Металло-диэлектрическая линза Микаэляна

Нестеренко Д.В.

Аннотация:
Моделируется прохождение света через планарные линзы Микаэляна, созданные на основе фотонно-кристаллических и композитных металло-диэлектрических сред. Показано, что увеличение апертуры фотонно-кристаллической линзы с помощью градиентной композитной среды повышает интенсивность в фокальном пятне в 2 раза. Использование металло-диэлектричес­кой среды позволяет осуществлять фокусировку ТМ-волны при отражении ТЕ-волны.

Abstract:
The propagation of polarized light through Mikaelan’s lenses designed using photon-crystal media and composite metal-dielectric media is considered. Intensity increasing in case of modification of dielectric photon-crystal Mikaelan’s lens by addition of gradient composite metal-dielectric media segments is observed. Composite metal-dielectric Mikaelan’s lens demonstrates the polarization degree up to 100 %.

Ключевые слова :
линза Микаэляна, фотонные кристаллы, метаматериалы.

Key words:
Mikaelan’s lens, photon crystal, effective medium theory, metamaterial

Литература:

  1. Joannoupoulos, J.D. Photonic crystals: putting a new twist on light / J.D. Joannoupoulos, P.R. Villeneuve and S. Fan // Nature. – 1997. – V. 386. – P. 143-149.
  2. Song, B.S. Photonic devices based on in-plane hetero photonic crystals / B.S. Song, S. Noda and T. Asano // Science. - 2003. - V. 300. – P. 1537.
  3. Happ, T.D. Photonic crystal tapers for ultracompact mode conversion / T.D. Happ, M. Kamp and A. Forchel // Opt. Lett. – 2001. – V. 26. – P. 1102-1104.
  4. Almeida, V. Nanotaper for compact mode conversion / V. Almeida, R. Panepucci und M. Lipson // Opt. Lett.
    – 2002. - Vol. 28. – P. 1302-1304.
  5. Pshenay-Severin, E. Photonic crystal lens for photonic crystal waveguide coupling / E. Pshenay-Severin [et al.] // OSA Techn. Digest, - CLEO. - 2006.
  6. Minin, I.V. Subwavelength diffractive photonic crystal lens / I.V. Minin [et al.] // Prog. In Electr. Res. B. - 2008.– V. 7. – P. 257-264.
  7. Триандафилов, Я.Р. Фотонно-кристаллическая линза Микаэляна / Я.Р. Триандафилов, В.В. Котляр // Компьютерная оптика. - 2007.– Т. 31, № 3. – С. 27-31.
  8. Котляр, В.В. Фотонно-кристаллическая линза для сопряжения двух планарных волноводов / В.В. Котляр, Я.Р. Триандафилов, А.А. Ковалёв, М.И. Котляр, А.В. Волков, Б.О. Володкин, В.А. Сойфер, Лим О’Фе­лон, Т. Краусс // Компьютерная оптика. - 2008. – Т. 32, № 4. – С. 326-336.
  9. Vasic, B. Controlling electromagnetic fields with graded photonic crystals in metamaterial regime / B. Vasic, G. Isic, R. Gajic and K. Hingerl // Opt. Exp. – 2010. – V. 18, N 19. – P. 20321-20333.
  10. Kurt, H. Graded index photonic crystals / H. Kurt, D.S. Citrin // Opt. Exp. - 2007. - V. 15, N 3. – P. 1240-1253.
