(44-4) 21 * << * >> * Русский * English * Содержание * Все выпуски
  
Security detection of network intrusion: application of cluster analysis method
W.H. Yang 1
1 Railway Signal and Information Engineering Department, Shandong  Polytechnic, 
Jinan, Shandong  250104, China
 PDF, 868 kB
  PDF, 868 kB
DOI: 10.18287/2412-6179-CO-657
Страницы: 660-664.
Язык статьи: English
Аннотация:
In order to resist network malicious attacks, this  paper briefly introduced the network intrusion detection model and K-means  clustering analysis algorithm, improved them, and made a simulation analysis on  two clustering analysis algorithms on MATLAB software. The results showed that  the improved K-means algorithm could achieve central convergence faster in  training, and the mean square deviation of clustering center was smaller than  the traditional one in convergence. In the detection of normal and abnormal  data, the improved K-means algorithm had higher accuracy and lower false alarm  rate and missing report rate. In  summary, the improved K-means algorithm can be applied to network intrusion  detection.
Ключевые слова:
clustering analysis, K-means,  cross entropy, network intrusion.
Цитирование:
Yang  WH. Security  detection of network intrusion: application of cluster analysis method.  Computer Optics 2020; 44(4): 660-664. DOI: 10.18287/2412-6179-CO-657.
Литература:
  - Keegan N, Ji SY, Chaudhary A,  Concolato C, Yu B, Jeong DH.  A survey of cloud-based network intrusion detection analysis. Human-centric Computing  and Information Sciences 2016;  6(1): 19.
- Qiao L, Ryan M. A hybrid  approach for supply chain analysis: An application of network and cluster  analysis. Incose International Symposium 2017; 27(1): 746-762. 
 
- He ZY. Research on network intrusion detection based  on data mining technology. Appl Mech Mater 2015;  713-715: 2081-2084. 
 
- Ganesh  S, Ramar K. A cluster based intrusion detection system for homogeneous and  heterogeneous mobile ad hoc network. J Comput Theor Nanosci 2017;  14(9): 4249-4254. 
 
- Ponomarev  S, Atkison T. Industrial control system network intrusion detection by  telemetry analysis. IEEE Trans Dependable Secure Comput 2016;  13(2): 252-260. 
 
- Ma T,  Wang F, Cheng J, Yu Y, Chen X. A  hybrid spectral clustering and deep neural network ensemble algorithm for  intrusion detection in sensor networks. Sensors 2016;  16(10): 1701. 
 
- Wang X. Compulsory coverage network intrusion  detection algorithm based on rough set theory. J Comput Theor Nanosci 2016; 13(12):  9480-9483.
 
- Vahid  S, Ahmadzadeh M. KCMC: A hybrid learning approach for network intrusion  detection using K-means clustering and multiple classifiers. Int J Comput Appl  2015; 124(9): 18-23. 
 
- Ravale  U, Marathe N, Padiya P. Feature selection  based on hybrid anomaly intrusion detection system using K Means and RBF kernel  function. Procedia Comput Sci 2015; 45(39): 428-435. 
 
- Verma  A, Ranga V. Statistical analysis of CIDDS-001 dataset for network intrusion  detection systems using distance-based machine learning. Procedia Comput Sci  2018; 125: 709-716. 
 
- Kang  SH, Kim KJ. A feature selection approach to find optimal feature subsets for  the network intrusion detection system. Cluster Comput 2016;  19(1): 1-9. 
 
- Hao X, Zhang X. Research on abnormal detection  based on improved combination of k-means and SVDD. IOP  Conf Ser: Earth Environ Sci 2018; 114: 012014.
 
- Laftah  Alyasee W, Ali Othman Z, Ahmad Nazri MZ. Hybrid modified K-Means with C4.5 for  intrusion detection systems in multiagent systems. Sci World J 2015;  2015(2): 294761. 
 
- Zhang  Y, Wang K, Gao M, Ouyang ZY, Chen SG.  LKM: A LDA-based K-means clustering algorithm for data analysis of intrusion  detection in mobile sensor networks. Int J Distrib Sens Netw 2015;  2015(2): 7.       
      
- Elssied NOF, Ibrahim O, Osman AH. Enhancement of  spam detection mechanism based on hybrid k-mean clustering and support  vector. Soft Comput 2015, 19(11): 3237-3248.
 
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7  (846)  242-41-24 (ответственный
      секретарь), +7 (846)
      332-56-22 (технический  редактор), факс: +7 (846) 332-56-20