(45-3) 03 * << * >> * Русский * English * Содержание * Все выпуски

Design and modeling of a photonic integrated device for optical vortex generation in a silicon waveguide
R.V. Kutluyarov 1, D.M. Fatkhiev 1, I.V. Stepanov 1, E.P. Grakhova 1, V.S. Lyubopytov 2,1, A.Kh. Sultanov 1

Ufa State Aviation Technical University, 450008, Ufa, Russia, Karla Marxa Street 12,

Skolkovo Institute of Science and Technology, 121205, Moscow, Russia, Bolshoy Boulevard 30, bld. 1

 PDF, 3338 kB

DOI: 10.18287/2412-6179-CO-850

Страницы: 324-330.

Язык статьи: English

We propose and numerically verify a design of the photonic integrated circuit for in-plane generation of a 1st azimuthal order vortex mode in dielectric rectangular waveguides. Radiation is introduced into the proposed structure in a standard way through two grating couplers. Applying a mode coupling and specific phase shift, a field with the required amplitude-phase distribution is formed directly in the output waveguide. The geometric dimensions of the device are simulated and optimized to fit the technological parameters of the silicon-on-insulator platform.

Ключевые слова:
orbital angular momentum, integrated photonics, optical waveguides, in-plane generation, silicon-on-insulator.

This work was partially funded under the Grant of the Russian Science Foundation Project No. 19-49-04112 (simulations and optimization of the device parameters), and under the State Assignment from the Ministry of Science and Higher Education of the Russian Federation for Ufa State Aviation Technical University FEUE-2020-0007 (concept of the device and operation principle). Authors thank Computer Science Research Institute of the Ufa State Aviation Technical University for technical support of performed numerical computations on HPC cluster [https://www.ugatu.su/supercomputer/].

Kutluyarov RV, Fatkhiev DM, Stepanov IV, Grakhova EP, Lyubopytov VS, Sultanov AKh. Design and modeling of a photonic integrated device for optical vortex generation in a silicon waveguide. Computer Optics 2021; 45(3): 324-330. DOI: 10.18287/2412-6179-CO-850.


