Управление вкладом компонент векторного электрического поля в фокусе высокоапретурной линзы с помощью бинарных фазовых структур

Хонина С.Н., Волотовский С.Г.

Аннотация:
Показана возможность управления вкладом компонент векторного электрического поля в фокальной области с помощью бинарных фазовых структур с целью уменьшения поперечного размера центрального светового пятна фокусирующей системы с высокой числовой апертурой. На основе анализа матрицы поляризационного преобразования высокоапертурной линзы и численного моделирования фокусирующей системы в приближении Дебая показана эффективность использования полноапертурных асимметричных бинарных распределений для формирования субволнового центрального пятна площадью по полуспаду интенсивности 0,08 лямбда в квадрате с эффективностью 3,6% для линейной поляризации, 0,084 лямбда в квадрате с эффективностью 13% для радиальной поляризации и 0,054 лямбда в квадрате с эффективностью 2,4% для азимутальной поляризации.

Abstract:
Possibility of control by the contribution of components of vector electric field in focal area by means of binary phase structures for the purpose of reduction of the cross-section size of the central light spot of focusing system with the high numerical aperture is shown. By analysis of a matrix of polarizing transformation of a high-aperture lens and numerical modeling of focusing system in Debay approach efficiency of use full-aperture asymmetric binary distributions for formation of a subwavelength central spot is shown: half-maximum-area (HMA) 0.08 lambda ^2 with efficiency of 3.6% for linearly polarized beam, 0.084 lambda ^2 with efficiency of 13% for radially polarized beam and 0.054 lambda ^2 with efficiency of 2.4% for azimuthally polarized beam.

Ключевые слова: острая фокусировка, размер фокального пятна, бинарный фазовый дифракционный оптический элемент.

Key words:sharp focusing, size of a focal spot, binary phase diffractive optical element.

Литература:

