
Image Processing, Pattern Recognition

KHOLOPOV IS… COMPUTER OPTICS 2016; 40(2): 266-274.

266[17] Implementation  
of an algorithm for forming  
a color image from monochrome 
images of visible and near  
infrared cameras in the YCbCr  
color space

Abstract
We consider a simplified algorithm for fusion of greyscale visible and thermal images presented in 

false colors in the de-correlated YCbCr color space. The color gamut is then brought to daylight con-
ditions using a color transfer algorithm that provides the same luminosity of the resulting gray fu-

sion and color fusion images. It is shown that the parallel computing on the graphics card performs 
real-time video fusion with a frame size of up to 1024×768 pixels and a frame rate of 30 Hz.
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Introduction
A new class of electro-optical systems known as En-
hanced Vision Systems (EVS) has been developed to ob-
serve subjects in adverse conditions (smoke, dust, fog, 
rainfall, background illumination, low light conditions, 
masking, etc.). By the ‘enhanced vision’ we should basi-
cally mean [1] a set of transformations aimed at enhanc-
ing a contrast and emphasizing an image skeleton that 
contribute most to the selection of subjects in perceived 
images. The development of EVS usually involves, apart 
from the use of television (TV) sensors for visible wave 
ranges (380–760 nm), also the use of thermal imaging 
(TI) sensors in the Short Wave Infrared (SWIR) range 
(wavelength from 0.9 to 1.7 microns), Medium Wave In-
frared (MWIR) range (wavelength from 3 to 5 microns) 
or Long Wave Infrared (LWIR) range (wavelength from 
8 to 14 microns) in channels of Computer Vision Systems 
(CVS). Data integration in multispectral monochrome 
sensors is implemented using image fusion algorithms. In 
this case, the resulting images have greater informative 

value than particular images from each channel of the 
multispectral CVS [1–5]. If all sensors of the CVS form 
grayscale images, the informative value of the resulting 
fusion image can be additionally increased by presenting 
it in false colors. The color gamut is then brought to natu-
ral colors (true colors) [6–10].  
The purpose of this paper is to implement a simplified 
algorithm for forming color fusion images from gray-
scale images in TV and TI Long Wave Infrared ranges. 

1. Research objective 
It is expected that the research objective discussed 
in this paper, referring to color fusion image framing 
based on grayscale images from TV and TI sensors, 
shall be solved by means of the following procedures 
to be acted upon:

■■ alignment between fields of view in TV and TI 
cameras; 

■■ grayscale fusion to form a brightness (achromatic) 
component of the resulting image;
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■■ proper color fusion imagery for forming chromatic 
components.
Each of the above first two procedures may present 
a separate research subject, therefore, the main ap-
proaches to solving this task is synopsized below.

Vision alignment algorithms for multispec-
tral sensors 

The main reasons for mismatching frame elements in 
video sensors of the multichannel CVS, according to 
paper [11], are as follows:

■■ the difference between mutual positions of cameras 
and subjects;

■■ different matrix resolutions in CVS cameras;
■■ different lens fields of view and their distortion;
■■ the lack of frame exposure timing synchronization 

(when moving objects observed).
Video sensors of the multispectral CVS (cameras К1 
and К2 in Fig. 1) can use both a shared optical channel 
with a Beam Splitter (BS) (Fig. 1а), dividing waves of 
visible and infrared ranges, and separate optical chan-
nels (Fig. 1b). In the first case, the additional use of 
mechanical alignment would allow us to roughly com-
bine apparent optical centers of the sensors and thus to 
minimize projective distortions.