  1. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340: 1545-1548. DOI: 10.1126/science.1237861.
  2. Vasilyev VS, Kapustin AI, Skidanov RV, Podlipnov VV, Ivliev NA, Ganchevskaya SV. Experimental investigation of the stability of Bessel beams in the atmosphere. Computer Optics 2019; 43(3): 376-384. DOI: 10.18287/2412-6179-2019-43-3-376-384.
  3. Khonina SN, Volotovskiy SG, Kirilenko MS. A method of generating a random optical field using the Karhunen-Loeve expansion to simulate atmospheric turbulence. Computer Optics 2020; 44(1): 53-59. DOI: 10.18287/2412-6179-CO-680.
  4. Bozinovic N, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340(6140): 1545-1548.DOI: 10.1126/science.1237861.
  5. Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J. A quantum memory for orbital angular momentum photonic qubits. Nat Photon 2014; 8: 234-238. DOI:10.1038/nphoton.2013.355.
  6. Savelyev DA, Khonina SN. Characteristics of sharp focusing of vortex Laguerre-Gaussian beams. Computer Optics 2015; 39(5): 654-662. DOI: 10.18287/0134-2452-2015-39-5-654-662.
  7. Khonina SN, Savelyev DA, Kazanskiy NL. Vortex phase elements as detectors of polarization state. Opt Express 2015; 23(14): 17845-17859. DOI: 10.1364/OE.23.017845.
  8. Khonina SN, Savelyev DA, Kazanskiy NL. Analysis of polarisation states at sharp focusing. Optik 2016; 127(6): 3372-3378. DOI: 10.1016/j.ijleo.2015.12.108.
  9. Kharitonov SI, Khonina SN, Volotovskiy SG, Kazanskiy NL. Caustics of the vortex beams generated by vortex lensesand vortex axicons. J Opt Soc Am A 2020; 37(3): 476-482. DOI: 10.1364/JOSAA.382361.
  10. Khonina SN, Ustinov AV. Focusing of shifted vortex beams of arbitrary order with different polarization. Opt Commun 2018; 426: 359-365. DOI: 10.1016/j.optcom.2018.05.070.
  11. Grier DG. A revolution in optical manipulation. Nature 2003; 424(6950): 810-816. DOI: 10.1038/nature01935.
  12. Padgett M, Bowman R. Tweezers with a twist. Nat Photon 2011; 5(6): 343-348. DOI: 10.1038/nphoton.2011.81.
  13. Chapin SC, Germain V, Dufresne ER. Automated trapping, assembly, and sorting with holographic optical tweezers. Opt Express 2006; 14(26): 13095-13100. DOI: 10.1364/OE.14.013095.
  14. Gong L, et al. Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles. Photonics Res 2018; 6(2): 138-143. DOI: 10.1364/PRJ.6.000138.
  15. Zhang YQ, et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams. Nano Lett 2018; 18(9): 5538-5543. DOI: 10.1021/acs.nanolett.8b01929.
  16. Reddy SG, Chithrabhanu P, Vaity P, Aadhi A, Prabhakar S, Singh RP. Non-diffracting speckles of a perfect vortex beam. J Opt 2016; 18(5): 055602.
  17. Fürhapter S, et al. Spiral phase contrast imaging in microscopy. Opt Express 2005; 13(3): 689-694. DOI: 10.1364/OPEX.13.000689.
  18. Tamburini F, et al. Overcoming the Rayleigh criterion limit with optical vortices. Phys Rev Lett 2006; 97(16): 163903. DOI: 10.1103/PhysRevLett.97.163903.
  19. Jesacher A, Ritsch-Marte M, Piestun R. Three-dimensional information from two-dimensional scans: A scanning microscope with postacquisition refocusing capability. Optica 2015; 2(3): 210-213. DOI: 10.1364/OPTICA.2.000210.
  20. Willig KI, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006; 440(7086): 935-939. DOI: 10.1038/nature04592.
  21. Zhao Y, et al. Chirality detection of enantiomers using twisted optical metamaterials. Nat Commun 2017; 8(1): 14180. DOI: 10.1038/ncomms14180.
  22. Xie G, Song H, Zhao Z, et al. Using a complex optical orbital-angular-momentum spectrum to measure object parameters. Opt Lett 2017; 42: 4482-4485. DOI: 10.1364/OL.42.004482.
  23. Xie ZW, et al. On-chip spin-controlled orbital angular momentum directional coupling. J Phys D Appl Phys 2017; 51(1): 014002.
  24. Lavery M, et al. Detection of a spinning object using light’s orbital angular momentum. Science 2013; 341: 537-540. DOI: 10.1126/science.1239936.
  25. Cvijetic N, et al. Detecting lateral motion using light’s orbital angular momentum. Sci Rep 2015; 5(1): 15422. DOI: 10.1038/srep15422.
  26. Zhang H, Mao B, Han Y, Wang Z, Yue Y, Liu Y. Generation of orbital angular momentum modes using fiber systems. Appl Sci 2019; 9(5): 1033. DOI: 10.3390/app9051033.
