(46-6) 18 * << * >> * Русский * English * Содержание * Все выпуски

Биометрические данные и методы машинного обучения в диагностике и мониторинге нейродегенеративных заболеваний: обзор
И.А. Ходашинский 1, К.С. Сарин 1, М.Б. Бардамова 1, М.О. Светлаков 1, А.О. Слёзкин 1, Н.П. Корышев 1

Томский государственный университет систем управления и радиоэлектроники,
634050, Россия, г. Томск, проспект Ленина, д. 40

 PDF, 1286 kB

DOI: 10.18287/2412-6179-CO-1134

Страницы: 988-1019.

Аннотация:
Представлен обзор неинвазивных биометрических методов выявления и прогнозирования развития нейродегенеративных заболеваний. Дан анализ различных модальностей, используемых для диагностики и мониторинга. Рассмотрены такие модальности, как рукописные данные, электроэнцефалограмма, речь, походка, движение глаз, а также использование композиций данных модальностей. Проведен подробный анализ современных методов и систем принятия решений, основанных на машинном обучении. Представлены наборы данных, методы предобработки, модели машинного обучения, оценки точности при диагностике заболеваний. В заключении рассмотрены текущие открытые проблемы и будущие перспективы исследований в данном направлении.

Ключевые слова:
неинвазивные методы диагностики, нейродегенеративные заболевания, обработка биометрических сигналов, машинное обучение.

Благодарности
Работа выполнена при поддержке Российского на-учного фонда (проект № 22-21-00021).

Цитирование:
Ходашинский, И.А. Биометрические данные и методы машинного обучения в диагностике и мониторинге нейродегенеративных заболеваний: обзор / И.А. Ходашинский, К.С. Сарин, М.Б. Бардамова, М.О. Светлаков, А.О. Слёзкин, Н.П. Корышев // Компьютерная оптика. – 2022. – Т. 46, № 6. – С. 988-1019. – DOI: 10.18287/2412-6179-CO-1134.

Citation:
Hodashinsky IA, Sarin KS, Bardamova MB, Svetlakov MO, Slezkin AO, Koryshev NP. Biometric data and machine learning methods in the diagnosis and monitoring of neurodegenerative diseases: a review. Computer Optics 2022; 46(6): 988-1019. DOI: 10.18287/2412-6179-CO-1134.

References:

  1. Iram S, Vialatte F-B, Qamar MI. Early diagnosis of neurodegenerative diseases from gait discrimination to neural synchronization. In Book: Al-Jumeily D, ed. Applied computing in medicine and health. Chap 1. Elsevier Inc; 2016: 1-26. DOI: 10.1016/B978-0-12-803468-2.00001-1.
  2. Oxtoby NP, Alexander DC. Imaging plus X: Multimodal models of neurodegenerative disease. Curr Opin Neurol 2017; 30(4): 371-379. DOI: 10.1097/WCO.0000000000000460.
  3. Tautan A-M, Ionescu B, Santarnecchi E Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques. Artif Intell Med 2021; 117: 102081. DOI: 10.1016/j.artmed.2021.102081.
  4. Alberdi A, Aztiria A, Basarab A. On the early diagnosis of Alzheimer’s Disease from multimodalsignals: a survey. Artif Intell Med 2016; 71: 1-29. DOI: 10.1016/j.artmed.2016.06.003.
  5. Hodashinsky IA, Kostyuchenko EYu, Sarin KS, Anfilofiev AE, Bardamova MB, Samsonov SS, Filimonenko IV. Dynamic-signature-based user authentication using a fuzzy classifier. Computer Optics 2018; 42(4): 657-666. DOI: 10.18287/2412-6179-2018-42-4-657-666.
  6. Sarin KS, Hodashinsky IA. Bagged ensemble of fuzzy classifiers and feature selection for handwritten signature verification. Computer Optics 2019; 43(5): 833-845. DOI: 10.18287/2412-6179-2019-43-5-833-845.
  7. Moghadami M, Moghimi S, Moghimi A, Malekzadeh GR, Fadardi JS. The investigation of simultaneous EEG and eye tracking characteristics during fixation task in mild Alzheimer's disease. Clin EEG Neurosci 2021; 52(3): 211-220. DOI: 10.1177/1550059420932752.
  8. El-Sappagh S, Alonso JM, Islam SMR, Sultan AM, Kwak KS. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease. Sci Rep 2021; 11: 2660. DOI: 10.1038/s41598-021-82098-3.
  9. Rossini PM, Di Iorio R, Vecchio F, Anfossi M, Babiloni C, Bozzali M, Bruni AC, Cappa SF, Escudero J, Fraga FJ, Giannakopoulos P, Guntekin B, Logroscino G, Marra C, Miraglia F, Panza F,
  10. Tecchio F, Pascual-Leone A, Dubois B. Early diagnosis of Alzheimer's disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clin Neurophysiol 2020; 131(6): 1287-1310. DOI: 10.1016/j.clinph.2020.03.003.
  11. Vessio G. Dynamic handwriting analysis for neurodegenerative disease assessment: A literary review. Appl Sci 2019; 9(21): 4666. DOI: 10.3390/app9214666.
  12. Jang H, Soroski T, Rizzo M, Barral O, Harisinghani A, Newton-Mason S, Granby S, Lewis C, Tutt P, Carenini G, Conati C, Field TS. Classification of Alzheimer’s disease leveraging multi-task machine learning analysis of speech and eye-movement data. Front Hum Neurosci 2021; 15: 716670. DOI: 10.3389/fnhum.2021.716670.
  13. MacAskill MR, Anderson TJ. Eye movements in neurodegenerative diseases. Curr Opin Neurol 2016; 29(1): 61-68. DOI: 10.1097/WCO.0000000000000274.
  14. Boschi V, Catricala E, Consonni M, Chesi C, Moro A, Cappa SF. Connected speech in neurodegenerative language disorders: A review. Front Psychol 2017; 8: 269. DOI: 10.3389/fpsyg.2017.00269.
  15. Ayesha S, Hanif MK, Talib R. Performance enhancement of predictive analytics for health informatics using dimensionality reduction techniques and fusion frameworks. IEEE Access 2022; 10: 753-769. DOI: 10.1109/ACCESS.2021.3139123.