  11. Chien, H.T. Focusing of electromagnetic waves by periodic arrays of air holes with gradually varying radii / H.T. Chien and C.C. Chen // Opt. Exp. - 2006. - V. 14. – P. 10759.
  12. Halevi, P. Photonic crystals as optical components / P. Halevi, A.A. Krokhin, and J. Arriaga // Appl. Phys. Lett. – 1999. – V. 75. – P. 2725-2727.
  13. Chen, H. Design and experimental realization of a broadband transformation media field rotator at microwave frequencies / H. Chen, B. Hou, S. Chen, X. Ao, W. Wen and C.T. Chan // Phys. Rev. Lett. – 2009. – V. 102. – P. 183903.
  14. Mei, Z.L. Experimental realization of a broadband bend structure using gradient index metamaterials / Z.L. Mei and T.J. Cui // Opt. Exp. – 2009. – V. 17. – P. 18354-18363.
  15. Pendry, J.B. Mimicking Surface Plasmons with Structured Surfaces / J.B. Pendry, L. Martin-Moreno and F.J. Garcia-Vidal // Science. – 2004. - V. 305. – P. 847-848.
  16. Pinchuk, A.O. Metamaterials with gradient negative index of refraction / A.O. Pinchuk and G.C. Schatz // J. Opt. Soc. Am. A. – 2007. – V. 24. – P. A39-A44.
  17. Juluri, B.K. Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index / B.K. Juluri, S. Chin, S. Lin, T.R. Walker, L. Jensen, and T.J. Huang // Opt. Exp. – 2009. – V. 17. – P. 2997-3006.
  18. Silveirinha, M.G. Nonlocal homogenization model for a periodic array of e-negative rods / M.G. Silveirinha // Phys. Rev. E. – 2006. – V. 73. – P. 046612.
  19. Микаэлян, А.Л. Применение свойств среды для фокусирования волн / А.Л. Микаэлян // Доклады академии наук СССР. –1951. – Вып. 81. – С. 569-571.
  20. Rytov, S.M. Electromagnetic properties of a finely stratified medium / S.M. Rytov // Sov. Phys. JETP. – 1956. – N  2. – P. 466-475.
  21. Lalanne, Ph. Effective medium theory applied to pho­tonic crystals composed of cubic or square cylinders / Ph. Lalanne // Appl. Opt. – 1996. – V. 35. – P. 5369–5380.
  22. Котляр, В.В. Расчёт составного градиентного оптического элемента, формирующего заданное распределение интенсивности / В.В. Котляр, А.С. Мелёхин // Компьютерная оптика. - 2001. – Т. 21. – С. 92-95.
  23. Нестеренко, Д.В. Моделирование дифракции на периодических неоднородностях объединённым методом конечных элементов и разложения Релея / Д.В. Нестеренко // Автометрия. - 2011. – Т. 47, № 1. - С. 85-95.
  24. Нестеренко, Д.В. Моделирование прохождения света в массивах металлических наностержней / Д.В. Нестеренко, В.В. Котляр // Компьютерная оптика. - 2008. – Т. 32, № 4. – С. 337-342.
  25. Silveirinha, M.G. Subwavelength imaging at infrared frequencies using an array of metallic nanorods / M.G. Sil­veirinha [et al.] // Phys. Rev. B. - 2007. – V. 75. – P. 035108.