  27. Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: Mode division multiplexing and multimode self-imaging. In Book: Recent Progress in Optical Fiber Research. Chap 15. London: IntechOpen; 2012: 327-352. DOI: 10.5772/28067.
  28. Courtial J, Padgett MJ. Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes. Opt Commun 1999; 159(1-3): 13-18. DOI: 10.1016/S0030-4018(98)00599-9.
  29. Beijersbergen MW, Coerwinkel RPC, Kristensenl M, Woerdman JP. Helical-wavefront laser beams produced with a spiral phaseplate. Opt Commun 1994; 112(5-6): 321-327. DOI: 10.1016/0030-4018(94)90638-6.
  30. Uchida M, Tonomura A. Generation of electron beams carrying orbital angular momentum. Nature 2010; 464(7289), 737-739. DOI: 10.1038/nature08904.
  31. Heckenberg NR, McDuff R, Smith CP, White AG. Generation of optical phase singularities by computer-generated holograms. Opt Lett 1992; 17(3): 221-223. DOI: 10.1364/OL.17.000221.
  32. Zhe Z, Wang J, Willner AE. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Opt Lett 2013; 38(6): 932-934. DOI: 10.1364/OL.38.000932.
  33. Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J Opt 2011; 13(6): 064001.
  34. Wu H, Gao SC, Huang BS, Feng YH, Huang XC, Liu WP, Li ZH. All-fiber second-order optical vortex generation based on strong modulated long-period grating in a four-mode fiber. Opt Lett 2017; 42(24): 5210-5213. DOI: 10.1364/OL.42.005210.
  35. Ma X, Liu CH, Chang G, Galvanauskas A. Angular-momentum coupled optical waves in chirally-coupled-core fibers. Opt Express 2011; 19(27): 26515-26528. DOI: 10.1364/OE.19.026515.
  36. Zeng XL, Lin Y, Feng LP, Wu SH, Yang C, Li W, Tong WJ, Wu J. All-fiber orbital angular momentum mode multiplexer based on a mode-selective photonic lantern and a mode polarization controller. Opt Lett 2018; 43(19): 4779-4782. DOI: 10.1364/OL.43.004779.
  37. Wang X, Nie Z, Liang Y, Wang J, Li T, Jia B. Recent advances on optical vortex generation. Nanophotonics 2018; 7(9): 1533-1556. DOI: 10.1515/nanoph-2018-0072.
  38. Li R, Feng X, Zhang D, Cui K, Liu F, Huang Y. Radially polarized orbital angular momentum beam emitter based on shallow-ridge silicon microring cavity. IEEE Photon J 2014; 6(3): 1-10. DOI: 10.1109/JPHOT.2014.2321757.
  39. Wang Y, et al. Integrated photonic emitter with a wide switching range of orbital angular momentum modes. Sci Rep 2016; 6: 22512. DOI: 10.1038/srep22512.
  40. Scaffardi M, et al. 3 × 3 optical switch by exploiting vortex beam emitters based on silicon microrings with superimposed gratings. Opt Lett 2017; 42(19): 3749-3752. DOI: 10.1364/OL.42.003749.
  41. Xie Z, Lei T, Li F, et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci Appl 2018; 7: 18001. DOI: 10.1038/lsa.2018.1.
  42. Li H, Phillips DB, Wang X, et al. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2015; 2(6): 547-552. DOI: 10.1364/OPTICA.2.000547.
  43. Paul S, et al. Wavelength-selective orbital-angular-momentum beam generation using MEMS tunable Fabry-Perot filter. Opt Lett 2016; 41(14): 3249-3252. DOI: 10.1364/OL.41.003249.
  44. Lyubopytov VS, Kutluyarov RV, Bagmanov VK, Neumann N, Sultanov AK. Modeling and optimization of vortex modes propagation in rectangular dielectric waveguides. IEEE Photon J 2020; 12(1): 1-17. DOI: 10.1109/JPHOT.2019.2958273.
  45. Zheng S, Wang J. On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides. Opt Express 2017; 25(15): 18492-18501. DOI: 10.1364/OE.25.018492.
  46. Liang Y, Wu H, Huang B, Huang XG. Light beams with selective angular momentum generated by hybrid plasmonic waveguides. Nanoscale 2014; 6: 12360-12365. DOI: 10.1039/C4NR03606A.
  47. Liang Y, Zhang F, Gu J, Huang XG, Liu S. Integratable quarter-wave plates enable one-way angular momentum conversion. Sci Rep 2016; 6: 24959. DOI: 10.1038/srep24959.
  48. Ni FC, Xie ZT, Hu X, Jia C, Huang XG. Selective angular momentum generator based on a graphene hybrid plasmonic waveguide. J Lightw Technol 2019; 37(21): 5486-5492.
  49. Meng Y, Liu Z, et al. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Res 2020; 8(4): 564-576. DOI: 10.1364/PRJ.384449.
  50. Zhang D, Feng X, Cui K, Liu F, Huang Y. Generating in-plane optical orbital angular momentum beams with silicon waveguides. IEEE Photon J 2013; 5(2): 2201206. DOI: 10.1109/JPHOT.2013.2256888.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20