  16. Myszczynska MA, Ojamies PN, Lacoste AMB, Neil D, Saffari A, Mead R, Hautbergue GM, Holbrook JD, Ferraiuolo L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol 2020; 16: 440-456. DOI: 10.1038/s41582-020-0377-8.
  17. Naik B, Mehta A, Shah M. Denouements of machine learning and multimodal diagnostic classification of Alzheimer’s disease. Visual Computing for Industry, Biomedicine, and Art 2020; 3: 26. DOI: 10.1186/s42492-020-00062-w.
  18. Godinho C, Domingos J, Cunha G, Santos AT, Fernandes, Abreu D, Goncalves N, Matthews H, Isaacs T, Duffen J, Al-Jawad ARM, Larsen F, Serrano A, Weber P, Thoms A, Sollinger S, Graessner H, Maetzler W, Ferreira JJ. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J. Neuroeng. Rehabilitation 2016; 13: 24. DOI: 10.1186/s12984-016-0136-7.
  19. Shrivastava P, Shukla A, Vepakomma P, Bhansali N, Verma K. A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease. Comput Methods Programs Biomed 2017; 139: 171-179. DOI: 10.1016/j.cmpb.2016.07.029.
  20. Mei J, Desrosiers C, Frasnelli J. Machine learning for the diagnosis of Parkinson’s disease: A review of literature. Front Aging Neurosci 2021; 13: 633752. DOI: 10.3389/fnagi.2021.633752.
  21. Tortelli R, Rodrigues FB, Wild EJ. The use of wearable/portable digital sensors in Huntington’s disease: A systematic review. Parkinsonism Relat Disord 2021; 83: 93-104. DOI: 10.1016/j.parkreldis.2021.01.006.
  22. Moon Y, Sung JH, An R, Hernandez ME, Sosnoff JJ. Gait variability in people with neurological disorders: A systematic review and meta-analysis. Hum Mov Sci 2016; 47: 197-208. DOI: 10.1016/j.humov.2016.03.010.
  23. Figueiredo J, Santos CP, Moreno JC. Automatic recognition of gait patterns in human motor disorders using machine learning: A review. Hum Mov Sci 2016; 47: 197-208. DOI: 10.1016/j.humov.2016.03.010.
  24. Stefano C, Fontanella F, Impedovo D, Pirlo G, Scotto diFreca A. A brief overview on handwriting analysis for neurodegenerative disease diagnosys. Proc Workshop on Artificial Intelligence with Application in Health (WAIAH17) 2017: 9-16.
  25. Saini K, Kaur M. Forensic study on the effect of age and illness (Parkinsonism) on handwriting characteristics. Egypt J Forensic Sci 2019; 9: 24. DOI: 10.1186/s41935-019-0131-9.
  26. Singh P, Yadav H. Influence of neurodegenerative diseases on handwriting. Forensic Research & Criminology International Journal 2021; 9(3): 110-114. DOI: 10.15406/frcij.2021.09.00347.
  27. Saha R, Mukherjee A, Sadhukhan A, Roy A, De M. Handwriting analysis for early detection of Alzheimer's disease. In Book: Gupta D, Bhattacharyya S, Khanna A, Sagar K, eds. Intelligent data analysis: From data gathering to data comprehension. Chap 18. Hoboken, NJ: John Wiley & Sons Ltd; 2020: 369-385. DOI: 10.1002/9781119544487.ch18.
  28. Impedovo D, Pirlo G. Dynamic handwriting analysis for the assessment of neurodegenerative diseases: A pattern recognition perspective. IEEE Rev Biomed Eng 2019; 12: 209-220. DOI: 10.1109/RBME.2018.2840679.
  29. Drotár P, Mekyska J, Rektorová I, Masarová L, Smékal Z, Faundez-Zanuy M. A new modality forquantitative evaluation of Parkinson’s disease: In-air movement. 13th IEEE Int Conf on BioInformatics and BioEngineering 2013: 1-4. DOI: 10.1109/BIBE.2013.6701692.
  30. Pereira CR, Weber SA, Hook C, Rosa GH, Papa JP. Deep learning-aided Parkinson's disease diagnosis from handwritten dynamics. 2016 29th SIBGRAPI Conf on Graphics, Patterns and Images (SIBGRAPI) 2016: 340-346. DOI: 10.1109/SIBGRAPI.2016.054.
  31. Isenkul M, Sakar B, Kursun O. Improved spiral test using digitized graphics tablet for monitoring Parkinson’s disease. 2nd Int Conf on E-Health and TeleMedicine 2014: 171-175. DOI: 10.13140/RG.2.1.1898.6005.
  32. Pirlo G, Diaz-Cabrera M. M, Ferrer M.A, Impedovo D, Occhionero F, Zurlo U. Early diagnosis of neurodegenerative diseases by handwritten signature analysis. In Book: New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops 2015: 290-297. DOI: 10.1007/978-3-319-23222-5_36.
  33. Likforman-Sulem L, Esposito A, Faundez-Zanuy M, Clémençon S, Cordasco G. EMOTHAW: A novel database for emotional state recognition from handwriting and drawing. IEEE Trans Hum Mach Syst 2017; 47(2): 273-284. DOI: 10.1109/THMS.2016.2635441.
  34. Al-Islam F, Akter L. Early identification of Parkinson's Disease from Hand-drawn Images using Histogram of oriented gradients and machine learning techniques. Emerging Technology in Computing, Communication and Electronics (ETCCE) 2020: 1-6. DOI: 10.1109/ETCCE51779.2020.9350870.
  35. Aghzal M, Mourhir A. Early diagnosis of Parkinson’s disease based on handwritten patterns using deep learning. Fourth Int Conf on Intelligent Computing in Data Sciences (ICDS) 2020: 1-6. DOI: 10.1109/ICDS50568.2020.9268738.
  36. Bernardo SL, Quezada A, Munoz R, Maia FM, Pereira CR, Wu W, Albuquerque VHC. Handwritten pattern recognition for early Parkinson’s disease diagnosis. Pattern Recognit Lett 2019; 125: 78-84. DOI: 10.1016/j.patrec.2019.04.003.
  37. Shalaby M, Belal N, Omar Y. Data clustering improves siamese neural networks classification of Parkinson’s disease. Complexity 2021; 2021: 1-9. DOI: 10.1155/2021/3112771.