а)                                                                           b) 
Fig. 1. Matching (а) and overlapping (b) fields of view in sen-
sors of the two-camera CVS in different arrangements

In the second case, the effect of noncollinearity of op-
tical axes of the cameras and diversity of their optical 
centers should result in projective distortions and the 
effect of optical parallax. However, precisely this ap-
proach (due to smaller dimensions of a camera sys-
tem) is the most often practiced.
The problem of alignment of the i-th and j-th images 
taken from spaced cameras in the same spectral range 
(subject to the correction of distortion of their lens-
es) is successfully solved by using the following matrix 
transformation:
xi = Hijxj,
where Hij is a homography matrix connecting homo-
geneous pixel coordinates of images of the i-th and 
j-th cameras xi = [ui, vi, 1]T and xj = [uj, vj, 1]T, respec-
tively; (u, v) are the coordinates of a pixel located over 

the intersection of  the u-th line and the v-th column. 
Since the coordinates of xi are fractional, the bilinear 
interpolation is used to identify the pixel brightness in 
nodes of a coordinate grid [12].
Evaluation of the homography matrix is usually based 
on the selection of pairs of corresponding image points 
and description of their neighborhoods by means of 
various descriptors [13]. The main constraint on ap-
plication of algorithms for automatic search of proper 
pairs for matching the images from two multispec-
tral cameras is the difference in the brightness of im-
age subjects in different ranges (visible, MWIR, and 
LWIR). In this regard, based on the analysis present-
ed in [11, 14-22], it is possible to identify four basic 
approaches to alignment of different fields of view in 
spaced multispectral sensors.
1. Brightness correlation alignment using image pyr-
amids [14].
2. Correlation alignment based on results of profile 
analysis [15–17]. 
3. Alignment through evaluating the homography ma-
trix by matching special points. For this purpose, the 
authors of papers [18, 19] note that to evaluate the ho-
mography matrix, some image interrelationships with 
different spectral ranges are determined manually. 
4. Preliminary camera calibration by flat chess pat-
tern [20–22].
As justly noted in paper [23], the latest approach is not 
applicable in imaging by only one moving camera. How-
ever, for multispectral CVS, where video sensors are fixed 
on a hard base and don’t change their positions relative to 
each other in the course of imaging, this approach is the 
most robust in observing low-contrast subjects and/or in 
low-light conditions when the efficiency of approaches 
1-3 has been going downward [24].
By reason of the above noted feature (the difference 
in the brightness of image subjects from cameras with 
different ranges), for the purpose of calibration (eval-
uation of matrices of camera internal parameters Ki 
and Kj, rotation matrix Rij, and translation vector tij), 
we would recommend to use a flat noncombustible 
pattern that is a combination of patterns from papers 
[20] and [22] (Fig. 2).

a)                                                 b)                                                c)

Fig. 2. Calibration patterns: a chess-type pattern for TV 
cameras (а); a pattern with driven filaments for TI cameras 
in the MWIR or LWIR ranges (b); a combined-type pattern for 
calibration of TV and TI cameras (c)
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Fig. 3. Atmospheric transparency windows 

Based on the advantages and disadvantages [30,31] for each of the infrared ranges given below in  Table 1, the 
MWIR or LWIR sensors are usually used in EVS with a single TI channel.

Since the relationship between the homography ma-
trix and camera calibration parameters i and j is deter-
mined by formula [25]

Hij = Ki(Rij – tijn
T/d)Kj

-1,

where n and d are a normal vector to imaging plane 
and its linear distance in the coordinate system of the 
j-th camera, respectively, the following approximate 
equation holds true for the subjects observed, where 
the distance d is much more than the linear distance 
between the cameras ||tij|| and where ||×|| are two vec-
tor norms:
Hij ≈ KiRijKj

-1.
In this paper, when analyzing color-based image fusion 
algorithms, we used images and videos (30 fps) with al-
ready combined fields of view in TV and TI sensors. 

Grayscale and multispectral image fusion 
algorithms 

The resulting grayscale image fusion algorithm may 
be generally written in the form of the following func-
tional:
YF(i, j) = F{TV(i, j), TI(i, j)},	 (1)
where TV(i, j) and TI(i, j) are the pixel brightness for 
TV and TI images over the intersection of the i-th line 
and j-th column, and YF(i, j) is the pixel brightness af-
ter fusion.
The most simple, and therefore, computationally less 

capacious image fusion algorithms for two spectral 
ranges (TV and TI) forming high-contrast halftone 
images are as follows:

■■ the equilibrium algorithm (arithmetic mean algo-
rithm) [3],

■■ YF(i, j) = [TV(i, j) + TI(i, j)]/2;	 (2)
■■ the fusion TV channel algorithm [1, 26],
■■ YF(i, j) = ( , ) | ( , ) |+ − −∆TV i j TI i j TI TI ,	 (3)
■■ where | ( , ) |∆ = −TI TI i j TI ;
■■ the image fusion algorithm based on contrast pyra-

mids (Laplacian and Gaussian) or wavelet transforms 
[2, 4];

■■ the spatial frequency fusion algorithm using 
mathematical methods of discritization and resyn-
chronization of multivariable messages and a 3D 
(two 3D coordinates and one spectral coordinate) 
low-pass interpolation filter  [27].