  1. Karman, G.P. Airy pattern reorganization and subwavelength structure in a focus / G. P. Karman, M. W. Beijersbergen, A. van Duijl, D. Bouwmeester and J. P. Woerdman // J. Opt. Soc. Am. A. - 1998. - V. 15.- 4. - P. 884-899.
  2. Quabis, S. Focusing light to a tighter spot / S. Quabis, R. Dorn, M. Eberler, O. Glockl and G. Leuchs // Opt. Commun. - 2000. - V. 179. - P. 1-7.
  3. Kant, R. Superresolution and increased depth of focus: an inverse problem of vector diffraction / Rishi Kant // J. Mod. Opt. - 2000. - V. 47 - 5. - P. 905-916.
  4. Dorn, R. Sharper focus for a radially polarized light beam, / R. Dorn, S. Quabis and G. Leuchs // Phys. Rev. Lett. - 2003. - V. 91. - P. 233901.
  5. Davidson, N. High-numerical-aper­ture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens / Nir Davidson, Nándor Bokor // Opt. Lett. - 2004. -V. 29. - 12. - P. 1318-1320.
  6. Sheppard, Colin J.R. Annular pupils, radial polarization, and superresolution / Colin J.R. Sheppard and Amarjyoti Choudhury // Appl. Opt. - 2004. - V. 43. - 22. - P. 4322-4327.
  7. Pereira, S.F. Superresolution by means of polarisation, phase and amplitude pupil masks / S.F. Pereira, A.S. van de Nes // Opt. Commun. - 2004. - Vol. 234. - P. 119?124.
  8. Wang, H. Creation of a needle of longitudinally polarized light in vacuum using binary optics / Haifeng Wang, Luping Shi, Boris Lukyanchuk, Colin Sheppard and Chong Tow Chong // Nature Photonics. - 2008. -Vol. 2. - P. 501-505.
  9. Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa and S. Sato // J. Opt. Soc. Am. A. - 2007. - V. 24. - P. 1793-1798.
  10. Lerman, Gilad M. Effect of radial polarization and apodization on spot size under tight focusing conditions / Gilad M. Lerman and Uriel Levy // Opt. Express. - 2008. - Vol. 16, No. 7. - P. 4567-4581.
  11. Kalosha, V. P. Toward the subdiffraction focusing limit of optical superresolution / V. P. Kalosha and I. Golub // Opt. Lett.- 2007. - Vol. 32. - P. 3540-3542.
  12. Хонина, С.Н., Волотовский, С.Г. Полноапертурное векторное формирование продольного поля с помощью линзакона: I. Острая фокусировка в приближении Дебая (представлено в «Компьютерную оптику»).
  13. Kozawa, Yu. Generation of a radially polarized laser beam by use of a conical Brewster prism / Yuichi Kozawa and Shunichi Sato // Opt. Lett. - 2005. - V. 30(22). - P. 3063-3065.
  14. Низьев, В.Г. Генерация поляризационно-неоднород­ных мод в мощном CO2 лазере / В.Г. Низьев, В.П. Яку­нин, Н.Г. Туркин // Квантовая электроника. - 2009. - № 39(6). - С. 505-514.
  15. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings / Ze’ev Bomzon, Gabriel Biener, Vladimir Kleiner, and Erez Hasman // Opt. Lett. - 2002. - V. 27(5). - P. 285-287.
  16. Yonezawa, K. Compact Laser with Radial Polarization Using Birefringent Laser Medium, Jpn. / K. Yonezawa, Y. Kozawa, and S. Sato // J. Appl. Phys. - 2007. - V. 46(8A). - P. 5160-5163.
  17. Tidwell, S.C. Generating radially polarized beams interferometrically / S.C. Tidwell, D.H. Ford, and W.D. Kimura // Applied Optics. - 1990. - V. 29. - P. 2234-2239.
  18. Simple interferometric technique for generation of a radially polarized light beam / Nicolas Passilly, Renaud de Saint Denis, and Kamel Aït-Ameur, François Treussart, Rolland Hierle, and Jean-François Roch // J. Opt. Soc. Am. A. - 2005. - V. 22(5). - P. 984-991.
  19. Volpe, G. Generation of cylindrical vector beams with few-mode ?bers excited by Laguerre-Gaussian beams / G. Volpe, D. Petrov // Opt. Comm. - 2004. - V. 237. - P. 89?95.
  20. Niv, A. Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings / A. Niv, G. Biener, V. Kleiner, and E. Hasman // Opt. Lett. - 2003. - Vol. 28, No. 7. - P. 510-512.
  21. Карпеев, С.В. Оптическая схема для универсальной генерации и конверсии поляризационно-неоднород-ного лазерного излучения с использованием ДОЭ / С.В. Карпеев, С.Н. Хонина // Компьютерная оптика. - 2009. - Т. 33, №3. - С. 261-267.
  22. Zhou, Z. Achromatic generation of radially polarized beams in visible range using segmented subwavelength metal wire gratings / Z. Zhou, Q. Tan, Q. Li, and G. Jin // Opt. Lett. -2009. - Vol. 34, No. 21. - 3361-3363.
  23. Балалаев, С.А., Хонина, С.Н., Скиданов, Р.В. Исследование возможности формирования гипергеометрических лазерных пучков методами дифракционной оптики // Известия Самарского научного центра РАН. - 2008. - № 10(3). - С. 694-706.
  24. Khonina, S.N. Generation of rotating Gauss-Laguerre modes with binary-phase diffractive optics / S.N. Khonina, V.V. Kot­lyar, V.A. Soifer, M. Honkanen, J. Lautanen, J. Turunen // Journal of Modern Optics. - 1999. - V. 46(2). - P. 227-238.
  25. Khonina, S.N. Encoded binary diffractive element to form hyper-geometric laser beams / S.N. Khonina, S.A. Bala­layev, R.V. Skidanov, V.V. Kotlyar, B. Paivanranta, J. Turunen // J. Opt. A: Pure Appl. Opt. - 2009. - V. 11. - P. 065702-065709.
  26. Grosjean, T., Courjon, D. Photopolymers as vectorial sensors of the electric ?eld // Opt. Express. - 2006. - Vol. 14, No. 6. - P. 2203-2210.
  27. Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image ?eld in an aplanatic system / B. Richards and E. Wolf // Proc. Royal Soc. A. - 1959. - Vol. 253. - P. 358-379.
  28. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications / Qiwen Zhan // Advances in Optics and Photonics. - 2009. - V. 1. - P. 1-57.
  29. Tighter focusing with a parabolic mirror / J. Stadler, C. Stanciu, C. Stupperich, and A.J. Meixner // Opt. Lett. - 2008. - Vol. 33, No. 7. - P. 681-683.
  30. Chen, W. Three-dimensional focus shaping with cylindrical vector beams / W. Chen, Q. Zhan// Opt. Commun. - 2006. - Vol. 265. - P. 411-417.
  31. Focusing properties of concentric piecewise cylindrical vector beam / X. Gao, J. Wang, H. Gu, W. Xu // Optik. - 2007. - Vol. 118. - P. 257-265.
  32. Хонина, С.Н. Фраксикон - дифракционный оптический элемент с конической фокальной областью / С.Н. Хонина, С.Г. Волотовский // Компьютерная оптика. - 2009. - Т. 33, № 4. - С. 401-411. - ISSN 0134-2452.
  33. Abramowitz, M. Handbook of Mathematical Functions / M. Abramowitz and I.A. Stegun - Courier Dover Publications, 1972. - 1046 p.
  34. Berry, M.V. Evolution of quantum superoscillations and optical superresolution without evanescent waves / M.V. Berry and S. Popescu // J. Phys. A: Math. Gen. - 2006. - V. 39. - P. 6965-6977.
  35. Ferreira, P.J.S.G. Superoscillations: faster than the Ny-quist rate / P.J.S.G. Ferreira, and A. Kempf // IEEE transactions on signal processing - 2006. - V. 54, No. 10. - P. 3732-3740.
  36. Huang, F.M. Super-Resolution without Evanescent Wa­ves / F.M. Huang and N.I. Zheludev // NANO LETTERS. - 2009. - V. 9, No. 3. - P. 1249-1254.
  37. Ландсберг, Г.С. Оптика. учеб. пособие, 6-е изд. - М.: Физматлит, 2003. - 848 с.
  38. Zhan, Q. Properties of circularly polarized vortex beams, Opt. Lett. - 2006. - Vol. 31, No. 7. - P. 867-869.
  39. Probing single molecule dynamics / X.S. Xie and R.C. Dunn // Science. - 1994. - Vol. 265. - P. 361-364.