  38. Kan PJ, Lin CH, Su CS, Lin HY, Chen WL, Liang CK. Polar expression feature of digitized handwritten pattern for automated- Parkinson’s-disease screening using perceptual color representation-based classifier. IEEE Access 2019; 7: 61738-61755. DOI: 10.1109/ACCESS.2019.2916411.
  39. Folador JP, Santos MC, Luiz LM, SouzaLA, Vieira MF, Pereira AA,Andrade OA. On the use of histograms of oriented gradients for tremor detection from sinusoidal and spiral handwritten drawings of people with Parkinson’s disease. Med Biol Eng Comput 2021; 59: 195-214. DOI: 10.1007/s11517-020-02303-9.
  40. Ali L, Zhu C, Golilarz NA, Javeed A, Zhou M,Liu Y. Reliable Parkinson’s disease detection by analyzing handwritten drawings: Construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model. IEEE Access 2019; 7: 116480-116489. DOI: 10.1109/ACCESS.2019.2932037.
  41. Xu S, Pan Z. A novel ensemble of random forest for assisting diagnosis of Parkinson's disease on small handwritten dynamics dataset. Int J Med Inform 2020; 144: 104283. DOI: 10.1016/j.ijmedinf.2020.104283.
  42. Impedovo D. Velocity-based signal features for the assessment of Parkinsonian handwriting. IEEE Signal Process Lett 2019; 26(4): 632-636. DOI: 10.1109/LSP.2019.2902936.
  43. Lamba R, Gulati T, Al-Dhlan KA, Jain A. A systematic approach to diagnose Parkinson’s disease through kinematic features extracted from handwritten drawings. J Reliab Intell Environ 2021; 7(1): 253-262. DOI: 10.1007/s40860-021-00130-9.
  44. Bernardo L, Damaševičius R, Albuquerque V, Maskeliūnas R. A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns. Int J Appl Math Comput Sci 2021; 31(4): 549-561. DOI: 10.34768/amcs-2021-0037.
  45. Xu Z, Zhu Z. Handwritten dynamics classification of Parkinson's disease through support vector machine and principal component analysis. 4th Int Conf on Advanced Algorithms and Control Engineering (ICAACE) 2021; 1848: 012098. DOI: 10.1088/1742-6596/1848/1/012098.
  46. Senatore R, Della Cioppa A, Marcelli A. Automatic diagnosis of neurodegenerative diseases: An evolutionary approach for facing the interpretability problem. Information 2019; 10(1): 30. DOI: 10.3390/info10010030.
  47. Pereira CR, Pereira DR, Papa JP, Rosa GH, Yang XS. Convolutional neural networks applied for Parkinson’s disease identification. In Book: Holzinger A, ed. Machine learning for health informatics. Springer International Publishing AG; 2016: 1-24. DOI: 10.1007/978-3-319-50478-0_19.
  48. Kamran I, Naz S, Razzak I, Imran M. Handwriting dynamics assessment using deep neural network for early identification of Parkinson’s disease. Future Gener Comput Syst 2021; 117: 234-244. DOI: 10.1016/j.future.2020.11.020.
  49. Khanna K, Gambhir S, Gambhir M. Current challenges in detection of Parkinson's disease. Journal of Critical Reviews 2020; 7(18): 1461-1467.
  50. Rastegari E, Azizian S, Ali H. Machine learning and similarity network approaches to support automatic classification of Parkinson’s diseases using accelerometer-based gait analysis. Hawaii Int Conf on System Sciences 2019: 1-12. DOI: 10.24251/HICSS.2019.511.
  51. Dentamaro V, Impedovo D, Pirlo G. Gait analysis for early neurodegenerative diseases classification through the kinematic theory of rapid human movements. IEEE Access 2020; 8: 193966-193980. DOI: 10.1109/ACCESS.2020.3032202.
  52. Justo D, Charles P, Jean D, Delmaire C, Gargiulo M, Hahn-Barma V, Naccache L, Durr A. Is non-recognition of choreic movements in Huntington disease always pathological? Neuropsychologia 2013; 51(4): 748-759. DOI: 10.1016/j.neuropsychologia.2012.12.005.
  53. Moraes CRL, Junior EA, Lucena RJRS, Cavalcanti L, Rodrigues MAB. Human gait cycle analysis using an adapted mechanical prosthesis. In Book: Costa-Felix R, Machado JC, Alvarenga AV, eds. 26th Brazilian congress on biomedical engineering. Vol 70/2. Singapore: Springer; 2019: 241-248. DOI: 10.1007/978-981-13-2119-1_38.
  54. Buckley C, Alcock L, McArdle R, Rehman RZU, Del Din S, Mazzà C, Yarnall AJ, Rochester L. The role of movement analysis in diagnosing and monitoring neurodegenerative conditions: Insights from gait and postural control. Brain Sciences 2019; 9(2): 34. DOI: 10.3390/brainsci9020034.
  55. Balaji E, Brindha D, Balakrishnan R. Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Appl Soft Comput 2020; 94: 106494. DOI: 10.1016/j.asoc.2020.106494.
  56. Aydin F, Aslan Z. Recognizing Parkinson’s disease gait patterns by vibes algorithm and Hilbert-Huang transform. Eng Sci Technol 2020; 24(1): 112-125. DOI: 10.1016/j.jestch.2020.12.005
  57. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000; 101: 215-220, DOI: 10.1161/01.CIR.101.23.e215.
  58. Nam Nguyen QD, Liu A-B, Lin C-W. Development of a neurodegenerative disease gait classification algorithm using multiscale sample entropy and machine learning classifiers. Entropy 2020; 22(12): 1340. DOI: 10.3390/e22121340.
  59. Setiawan F, Lin C-W. Identification of neurodegenerative diseases based on vertical ground reaction force classification using time–frequency spectrogram and deep learning neural network features. Brain Sciences 2021; 11(7): 902. DOI: 10.3390/brainsci11070902.
  60. Sánchez-Delacruz E, Parra MPP. Machine learning-based classification for diagnosis of neurodegenerative diseases. CEUR Workshop Proceeding 2018; 2264: 40-50.
  61. Xia Y, Gao Q, Ye Q. Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models. Biomed Signal Process Control 2015; 18: 254-262. DOI: 10.1016/j.bspc.2015.02.002.
  62. Hausdorff JM, Lertratanakul A, Cudkowicz ME, Peterson AL, Kaliton D, Goldberger AL. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol 2000; 88: 2045-2053. DOI: 10.1152/jappl.2000.88.6.2045.