■■ In this paper, we used algorithm (2) for grayscale 
fused imaging followed by the histogram reduction 
method [28, 29]. 

2. Comparative analysis of IR ranges
The use of the SWIR, MWIR and LWIR ranges is 
caused by the presence of atmospheric transparency 
windows at the given wavelengths l [30–32], where 
the transmission factor of infrared radiation h ex-
ceeds a value of 0.5 (Fig. 3).
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3.False color enhancement algorithms. 
Color transfer

The idea to form color images from grayscale TV and 
TI imagery is based on application of the following 
functionals:
Rf(i, j) = fR{TV(i, j), TI(i, j)},
Gf(i, j) = fG{TV(i, j), TI(i, j)},
Bf(i, j) = fB{TV(i, j), TI(i, j)},
where Rf (i, j), Gf(i, j), Bf(i, j) are the RGB-components 
of pixels in an image; index f denotes a false color im-
age. Usually [6–9], a TI component is fed to R-chan-
nel, whereas a TV component – to G-channel:
Rf(i, j) = TI(i, j),
Gf(i, j) = TV(i, j),	 (4)
Bf(i, j) = TV(i, j) – TI(i, j),
or
Rf(i, j) = TI(i, j),
Gf(i, j) = TV(i, j),	 (5)
Bf(i, j) = TV(i, j).
A somewhat different solution was proposed in [10]:
Rf(i, j) = [TV(i, j) + TI(i, j)]/2,
Gf(i, j) = TI(i, j),	 (6)
Bf(i, j) = TV(i, j) – TI(i, j).
The false color images obtained according to (4)–(6) 
are difficult for perception, since they have unnatural 
colors of the sky and plants [7, 9].
Paper [33] shows that in de-correlated color space 
Lab a color gamut may be transferred from a target 
image by replacing the mathematical expectation and 
the root-mean-square deviation (RMSD) of chromatic 
components as follows:
q(i, j) = [q(i, j)s – ms

q]st
q/ss

q + mt
q,	 (7)

where q(i, j) = {a(i, j), b(i, j)}, index s and index t mean, 
respectively, a source image and a target, whereas sym-
bols mq and sq denote, respectively, the mathematical 

expectation and RMSD of parameter q being estimat-
ed by picture frame.
It is desirable to select the target in such a way that its col-
or gamut would approximately correspond (with regard 
to the type of locality and phonological conditions) to the 
color gamut of the observed scene [34]. To reduce com-
puting costs on estimation of parameters mt

q and st
q in 

paper [35], it is proposed to display target images as the 
1st and 2nd order central moment vectors Vt = ||mt

q1, mt
q2, s

t
q1, st

q2||T, where q1 and q2 are multicolor channels, which 
may be stored in a target bank and selected, for example, 
according to data obtained from geographic information 
and satellite radio navigation systems.
For computational simplicity in transferring the RGB 
color space into the de-correlated color space and 
vice versa, in paper [6, 8] it is proposed to use other 
de-correlated spaces, i.e. YUV and YCbCr:
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Table 1. Comparative analysis of IR ranges

IR range Advantages Disadvantages

SWIR

- similarity of SWIR images with images of visible range: a sensor 
records subject-reflected light rather than its thermal infrared radiation;
- larger visual range, versus visible range, of subjects in adverse con-
ditions (rainfall, smoke, dust, fog, etc.);
-  twice larger value of natural night light versus visible range;

- low video quality at light intensity of 
less than 0.2 lx;
- different column  extension in matrix 
sensors assembled from SWIR sensor 
rulers;

MWIR - better contrast of sky-and-earth imagery;
- the least attenuation during propagation in the atmosphere;

- excessive contrast for strongly heated 
and burning objects compared to LWIR;

LWIR
- better visibility in smoke/dust conditions and at low temperatures 
compared to MWIR;
- not subject to the effect of sunglint.