References:

  1. Karman, G.P. Airy pattern reorganization and subwavelength structure in a focus / G. P. Karman, M. W. Beijersbergen, A. van Duijl, D. Bouwmeester and J. P. Woerdman // J. Opt. Soc. Am. A. - 1998. - Vol. 15, No. 4. - P. 884-899.
  2. Quabis, S. Focusing light to a tighter spot / S. Quabis, R. Dorn, M. Eberler, O. Glockl and G. Leuchs // Opt. Commun. - 2000. - V. 179. - P. 1-7.
  3. Kant, R. Superresolution and increased depth of focus: an inverse problem of vector diffraction / Rishi Kant // J. Mod. Opt. - 2000. -Vol. 47, N. 5. - P. 905-916.
  4. Dorn, R. Sharper focus for a radially polarized light beam, / R. Dorn, S. Quabis and G. Leuchs // Phys. Rev. Lett. - 2003. - V.91. - P.233901.
  5. Davidson, N. High-numerical-aper­ture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens / Nir Davidson, Nándor Bokor // Opt. Lett. - 2004. -Vol. 29, No. 12. - P. 1318-1320.
  6. Sheppard, Colin J.R. Annular pupils, radial polarization, and superresolution / Colin J.R. Sheppard and Amarjyoti Choudhury // Appl. Opt. - 2004. - Vol. 43, No. 22. - P. 4322-4327.
  7. Pereira, S.F. Superresolution by means of polarisation, phase and amplitude pupil masks / S.F. Pereira, A.S. van de Nes // Opt. Commun. - 2004. - Vol. 234. - P. 119?124.
  8. Wang, H. Creation of a needle of longitudinally polarized light in vacuum using binary optics, / Haifeng Wang, Luping Shi, Boris Lukyanchuk, Colin Sheppard and Chong Tow Chong // Nature Photonics. - 2008. -Vol. 2. - P. 501-505.
  9. Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa and S. Sato // J. Opt. Soc. Am. A. - 2007. - V. 24. - P. 1793-1798.
  10. Lerman, Gilad M. Effect of radial polarization and apodization on spot size under tight focusing conditions / Gilad M. Lerman and Uriel Levy // Opt. Express. - 2008. - Vol. 16, No. 7. - P. 4567-4581.
  11. Kalosha, V. P. Toward the subdiffraction focusing limit of optical superresolution / V. P. Kalosha and I. Golub // Opt. Lett.- 2007. - Vol. 32. - P. 3540-3542.
  12. Khonina, S.N. Full-aperture vector forming of the longitudinal field by lensacon: I. Sharp focusing in Debye approximation / S.N. Khonina, S.G. Volotovsky // (submitted in Computer Optics). - (in Russian).
  13. Kozawa, Yu. Generation of a radially polarized laser beam by use of a conical Brewster prism / Yuichi Kozawa and Shunichi Sato // Opt. Lett. - 2005. - V.30(22). - P.3063-3065.
  14. V.G. Niziev, V.P. Yakunin, N.G. Turkin, Generation of nonuniform polarized modes in the powerful CO2-laser, Quantum Electronics, 39(6) 505-514 (2009) - (in Russian).
  15. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings / Ze’ev Bomzon, Gabriel Biener, Vladimir Kleiner, and Erez Hasman // Opt. Lett. - 2002. - V.27(5). - P.285-287.
  16. Yonezawa, K. Compact Laser with Radial Polarization Using Birefringent Laser Medium, Jpn. / K. Yonezawa, Y. Kozawa, and S. Sato // J. Appl. Phys. - 2007. - V. 46(8A). - P. 5160-5163.
  17. Tidwell, S.C. Generating radially polarized beams interferometrically / S.C. Tidwell, D.H. Ford, and W.D. Kimura // Applied Optics. - 1990. - V. 29. - P. 2234-2239.
  18. Simple interferometric technique for generation of a radially polarized light beam / Nicolas Passilly, Renaud de Saint Denis, and Kamel Aït-Ameur, François Treussart, Rolland Hierle, and Jean-François Roch // J. Opt. Soc. Am. A. - 2005. - V. 22(5). - P. 984-991.
  19. Volpe, G. Generation of cylindrical vector beams with few-mode ?bers excited by Laguerre-Gaussian beams / G. Volpe, D. Petrov // Opt. Comm. - 2004. - V. 237. - P. 89-95.