  63. Barth J, Oberndorfer C, Pasluosta C, Schülein S, Gassner H, Reinfelder S, Kugler P, Schuldhaus D, Winkler J, Klucken J, Eskofier BM. Stride segmentation during free walk movements using multi-dimensional subsequence dynamic time warping on inertial sensor data. Sensors 2015; 15(3): 6419-6440. DOI: 10.3390/s150306419.
  64. Kumar SS, John M. Human activity recognition using optical flow based feature set. IEEE Int Carnahan Conf on Security Technology (ICCST) 2016: 1-5. DOI: 10.1109/CCST.2016.7815694.
    CAVIAR: Context aware vision using image-based active recognition. 2001. Source: <http://homepages.inf.ed.ac.uk/rbf/CAVIAR/>.
  65. Rehman RZU, Din S, Guan Y, Yarnall A, Shi J, Rochester L. Selecting clinically relevant gait characteristics for classification of early Parkinson’s disease: A comprehensive machine learning approach. Sci Rep 2019; 9: 17269. DOI: 10.1038/s41598-019-53656-7.
  66. Costa L, Gago M, Yelshyna D, Ferreira J, Silva H, Rocha L, Sousa N, Bicho E. Application of machine learning in postural control kinematics for the diagnosis of Alzheimer's disease. Comput Intell Neurosci 2016; 2016: 1-15. DOI: 10.1155/2016/3891253.
  67. Acosta-Escalante FD, Beltrán-Naturi E, Boll MC, Hernández-Nolasco JA, Pancardo García P. Meta-classifiers in Huntington’s disease patients classification, using iPhone’s movement sensors placed at the Ankles. IEEE Access 2018; 6: 30942-30957. DOI: 10.1109/ACCESS.2018.2840327.
  68. Ahmed RM, Devenney EM, Irish M, Ittner A, Naismith S, Ittner LM, Rohrer JD, Halliday GM, Eisen A, Hodges JR, Kiernan MC. Neuronal network disintegration: common pathways linking neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2016; 87: 1234-1241. DOI: 10.1136/jnnp-2014-308350.
  69. McMackin R, Bede P, Pender N, Hardiman O, Nasseroleslami B. Neurophysiological markers of network dysfunction in neurodegenerative diseases. NeuroImage: Clinical 2019; 22: 101706. DOI: 10.1016/j.nicl.2019.101706.
  70. Luján M, Jimeno M, Mateo Sotos J, Ricarte J, Borja A. A survey on EEG signal processing techniques and machine learning: Applications to the neurofeedback of autobiographical memory deficits in schizophrenia. Electronics 2021; 10: 3037. DOI: 10.3390/electronics10233037.
  71. Moral-Rubio C, Balugo P, Fraile-Pereda A, Pytel V, Fernández-Romero L, Delgado-Alonso C, Delgado-Álvarez A, Matias-Guiu J, Matias-Guiu JA, Ayala JL. Application of machine learning to electroencephalography for the diagnosis of primary progressive aphasia: A pilot study. Brain Sciences 2021; 11: 1262. DOI: 10.3390/brainsci11101262.
  72. Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage 2007; 34: 1600-1611. DOI: 10.1016/j.neuroimage.2006.09.024
  73. Al-Qazzaz NK, Ali MABM, Ahmad SA, Chellappan K, Islam MS, Escudero J. Role of EEG as biomarker in the early detection and classification of dementia. Sci World J 2014; 2014: 906038. DOI: 10.1155/2014/906038.
  74. Voipio J, Tallgren P, Heinonen E, Vanhatalo S, Kaila K. Millivolt-scale DC shifts in the human scalp EEG: Evidence for a non-neuronal generator. J Neurophysiol 2003; 89: 2208-2214. DOI: 10.1152/jn.00915.2002.
  75. Vanhatalo S, Tallgren P, Becker C, Holmes MD, Miller JW, Kaila K, Voipio J. Scalp-recorded slow EEG responses generated in response to hemodynamic changes in the human brain. Clin Neurophysiol 2003; 114: 1744-1754. DOI: 10.1016/s1388-2457(03)00163-9.
  76. Ikeda A. Focal ictal direct current shifts in human epilepsy as studied by subdural and scalp recording. Brain 1999; 122: 827-838. DOI: 10.1093/brain/122.5.827.
  77. Fernandez LMJ, Lüthi A. Sleep spindles: Mechanisms and functions. Physiol Rev 2020; 100: 805-868. DOI: 10.1152/physrev.00042.2018.
  78. McMackin R, Muthuraman M, Groppa S, Babiloni C, Taylor J-P, Kiernan MC, Nasseroleslami B, Hardiman O. Measuring network disruption in neurodegenerative diseases: New approaches using signal analysis. J Neurol Neurosurg Psychiatry 2019; 90: 1011-1020. DOI: 10.1136/jnnp-2018-319581.
  79. Petit D, Gagnon J-F, Fantini ML, Ferini-Strambid L, Montplaisir J. Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res 2004; 56: 487-496. DOI: 10.1016/j.jpsychores.2004.02.001.
  80. Arnaldi D, Donniaquio A, Mattioli P, Massa F, Grazzini M, Meli R, Filippi L, Grisanti S, Famá F, Terzaghi M, Girtler N, Brugnolo A, Doglione E, Pardini M, Villani F, Nobili F. Epilepsy in neurodegenerative dementias: A clinical, epidemiological, and EEG study. J Alzheimer's Dis 2020; 74: 865-874. DOI: 10.3233/jad-191315.
  81. Farrell JS, Wolff MD, Teskey GC. Neurodegeneration and pathology in epilepsy: Clinical and basic perspectives. In Book: Beart P, Robinson M, Rattray M, Maragakis NJ, eds. Neurodegenerative diseases. Springer International Publishing AG; 2017: 317-334. DOI: 10.1007/978-3-319-57193-5_12.
  82. Noachtar S, Rémi J. The role of EEG in epilepsy: A critical review. Epilepsy Behav 2009; 15: 22-33. DOI: 10.1016/j.yebeh.2009.02.035.
  83. Meghdadi AH, Karic MS, Berka C. EEG analytics: benefits and challenges of data driven EEG biomarkers for neurodegenerative diseases. IEEE Int Conf on Systems, Man and Cybernetics (SMC) 2019: 1280-1285. DOI: 10.1109/smc.2019.8914065.
