsequences
Formation of original surface image. The model image 
was obtained from a specified number of layers of 
pseudorandom light intensity references; in this case 
each layer corresponds to a specific spatial frequency. 
Similar to the description given in [18], having the ini-
tial layer of 44 pixels after 8 iterations performed, the 
model image of 10241024 pixels has been obtained 
(Fig. 2a).
Biaxial tension. In order to simulate variations oc-
curred in the surface when subjected to loadings on 
biaxial tension, the displacement of each point of 
the model surface has been assigned (Fig. 2b). For 
this purpose the light intensity of each pixel of the 
image is re-computed for the specified strain incre-
ment by B-spline interpolation.
Biaxial tension and surface topography variance (subse-
quence 1). To simultaneously register changes related 
to biaxial tension and surface topography, the sub-
sequence was created where each image was formed 
from a pair of original images. Computation of image 
subsequence pixels is carried out as follows: 

1 2(1 )P k P k P      (5)

where P1, P2 – are pixel values of original images; k – 
is the weighting coefficient varying from  to  with 
an increment equal to a converse value of the number 
of images in the subsequence. It results to forming the 
subsequence consisting of  images and reflecting 
the strain on biaxial tension with the finite increment 
 =  pixels.  
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а)  b)  

c)  d) 
Fig. 2. Model images and displacement vector fields

Images consisting of 4 segments with discontinuity of the 
displacement vector field (subsequence 2). The analysis of 
images reflecting the discontinuity of displacements is an 
important test to identify robustness of the displacement 
vector fields. For this purpose the biaxial tension of im-
ages consisting of 4 segments has been simulated. Each 
subsequence image was formed from four segments (Fig. 
2c) which were composed so as to provide the maximum 
number of combinations of directions of the displace-
ment vectors at segments’ borders (Fig. 2d).

Experimental image subsequence
The experimental optical image subsequence was ob-
tained by sample tension from the copper powder sin-
tered in vacuum with an electron beam (Fig. 5a). The 
specificity of the analyzed images was the significant 
change in the surface topography when subjected to 
strain, that imposed special requirements for the dis-
placement vector algorithms. The images were record-
ed using the foregoing methods described in [19].

Evaluation of algorithm performance and robustness
The algorithm performance was evaluated by specific 
computation time t of the displacement vector, i.e. a 
ratio of the total build time of the displacement vectors 
field to the number of vectors herein. To perform com-
putations we used a PC with the following specifica-
tions: CPU Intel (R) Core (TM) i CPU M , RAM 
Gb, OS Windows . To investigate the algorithm 
performance and robustness the above mentioned im-
age subsequences have been used.
To quantify the displacements computation ro-
bustness applying the tested algorithms we used 
the distance field correlation coefficient of vector 
fields Kr. 
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where D1, D2 – are the field distances of respec-
tive vector fields which are required for transition 
from two component vector field data to single 
component data; 1, 2D D  – are the arithmetic 
mean values of respective distance fields. Each 
element of the distance field was determined as 
follows [20]:
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where x, y – are respective vector components; w, h – 
are width and height of the displacement vector field.

3. Test results
Testing on model images
The analysis of computation time of one displace-
ment vector has shown the value t to be maintained 
approximately at a constant level for all algorithms, 
regardless of the value of variable parameters for all 
investigated model image subsequences.
In all observed image subsequences the minimum t 
value has been recorded for DRS and IDRS algo-
rithms which is ~ 10 times less than for the incre-
mental I algorithm (Fig. 3a). The dependence of 
computation time of the complete displacement 
vector field from the number of vectors in Nv 
shown in Fig. 3b is linear. The ratio of execution 
time of incremental I and DRS (IDRS) algorithms 
is maintained regardless of the number of vectors in 
the field.