  20. Niv, A. Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings / A. Niv, G. Biener, V. Kleiner, and E. Hasman // Opt. Lett. - 2003. - Vol. 28, No. 7. - P. 510-512.
  21. Karpeev, S.V. The optical scheme for universal generation and conversion of nonuniform polarized laser beams by means of DOEs / S.V. Karpeev, S.N. Khonina // Computer Optics. - 2009. - Vol. 33, No. 3. - P. 261-267. - (in Russian).
  22. Zhou, Z. Achromatic generation of radially polarized beams in visible range using segmented subwavelength metal wire gratings / Z. Zhou, Q. Tan, Q. Li, and G. Jin // Opt. Lett. -2009. - Vol. 34, No. 21. - 3361-3363.
  23. S.A. Balalayev, S.N. Khonina, R.V. Skidanov, Examination of possibility to form hypergeometric laser beams by means of diffractive optics, Izvest. SNC RAS; -2008. -10(3), 694-706. - (in Russian).
  24. Khonina, S.N. Generation of rotating Gauss-Laguerre modes with binary-phase diffractive optics / S.N. Khonina, V.V. Kot­lyar, V.A. Soifer, M. Honkanen, J. Lautanen, J. Turu­nen // Journal of Modern Optics. - 1999. - V. 46(2). - P. 227-238.
  25. Khonina, S.N. Encoded binary diffractive element to form hyper-geometric laser beams / S.N. Khonina, S.A. Bala­layev, R.V. Skidanov, V.V. Kotlyar, B. Paivanranta, J. Turunen // J. Opt. A: Pure Appl. Opt. - 2009. - V. 11. - P. 065702-065709.
  26. Grosjean, T., Courjon, D. Photopolymers as vectorial sensors of the electric ?eld // Opt. Express. - 2006. - Vol. 14, No. 6. - P. 2203-2210.
  27. Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image ?eld in an aplanatic system / B. Richards and E. Wolf // Proc. Royal Soc. A. - 1959. - Vol. 253. - P. 358-379.
  28. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications / Qiwen Zhan // Advances in Optics and Photonics. - 2009. - V. 1. - P. 1-57.
  29. Tighter focusing with a parabolic mirror / J. Stadler, C. Stanciu, C. Stupperich, and A.J. Meixner // Opt. Lett. - 2008. - Vol. 33, No. 7. - P. 681-683.
  30. Chen, W. Three-dimensional focus shaping with cylindrical vector beams / W. Chen, Q. Zhan // Opt. Commun. - 2006. - Vol. 265. - P. 411-417.
  31. Focusing properties of concentric piecewise cylindrical vector beam / X. Gao, J. Wang, H. Gu, W. Xu // Optik. - 2007. - Vol. 118. - P. 257-265.
  32. Khonina, S.N. Fraxicon - diffractive optical element with conical focal domain / S.N. Khonina, S.G. Volotovsky // Computer Optics. - 2009. - Vol. 33, No 4. - P. 401-411. - ISSN 0134-2452. - (in Russian).
  33. Abramowitz, M. Handbook of Mathematical Functions / M. Abramowitz and I.A. Stegun. - Courier Dover Publications, 1972. - 1046 p.
  34. Berry, M.V. Evolution of quantum superoscillations and optical superresolution without evanescent waves / M.V. Berry and S. Popescu // J. Phys. A: Math. Gen. - 2006. - V. 39. - P. 6965-6977.
  35. Ferreira, P.J.S.G. Superoscillations: faster than the Ny-quist rate / P.J.S.G. Ferreira, A. Kempf // IEEE transactions on signal processing - 2006. - V. 54, No. 10. - P. 3732-3740.
  36. Huang, F.M. Super-Resolution without Evanescent Wa­ves / F.M. Huang and N.I. Zheludev // NANO LETTERS. - 2009. - V. 9, No. 3. - P. 1249-1254.
  37. Landsberg, G.S. Optics. 6 ed. - Moscow: Fismatlit, 2003. - 848 p. - (in Russian).
  38. Zhan, Q. Properties of circularly polarized vortex beams, Opt. Lett. - 2006. - Vol. 31, No. 7. - P. 867-869.
  39. Probing single molecule dynamics / X.S. Xie and R.C. Dunn // Science. - 1994. - Vol. 265. - P. 361-364.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846 2) 332-56-22, факс: +7 (846 2) 332-56-20