  84. Sanchez-Reyes L-M, Rodriguez-Resendiz J, Avecilla-Ramirez GN, Garcia-Gomar M-L, Robles-Ocampo J-B. Impact of EEG parameters detecting dementia diseases: A systematic review. IEEE Access 2021; 9: 78060-78074. DOI: 10.1109/access.2021.3083519.
  85. Houmani N, Vialatte F, Gallego-Jutglà E, Dreyfus G, Nguyen-Michel V-H, Mariani J, Kinugawa K. Diagnosis of Alzheimer’s disease with electroencephalography in a differential framework. PLOS ONE 2018; 13: e0193607. DOI: 10.1371/journal.pone.0193607.
  86. Odish OFF, Johnsen K, van Someren P, Roos RAC, van Dijk JG. EEG may serve as a biomarker in Huntington’s disease using machine learning automatic classification. Sci Rep 2018; 8: 16090. DOI: 10.1038/s41598-018-34269-y.
  87. Anjum MF, Dasgupta S, Mudumbai R, Singh A, Cavanagh JF, Narayanan NS. Linear predictive coding distinguishes spectral EEG features of Parkinson’s disease. Parkinsonism Relat Disord 2020; 79: 79-85. DOI: 10.1016/j.parkreldis.2020.08.001.
  88. Singh A, Cole RC, Espinoza AI, Brown D, Cavanagh JF, Narayanan NS. Frontal theta and beta oscillations during lower-limb movement in Parkinson’s disease. Clin Neurophysiol 2020; 131: 694-702. DOI: 10.1016/j.clinph.2019.12.399.
  89. Singh A, Richardson SP, Narayanan N, Cavanagh JF. Mid-frontal theta activity is diminished during cognitive control in Parkinson’s disease. Neuropsychologia 2018; 117: 113-122. DOI: 10.1016/j.neuropsychologia.2018.05.020.
  90. Singh A, Cole RC, Espinoza AI, Evans A, Cao S, Cavanagh JF, Narayanan NS. Timing variability and midfrontal ~4 Hz rhythms correlate with cognition in Parkinson’s disease. NPJ Parkinson’s Disease 2021; 7(1): 14. DOI: 10.1038/s41531-021-00158-x.
  91. Cavanagh JF, Kumar P, Mueller AA, Richardson SP, Mueen A. Diminished EEG habituation to novel events effectively classifies Parkinson’s patients. Clin Neurophysiol 2018; 129: 409-418. DOI: 10.1016/j.clinph.2017.11.023.
  92. Sheoran M, Kumar S, Chawla S. Methods of denoising of electroencephalogram signal: a review. Int J Biomed Eng Technol 2015; 18: 385. DOI: 10.1504/ijbet.2015.071012.
  93. Klados MA, Papadelis C, Braun C, Bamidis PD. REG-ICA: A hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts. Biomed Signal Process Control 2011; 6: 291-300. DOI: 10.1016/j.bspc.2011.02.001.
  94. Trambaiolli LR, Lorena AC, Fraga FJ, Kanda PAM, Anghinah R, Nitrini R. Improving Alzheimer’s disease diagnosis with machine learning techniques. Clin EEG Neurosci 2011; 42: 160-165. DOI: 10.1177/155005941104200304.
  95. Kher R, Gandhi R. Adaptive filtering based artifact removal from electroencephalogram (EEG) signals. Int Conf on Communication and Signal Processing (ICCSP) 2016: 561-564. DOI: 10.1109/iccsp.2016.7754202.
  96. Sweeney KT, Ward TE, McLoone SF. Artifact removal in physiological signals–practices and possibilities. IEEE Trans Inf Technol Biomed 2012; 16: 488-500. DOI: 10.1109/titb.2012.2188536.
  97. Shahbakhti M, Taherifar D, Zareei Z. Combination of PCA and SVM for diagnosis of Parkinson’s disease. 2nd Int Conf on Advances in Biomedical Engineering 2013: 137-140. DOI: 10.1109/icabme.2013.6648866.
  98. Saeidi M, Karwowski W, Farahani FV, Fiok K, Taiar R, Hancock PA, Al-Juaid A. Neural decoding of EEG signals with machine learning: A systematic review. Brain Sciences 2021; 11: 1525. DOI: 10.3390/brainsci11111525.
  99. Shan X, Huo S, Yang L, Cao J, Zou J, Chen L, Sarrigiannis PG, Zhao Y. A revised Hilbert-Huang transformation to track non-stationary association of electroencephalography signals. IEEE Trans Neural Syst Rehabilitation Eng 2021; 29: 841-851. DOI: 10.1109/tnsre.2021.3076311.
  100. Murugappan M. Human emotion classification using wavelet transform and KNN. Int Conf on Pattern Analysis and Intelligence Robotics 2011: 148-153. DOI: 10.1109/icpair.2011.5976886.
  101. Moradi N, LeVan P, Akin B, Goodyear BG, Sotero RC. Holo-Hilbert spectral-based noise removal method for EEG high-frequency bands. J Neurosci Methods 2022; 368: 109470. DOI: 10.1016/j.jneumeth.2021.109470.
  102. Alturki FA, AlSharabi K, Abdurraqeeb AM, Aljalal M. EEG signal analysis for diagnosing neurological disorders using discrete wavelet transform and intelligent techniques. Sensors 2020; 20(9): 2505. DOI: 10.3390/s20092505.
  103. Mirzaei S, Ghasemi P. EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder. Biomed Signal Process Control 2021; 68: 102584. DOI: 10.1016/j.bspc.2021.102584.
  104. Alturki FA, Aljalal M, Abdurraqeeb AM, Alsharabi K, Al-Shamma’a AA. Common spatial pattern technique with EEG signals for diagnosis of autism and epilepsy disorders. IEEE Access 2021; 9: 24334-24349. DOI: 10.1109/access.2021.3056619.
  105. Siuly S, Alcin OF, Kabir E, Sengur A, Wang H, Zhang Y, Whittaker F. A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Trans Neural Syst Rehabilitation Eng 2020; 28: 1966-1976. DOI: 10.1109/tnsre.2020.3013429.