- lager atmospheric attenuation compared 
to MWIR.
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The resulting images after color transfer according to 
(7), if used in the YUV and YCbCr color spaces, where 
q(i,  j) = {Cb(i,  j), Cr(i,  j)}, as noted in [6], are nearly 
identical. The advantage of the YCbCr color space, ver-
sus the YUV color space, is the simplification of calcu-
lations of multicolor components, since multiplication 
by a factor of 0.5 in fixed-point operations is equiva-
lent to arithmetic right shift by 1.
For further simplification of conversion RGB ‑> YCb-

Cr, we may approximately consider that (4) is equiva-
lent to that one given in [34]

( ) ( )
( ) ( ) ( )
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In hardware implementation in microprocessors or 
programmable logic devices, as well as when using 
fixed-point computing arithmetic, the division oper-
ations of halving and quartering shown in (10) – (12) 
shall be replaced by the quickest operations of arith-
metic right shift by 1 and 2, respectively. 
It is reasonable to form achromatic component YF of the 
resulting image in color transfer [6 – 8, 34, 36] as the re-
sulting grayscale TV and TI brightness fusion images (1).

4. Options of performance improvement 
of the color-transfer-based method 

Despite the fact that the simplified algorithms for 
forming multicolor components (10) – (12) allow 
us to increase the performance of the color-trans-
fer-based algorithm (7) up to 1.8 times [34], com-
pared to calculating multicolor components Сbf and Сrf 
according to (4) – (6) and (8), they do not allow us 
(without applying the parallel computing procedure) 
to implement the grayscale TV and TI fusion images in 
full color for video sequences with a frame frequency 
of over 25 Hz and a frame size of over 640×480 pixels. 
To further improve the performance, it is assumed in 
paper [36] that

( ) ( ) ( )
( ) ( )
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,   , ,
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= −

rf

bf rf
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and, therefore,
mCb = -mCr,   sCb = sCr,
that allows us to reduce twice the amount of calcula-
tions when estimating mq and sq (q = Cb, Cr).
Further simplification of calculations may involve, 
similar to [37], replacing the estimated mean square 

deviation

( )
1/2

2
ˆ q qs = q−m 	(14)

by the estimated mean absolute deviation

ˆ 5 / 4.q qs ≈ q−m 	 (15)

Indeed, if a centered value (q – mq) is distributed ac-
cording to a normal law of zero mathematical expec-
tation
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The main disadvantage of color-transfer-based 
algorithms is the reduction of luminosity of sub-
jects I(i,  j) [35], corresponding to the intensity 
(brightness of a grayscale image) in achromatic 
case, by the inverse transformation YCbCr -> RGB 
that leads to the necessity of application of color 
model HSI [28]:
Rn = R/255, Gn = G/255, Bn = B/255,
I = 0.5[max{Rn, Gn, Bn} + min{Rn, Gn, Bn}],
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After color transfer in space HSI, the following substi-
tution shall be performed: 
I(i, j) = YF(i, j),	 (16)
The result is that by the inverse transformation 
HSI -> RGB, the same luminosity is provided both for 
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а)    b)   

c)     d)    e) 

   f) 
Fig. 4. Resulting TV and TI fusion images (grayscale)

grayscale and color fusion images. A price for equal lu-
minosity is the decrease of a fusion rate by 35 % [35].

5. Experimental results
The purpose of the experiment was to evaluate the perfor-
mance of image fusion algorithms for TV and TI images 
followed by the resulting color gamut, most closely approxi-
mate to real lighting conditions during their implementation 
on PCs. The size of TV frames was 1024×768 pixels and TI 
frames – 512×384 pixels. In our experiment, we used a PC 
with Intel Core-i5 processor type with a memory clock rate 
of 2.8 GHz and the amount of RAM of 4 GB.
In order to evaluate the performance of TV (Fig. 4a, b) and 
TI images in the LWIR range (Fig. 4c, d), the following im-
age fusion algorithms were performed (conventionally, al-
gorithms 1, 2 and 3):