а)  b)
Fig. 3. Dependence of computation time of one vector (а) 
and computation time of the complete displacement vector 
field from the number of vectors (b) for incremental  I, 3DRS, 
I3DRS algorithms

To quantify the displacements computation robust-
ness applying the tested algorithms we used the dis-
placement vector fields built while processing the 
model image subsequences. For this purpose we 
computed Kr (6), just as described in the previous 
section (Fig. 4).
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b)  
Fig. 4. Dependence of the correlation coefficient of vector 
fields from the weighting coefficient (subsequence 1) (a), the 
biaxial strain increment of fragmented images (subsequence 2) 
(b) for incremental I, 3DRS, I3DRS algorithms

The graph of changing Kr from the “weighting co-
efficient” k (5) for subsequence 1 is shown in Fig. 
4a. It can be seen that the DRS algorithm, which 
is not based on the incremental approach, doesn’t 
allow to accurately build the complete displace-
ment vector field: for 3DRS Kr value is to be re-
duced when k>0.1. This is due to the inability to set 
up a corresponding image area. At the same time, 
incremental algorithms (I, IDRS) show that Kr val-
ue is close to unity.
Reduced Kr is typical for all algorithms when tested 
on subsequence 2 (Fig. 4b). Low Kr values at the be-
ginning of the subsequence for the incremental algo-
rithm are related to the presence of incorrectly built 
displacement vectors, which are much greater in ab-
solute terms than the mean length of the vectors cor-
rectly identified throughout the displacement vector 
field; the number of false and correct displacement 
vectors becomes approximately equal by the middle 
of the subsequence. The total reduction of Kr for all 
algorithms relates to the increase of displacement val-
ues along the segments’ borders (discontinuities of 
the displacement field). Thus, the best robustness has 
been shown by IDRS algorithms.

Testing on experimental images
Results of the study of algorithms on the experimental 
image subsequence (Fig. 5 a, b) revealed that for algo-
rithms DRS and IDRS the computation time t is less 
in its value than that one for the incremental algorithm. 
To compare robustness of the algorithms (Fig. 5c) the re-
sults obtained using the IDRS algorithm have been con-
sidered as the “true” displacement vector fields (based on 
results of algorithms testing on model images).

а)     b)

c) 
Fig. 5. Optical image of the sample (a) and the displacement 
vector field (b) obtained from experimental images; 
dependence of K

r
 on the image number (strain degree) 

for incremental I and 3DRS algorithms based on processing  
results of experimental image subsequences (c)

It is obvious that the incremental algorithm may signifi-
cantly concede the DRS algorithm, and the increased Kr 
is similar to that one valid for this algorithm in the mod-
el subsequence 2 (Fig. 5c). The DRS algorithm graph 
has also the same pattern of change, which is similar for 
this algorithm in the model subsequence 2 (Fig. 5c): a 
gradual decline of Kr can be observed with increasing the 
variable parameter. Thus, results of algorithms testing on 
experimental and model images correlate well. 
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Conclusion
The paper offers the algorithm to build displacement 
vector fields based on the incremental approach to the 
estimation of the subsets displacement on the image 
subsequence. The paper also offers the modification of 
the incremental algorithm based on the DRS approach. 
Comparative studies on model and experimental data 
have been performed, which showed that the developed 
algorithm performs well when evaluating the displace-
ments on the material surface in conditions of consider-
able strain increments. In contrast to the classical correla-
tion algorithm, in which the displacement evaluation is 
made without regard to changes on the material surface, 
the proposed algorithm possesses adequate robustness 
to evaluate displacements throughout the full range of 
the strain increment.
The application efficiency of the DRS approach has been 
identified with regard to reducing computation efforts. In 
this case, the time required for the algorithm IDRS to build 
the displacement vector field is 10 times less if compared to 
the execution time of the incremental algorithm I.
Therefore, among all test combinations a combination of 
incremental and DRS approaches is the best one both in 
computational efforts and robustness to identify the dis-
placement fields in the optical strain evaluation method. 
The latter – DRS – approach enables to significantly re-
duce computational efforts and to simultaneously  increase 
robustness in the displacement vectors if compared to appli-
cation of the incremental and 3DRS algorithms separately.
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