  106. Cao Z, John AR, Chen H-T, Martens KE, Georgiades M, Gilat M, Nguyen HT, Lewis SJG, Lin C-T. Identification of EEG Dynamics During Freezing of Gait and Voluntary Stopping in Patients With Parkinson’s Disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2021; 29: 1774–1783. DOI: 10.1109/tnsre.2021.3107106
  107. Arrufat-Pié E, Estévez-Báez M, Estévez-Carreras JM, Machado-Curbelo C, Leisman G, Beltrán C. Comparison between traditional fast Fourier transform and marginal spectra using the Hilbert–Huang transform method for the broadband spectral analysis of the electroencephalogram in healthy humans. Eng Rep 2021; 3(8): e12367. DOI: 10.1002/eng2.12367.
  108. Huang NE, Hu K, Yang ACC, Chang H-C, Jia D, Liang W-K, Yeh JR, Kao C-L, Peng CK, Meijer JH, Wang Y-H, Long SR, Wu Z. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data. Philos Trans Royal Soc A 2016; 374: 20150206. DOI: 10.1098/rsta.2015.0206.
  109. Simpraga S, Alvarez-Jimenez R, Mansvelder HD, van Gerven JMA, Groeneveld GJ, Poil S-S, Linkenkaer-Hansen K. EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease. Scientific Reports 2017; 7: 5775. DOI: 10.1038/s41598-017-06165-4.
  110. Hamadicharef B, Guan C, Ifeachor E, Hudson N, Wimalaratna S. Performance evaluation and fusion of methods for early detection of Alzheimer disease. Int Conf on BioMedical Engineering and Informatics 2008: 347-351. DOI: 10.1109/bmei.2008.196.
  111. Subasi A, Ismail Gursoy M. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 2010; 37: 8659-8666. DOI: 10.1016/j.eswa.2010.06.065.
  112. Antuvan CW, Masia L. An LDA-based approach for real-time simultaneous classification of movements using surface electromyography. IEEE Trans Neural Syst Rehabilitation Eng 2019; 27: 552-561. DOI: 10.1109/tnsre.2018.2873839.
  113. Patle A, Chouhan DS. SVM kernel functions for classification. Int Conf on Advances in Technology and Engineering (ICATE) 2013: 1-9. DOI: 10.1109/icadte.2013.6524743.
  114. Chen G. Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst Appl 2014; 41: 2391-2394. DOI: 10.1016/j.eswa.2013.09.037.
  115. Trambaiolli LR, Lorena AC, Fraga FJ, Kanda PAM, Anghinah R, Nitrini R. Improving Alzheimer’s disease diagnosis with machine learning techniques. Clin EEG Neurosci 2011; 42: 160-165. DOI: 10.1177/155005941104200304.
  116. Kulkarni N. Use of complexity based features in diagnosis of mild Alzheimer disease using EEG signals. Int J Inf Technol Decis Mak 2017; 10: 59-64. DOI: 10.1007/s41870-017-0057-0.
  117. Morabito FC, Campolo M, Ieracitano C, Ebadi JM, Bonanno L, Bramanti A, Desalvo S, Mammone N, Bramanti P. Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings. IEEE 2nd Int Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI) 2016: 1-6. DOI: 10.1109/rtsi.2016.7740576.
  118. Ho TKK, Jeon Y, Na E, Ullah Z, Kim BC, Lee KH, Song J-I, Gwak J. DeepADNet: A CNN-LSTM model for the multi‐class classification of Alzheimer’s disease using multichannel EEG. Alzheimers Dement 2021; 17: e057573. DOI: 10.1002/alz.057573.
  119. Bizopoulos P, Lambrou GI, Koutsouris D. Signal2Image modules in deep neural networks for EEG classification. 41st Annual Int Conf of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019: 702-705. DOI: 10.1109/EMBC.2019.8856620.
  120. Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, Acharya UR. A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput Appl 2018; 32: 10927-10933. DOI: 10.1007/s00521-018-3689-5.
  121. Gonnerman LM, Aronoff JM, Almor A, Kempler D, Andersen ES. From beetle to bug: progression of error types in naming in Alzheimer’s disease. Proc Annual Meeting of the Cognitive Science Society 2004; 26: 1563.
  122. Matias-Guiu J, Garcia-Ramos R. Primary progressive aphasia: from syndrome to disease. Neurologia 2013; 28(6): 366-374. DOI: 10.1016/j.nrleng.2012.04.018.
  123. Gorno-Tempini ML, Hillis AE, Weintraub S. et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76(11): 1006-1014. DOI: 10.1212/WNL.0b013e31821103e6.
  124. Mesulam MM, Weintraub S. Primary progressive aphasia and kindred disorders. In Book: Duyckaerts C, Litvan I, eds. Handbook of clinical neurology: Dementias. 3rd ed. Vol 89. Chap 54. Elsevier; 2008: 573-587.
  125. Sonty SP, Mesulam MM, Weintraub S, Johnson NA, Parrish TB, Gitelman DR. Altered effective connectivity within the language network in primary progressive aphasia. J Neurosci 2008; 27(6): 1334-1345. DOI: 10.1523/JNEUROSCI.4127-06.2007.
  126. Mesulam MM, Rogalski EJ, Wieneke C, Hurley RS, Geula C, Bigio EH, Thompson CK, Weintraub S. Primary progressive aphasia and the evolving neurology of the language network. Nat Rev Neurol 2014; 10: 554-569. DOI: 10.1038/nrneurol.2014.159.
  127. Gorno-Tempini M, Hillis A, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76: 1006-1014. DOI: 10.1212/WNL.0b013e31821103e6.
  128. Kertesz A, Harciarek M. Primary progressive aphasia. Scand J Psychol 2014; 55(3): 191-201. DOI: 10.1111/sjop.12105.
  129. Hillis AE, Tuffiash E, Caramazza A. Modality-specific deterioration in naming verbs in nonfluent primary progressive aphasia. J Cogn Neurosci 2002; 14: 1099-1108. DOI: 10.1162/089892902320474544.
  130. Semenova TN, Guzanova EV, Sorokina TA. Features of speech disorders and their diagnosis in patients with neurodegenerative diseases [In Russian]. Practical Medicine 2019; 17(3): 23-27. DOI: 10.32000/2072-1757-2019-3-23-27.
  131. Caine D, Breen N, Patterson K. Emergence and progression of “non-semantic” deficits in semantic dementia. Cortex 2009; 45: 483-494. DOI: 10.1016/j.cortex.2007.07.005.