■■ Algorithm  1 (non-simplified) – evaluation of the 
RGB-components according to (4), transfer to the YCbCr 
color space according to (8), evaluation of standard devia-

tions of the Cbf and Crf components in false colors according 
to (14), color transfer according to (7), changing back to 
color mode (RGB) according to (9), luminosity compensa-
tion according to (16);

■■ Algorithm  2 (simplified algorithm for evaluation 
of multicolor components [36]) – evaluation of the Cbf 
and Crf components in false colors according to (13) and 
their standard deviations according to (14), color trans-
fer according to (7), changing back to color mode (RGB) 
according to (9), luminosity compensation according to 
(16);

■■ Algorithm 3 (simplified algorithm for evaluation of mul-
ticolor components and their standard deviations) – evalu-
ation of the Cbf and Crf components in false colors according 
to (13) and their standard deviations according to (15), col-
or transfer according to (7), changing back to color mode 
(RGB) according to (9), luminosity compensation accord-
ing to (16).
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Fig. 5. Distribution histogram for C
b

The resulting grayscale fusion images according to 
(2) followed by histogram reduction are shown in 
Fig. 4e, f. Color fusion was performed for the bench-
mark parameter vector Vt = ||‑10, ‑12, 20, 35||T [35]. 
According to Vorobel’ method, a local contrast was 
evaluated for each frame (Table 2):

Kv = | sY  – bY  |/Ymax,

where  and bY  are the average brightness of the 
subject and background, respectively (evaluation area 
of the background brightness is marked by a white 
rectangle in Fig.  4а‑f), and Ymax is the greatest pixel 
brightness in the image.
Table 2. Local contrast Kv

Picture 4а 4b 4c 4d 4e 4f
Kв 0.02 0.03 0.54 0.10 0.70 0.16

The comparative results of color-based image fusion 
algorithms are given in cloud computing services [38].
Since functional transformations with TV and TI imag-
es performed in algorithms 1–3 are homogeneous [39], 
a parallel computing technology, such as CUDA, may 
be used to improve the method performance [40, 41]. 
The results for NVIDIA GeForce GTS450 Graphics 
Card (32 cores were invoked for the parallel comput-
ing) are given in Table 3.
It follows from the obtained results that the sim-
plified color-transfer-based image fusion algo-
rithm (algorithm 3) and the resulting color im-
ages provide the method performance 1.12 times 

greater than algorithm 2 proposed in paper [36]. 
In this case, evaluations of standard deviations 
of the Сb and Сr components according to (13) 
and (14) differ at most by a factor of 0.3 %.

Table 3. Performance of color-transfer-based image fusion al-
gorithms for TV and TI images with the resulting color images, 
frames per second (fps)

Algorithm 1 2 3

On CPU 2.8 4.9 5.5
On GPU with 
CUDA 19.1 33.5 37.8

The Gaussian hypothesis on distribution of chromat-
ic multicolor components Cb and Cr, with simplified 
computation according to (13), was tested using the 
Chi-Square Test for false-color fusion images obtained 
from TV and TI frames in Fig. 4а and c, respectively. 
Since, according to (13), the values of Cbf and Crf are 
equal in their absolute magnitudes, only distribution 
of component Cb has been analyzed (Fig.  5). It also 
follows from (13) that -128 ≤ Cb ≤ 128, therefore for 
computational convenience we have selected a number 
of decomposition intervals of equal width k = 16 (the 
given value for the frame size of 1024×768 is less than 
the recommended number of intervals kst = 20 being 
obtained by Sturges formula [42]:
kst = 3.3lg(n) + 1,
where n is a number of sample elements).
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For significance level a = 0.05, the critical value c2
 = 

7.539 < c
2

(a,  k–3) = 22.362 is calculated using the Chi-
Square method, therefore the Gaussian hypothesis for 
Cb and Cr is being confirmed.

Conclusion
Thus, the simplified algorithm considered in this 
paper implements real-time grayscale image fusion 
in TV and TI sensors (with aligned images for in-
creased fields of view) providing the same lumi-
nosity of the resulting gray fusion and color fusion 
images. 
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