References:

  1. Joannoupoulos, J. D. Photonic crystals: putting a new twist on light / J. D. Joannoupoulos, P. R. Villeneuve, and S. Fan // Nature. – 1997. – V. 386. – P. 143-149.
  2. Song, B.S. Photonic devices based on in-plane hetero photonic crystals / B. S. Song, S. Noda, and T. Asano // Science. - 2003. - V. 300. – P. 1537.
  3. Happ, T. D. Photonic crystal tapers for ultracompact mode conversion / T. D. Happ, M. Kamp, and A. Forchel // Opt. Lett. – 2001. – V. 26. – P. 1102-1104.
  4. Almeida, V. Nanotaper for compact mode conversion / V. Almeida, R. Panepucci, und M. Lipson // Opt. Lett.
    – 2002. - Vol. 28. – P. 1302-1304.
  5. Pshenay-Severin, E. Photonic crystal lens for photonic crystal waveguide coupling / E. Pshenay-Severin [et al.] // OSA Techn. Digest: CLEO. - 2006.
  6. Minin, I.V. Subwavelength diffractive photonic crystal lens / I.V. Minin [et al.] // Prog. In Electr. Res. B. - 2008.– V. 7. – P.257-264.
  7. Triandafilov, Y.R. Photonic-crystal Mikaelian lens / Y.R. Triandafilov, V.V. Kotlyar // Computer Optics. – 2007. – V. 31, N. 3. – P. 27-31. – ISSN 0134-2452. – (in Russian).
  8. Kotlyar, V.V. Photon-crystal lens for planar waveguides coupling / V.V. Kotlyar, Y.R. Triandafilov, A.A. Kovalev, M.I. Kotlyar, A.V. Volkov, B.O. Volodkin, V.A. Soifer, Lim O. Felon, T. Krauss // Computer Optics. – 2008. – V. 32, N. 4. – P. 326-336. – ISSN 0134-2452. – (in Russian).
  9. Vasic, B. Controlling electromagnetic fields with graded photonic crystals in metamaterial regime / B. Vasic, G. Isic, R. Gajic, and K. Hingerl // Opt. Exp. - 2010.
    - Vol. 18. - N. 19. – P. 20321-20333.
  10. Kurt, H. Graded index photonic crystals / H. Kurt, D. S. Citrin // Opt. Exp. - 2007. - V. 15. - N. 3. – P. 1240-1253.
  11. Chien, H.T. Focusing of electromagnetic waves by periodic arrays of air holes with gradually varying radii / H.T.Chien and C.C.Chen // Opt. Exp. - 2006. - V. 14. – P. 10759.
  12. Halevi, P. Photonic crystals as optical components / P. Halevi, A. A. Krokhin, and J. Arriaga // Appl. Phys. Lett. – 1999. – V. 75. - P. 2725-2727.
  13. Chen, H. Design and experimental realization of a broadband transformation media field rotator at microwave frequencies / H. Chen, B. Hou, S. Chen, X. Ao, W.Wen, and C. T. Chan // Phys. Rev. Lett. – 2009. – V. 102. – P. 183903.
  14. Mei, Z. L. Experimental realization of a broadband bend structure using gradient index metamaterials / Z. L. Mei and T. J. Cui // Opt. Exp. – 2009. – V. 17. – P. 18354–18363.
  15. Pendry, J.B. Mimicking Surface Plasmons with Structured Surfaces / J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal // Science. – 2004. - V. 305. – P. 847–848.
  16. Pinchuk, A.O. Metamaterials with gradient negative index of refraction / A.O. Pinchuk and G. C. Schatz // J. Opt. Soc. Am. A. – 2007. – V. 24. – P. A39–A44.
  17. Juluri, B.K. Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index / B.K. Juluri, S. Chin, S. Lin, T.R.Walker, L. Jensen, and T. J. Huang // Opt. Exp. – 2009. – V. 17. – P. 2997–3006.
  18. Silveirinha, M.G. Nonlocal homogenization model for a periodic array of e-negative rods / M.G. Silveirinha // Phys. Rev. E. - 2006. – V. 73. – P. 046612.
  19. Mikaelian, A.L. Application of stratified medium for waves focusing / A.L. Mikaelian // Doklady Akademii Nauk SSSR 1951. – Vol. 81. – P. 569–571.
  20. Rytov, S.M. Electromagnetic properties of a finely stratified medium / S.M. Rytov // Sov. Phys. JETP. – 1956. – N. 2. – P. 466-475.
  21. Lalanne, Ph. Effective medium theory applied to photonic crystals composed of cubic or square cylinders / Ph. Lalanne // Appl. Opt. – 1996. – V. 35. – P. 5369–5380.
  22. Kotlyar, V.V. Design of complex gradient optical element to form determined intensity distribution / V.V. Kotlyar, A.S. Melechin // Computer Optics. – 2001. – V. 21. – P. 92-95. – ISSN 0134-2452. – (in Russian).
  23. Nesterenko, D.V. Analysis of diffraction on periodical inhomogeneities by coupled finite element method and rayleigh expansion / D.V. Nesterenko // Avtometria. - 2011. – V. 47. – №1. - P. 85-95. – (in Russian).
  24. Nesterenko, D.V. Modeling of light propagation in metallic nanorod arrays / D.V. Nesterenko, V.V. Kotlyar // Computer Optics. – 2008. – V. 32, N. 4. – P. 337-342. – ISSN 0134-2452. – (in Russian).
  25. Silveirinha, M.G. Subwavelength imaging at infrared frequencies using an array of metallic nanorods / M.G. Silveirinha [et al.] // Phys. Rev. B. - 2007. – V. 75. – P. 035108.


© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846) 332-56-20