  132. Knels C, Danek A. Loss of word-meaning with spared object semantics in a case of mixed primary progressive aphasia. Brain and Language 2010; 113: 96-100. DOI: 10.1016/j.bandl.2009.09.007.
  133. Wilson SM, Henry ML, Besbris M, Ogar JM, Dronkers NF, Jarrold W, Miller B, Gorno-Tempin M. Connected speech production in three variants of primary progressive aphasia. Brain 2010; 133: 2069-2088. DOI: 10.1093/brain/awq129.
  134. Bonner MF, Ash S, Grossman M. The new classification of primary progressive aphasia into semantic, logopenic, or nonfluent/agrammatic variants. Curr Neurol Neurosci Rep 2010; 10(6): 484-490. DOI: 10.1007/s11910-010-0140-4.
  135. Grishina DA. Speech disorders in neurodegenerative diseases [In Russian]. Effective Pharmacotherapy 2017; 31: 56-61.
  136. Mikhailov VA, Kotsiubinskaya YV, Safonova NY, Ananieva NI, Stulov IK. Primary progressive aphasia [In Russian]. Neurology, Neuropsychiatry, Psychosomatics 2019; 11(1): 4-11. DOI: 10.14412/2074-2711-2019-1-4-11.
  137. Sapolsky D, Bakkour A, Negreira A, Nalipinski P, Weintraub S, Mesulam M, Caplan D, Dickerson B. Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia. Neurology 2010: 75(4): 358-366. DOI: 10.1212/WNL.0b013e3181ea15e8.
  138. Fong MWM, Van Patten R, Fucetola RP. The factor structure of the boston diagnostic aphasia examination. 3rd ed. J Int Neuropsychol Soc 2019; 25(7): 772-776. DOI: 10.1017/S1355617719000237.
  139. Vasenina EE, Levin OS. Heterogeneity of speech disorders in Parkinson’s disease: potential for classification, diagnostics and therapy [In Russian]. Medical Council 2020; 2: 55-66. DOI: 10.21518/2079-701X-2020-2-55-66.
  140. Prins RS, Bastiaanse R. Analysing the spontaneous speech of aphasic speakers. Aphasiology 2004; 18: 1075-1091. DOI: 10.1080/02687030444000534.
  141. Sajjadi SA, Patterson K, Tomek M, Nestor PJ. (2012). Abnormalities of connected speech in semantic dementia vs. Alzheimer’s disease. Aphasiology 2012; 26: 847-866. DOI: 10.1080/02687038.2012.654933.
  142. Fraser K, Fors K, Kokkinakis D. Multilingual word embeddings for the assessment of narrative speech in mild cognitive impairment. Comput Speech Lang 2019; 53: 121-139. DOI: 10.1016/j.csl.2018.07.005.
  143. Ash S, Menaged A, Olm C, et al. Narrative discourse deficits in amyotrophic lateral sclerosis. Neurology 2014; 83: 520-528. DOI: 10.1212/WNL.0000000000000670.
  144. Konig A, Satt A, Sorin A, Hoory R, Derreumaux A, David R, Robert PH. Use of speech analyses within a mobile application for the assessment of cognitive impairment in elderly people. Curr Alzheimer Res 2018; 15(2): 120-129. DOI: 10.2174/1567205014666170829111942.
  145. Bertinia F, Allevib D, Luterob G, Calza L, Montesib D. An automatic Alzheimer’s disease classifier based on spontaneous spoken English. Comput Speech Lang 2022; 72: 101298. DOI: 10.1016/j.csl.2021.101298.
  146. Vincze V, Gosztolya G, Toth L., Hoffmann I., Szatloczki G. Detecting mild cognitive impairment by exploiting linguistic information from transcripts. Proc 54th Annual Meeting of the Association for Computational Linguistics 2016: 181-187. DOI: 10.18653/v1/P16-2030.
  147. Beltrami D, Calza L, Gagliardi G, Ghidoni E, Marcello N, Favretti RR, Tamburini F. Automatic identification of mild cognitive impairment through the analysis of Italian spontaneous speech productions. Proc Tenth International Conference on Language Resources and Evaluation (LREC’16) 2016: 2086-2093.
  148. Fraser K, Lundholm Fors K, Eckerstrom M, Themistocleous C, Kokkinakis D. Improving the sensitivity and specificity of MCI screening with linguistic information. Proc LREC 2018 Workshop “Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive/psychiatric impairments (RaPID-2)” 2018: 19-26.
  149. Fraser KC, Meltzerb JA, Rudzicza F. Linguistic features identify Alzheimer’s disease in narrative speech. J Alzheimer's Dis 2016; 49: 407-422. DOI: 10.3233/JAD-150520.
  150. Yngve V. A model and hypothesis for language structure. Proc Am Physical Soc 1960; 104: 444-466.
  151. Yu B, Quatieri TF, Williamson JR, Mundt JC. Cognitive impairment prediction in the elderly based on vocal biomarkers. Sixteenth Annual Conference of the International Speech Communication Association 2015; 3734-3738. DOI: 10.21437/Interspeech.2015-741.
  152. Themistocleous C, Kokkinakis D, Eckerstrom M, Fraser K, Fors KL. Effects of mild cognitive impairment on vowel duration. Proc ExLing 2018: 9th Tutorial and Research Workshop on Experimental Linguistics, 27-30 August 2018, Paris, France. DOI: 10.36505/ExLing-2018/09/0027/000360.
  153. Meilan JJ, Martinez-Sanchez F, Carro J, Sanchez JA, Perez E. Acoustic markers associated with impairment in language processing in Alzheimer’s disease. Span J Psychol 2012; 15(2): 487-494. DOI: 10.5209/rev_SJOP.2012.v15.n2.38859.
  154. Lopez-Pabon FO, Arias-Vergara T, Orozco-Arroyave JR. Cepstral analysis and Hilbert-Huang transform for automatic detection of Parkinson’s disease. TecnoLogicas 2020; 23(47): 93-108. DOI: 10.22430/22565337.1401.
  155. Sanz C, Carrillo F, Slachevsky A, Forno G, Gorno Tempini ML, Villagra R, Ibanez A, Tagliazucchi E, García AM. Automated text-level semantic markers of Alzheimer's disease. Alzheimers Dement (Amst) 2022; 14(1): e12276. DOI: 10.1002/dad2.12276.
  156. Sakar BE, Isenkul ME, Sakar C, Sertbas A, Gurgen F, Delil S, Apaydin H, Kursun O. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inform 2013; 17(4): 828-834. DOI: 10.1109/JBHI.2013.2245674.
  157. Orozco-Arroyave JR, Arias-Londono JD, Vargas-Bonilla JF, Gonzalez-Rativa MC, Noth E. New Spanish speech corpus database for the analysis of people suffering from Parkinson’s disease. Proc Language Resources and Evaluation Conference (LREC) 2014: 342-347.
  158. Triapthi A, Chakraborty R, Kopparapu SK. Dementia classification using acoustic descriptors derived from subsampled signals. Proc 28th European Signal Processing Conference (EUSIPCO) 2021: 91-95. DOI: 10.23919/Eusipco47968.2020.9287830.
  159. Di Palo F, Parde N. Enriching neural models with targeted features for dementia detection. Proc 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop 2019: 302-308. DOI: 10.18653/v1/P19-2042.
  160. Fritsch J, Wankerl S, Noth E. Automatic diagnosis of Alzheimer's disease using neural network language models. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019: 5841-5845. DOI: 10.1109/ICASSP.2019.8682690.
  161. Radouani L, Lagdali S, Rziza M. Detection of voice impairment for parkinson's disease using machine learning tools. 2020 10th Int Symposium on Signal, Image, Video and Communications (ISIVC) 2021: 20944370. DOI: 10.1109/ISIVC49222.2021.9487544.
  162. Narendra NP, Schuller B, Alku P. The detection of Parkinson's disease from speech using voice source information. IEEE/ACM Trans Audio, Speech, Language Process 2021; 29: 1925-1936. DOI: 10.1109/TASLP.2021.3078364.
  163. Airaksinen M, Raitio T, Story B, Alku P. Quasi closed phase glottal inverse filtering analysis with weighted linear prediction. IEEE/ACM Trans Audio, Speech, Language Process 2014; 22(3): 596-607.
  164. Barabanshchikov VA, ed. Eye tracking in psychological science and practice [In Russian]. Moscow: “Cogito” Publisher; 2015. ISBN: 978-5-89353-477-1.
  165. Termsarasab P, Thammongkolchai T, Rucker JC, Frucht SJ. The diagnostic value of saccades in movement disorder patients: a practical guide and review. J Clin Mov Disord 2015; 2: 14.
  166. Ratmanova PO, Litvinova AS, Evina EI, Bogdanov PP, Napalkov DA. Analysis of oculomotor reactions as a method for assessing neurodegenerative processes [In Russian]. Proceedings of the Southern Federal University. Technical Science 2010; 8(109): 171-179.
  167. Sheehy CK, Bensinger ES, Romeo A, Rani L, Stepien-Bernabe N, Shi B, Helft Z, Putnam N, Cordano C, Gelfand JM, Bove R, Stevenson SB, Green AJ. Fixational microsaccades: A quantitative and objective measure of disability in multiple sclerosis. Mult Scler J 2020; 26(3): 343-353. DOI: 10.1177/1352458519894712.
  168. Lagun D, Manzanares C, ZolaSM, Buffalo EA, Agichtein E. Detecting cognitive impairment by eye movement analysis using automatic classification algorithms. J Neurosci Methods 2011; 201(1): 196-203. DOI: 10.1016/j.jneumeth.2011.06.027.
  169. Haque RU, Manzanares CM, Brown LN, Pongos AL, Lah JJ, Clifford GD, Levey AI. VisMET: a passive, efficient, and sensitive assessment of visuospatial memory in healthy aging, mild cognitive impairment, and Alzheimer's disease. Learn Mem 2019; 26(3): 93-100. DOI: 10.1101/lm.048124.118.
  170. Nam U, Lee K, Ko H, Lee JY, Lee EC. Analyzing facial and eye movements to screen for Alzheimer's disease. Sensors 2020; 20(18): 5349. DOI: 10.3390/s20185349.
  171. Fernández G, Manes F, Politi LE, Orozco D, Schumacher M, Castro L, Agamennoni O, Rotstein NP. Patients with mild Alzheimer’s disease fail when using their working memory: Evidence from the eye tracking technique. J Alzheimer's Dis 2019; 50(3): 827-838. DOI: 10.3233/JAD-150265.
  172. Readman MR, Polden M, Gibbs MC, Wareing L, Crawford TJ. The potential of naturalistic eye movement tasks in the diagnosis of Alzheimer's disease: A review. Brain Sciences 2021; 11(11): 1503. DOI: 10.3390/brainsci11111503.
  173. Beltran J, Garcia-Vazquez MS, Benois-Pineau J, Gutierrez-Robledo LM, Dartigues J-F. Computational techniques for eye movements analysis towards supporting early diagnosis of Alzheimer's disease: A review. Comput Math Methods Med 2018; 2018: 2676409. DOI: 10.1155/2018/2676409.
  174. Davis R, Sikorskii A. Eye tracking analysis of visual cues during wayfinding in early stage Alzheimer's disease. Dement Geriatr Cogn Disord Extra 2020; 49(1): 91-97. DOI: 10.1159/000506859.
  175. Pavisic IM, Firth NC, Parsons S, Rego DM, Shakespeare TJ, Yong KXX, Slattery CF, Paterson RW, Foulkes AJM, Macpherson K, Carton AM, Alexander DC, Shawe-Taylor J, Fox NC, Schott JM, Crutch SJ, Primativo S. Eyetracking metrics in young onset Alzheimer’s disease: A window into cognitive visual functions. Front Neurol 2017; 8: 377. DOI: 10.3389/fneur.2017.00377.
  176. Tadokoro K, Yamashita T, Fukui Y, Nomura E, Ohta Y, Ueno S, Nishina S, Tsunoda K, Wakutani Y, Takao Y, Miyoshi T, Higashi Y, Osakada Y, Sasaki R, Matsumoto N, Kawahara Y, Omote Y, Takemoto M, Hishikawa N, Morihara R, Abe K. Early detection of cognitive decline in mild cognitive impairment and Alzheimer's disease with a novel eye tracking test. J Neurol Sci 2021; 427: 117529. DOI: 10.1016/j.jns.2021.117529.
  177. Venugopalan J, Tong L, Hassanzadeh HR, Wang MD. Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci Rep 2021; 11: 3254. DOI: 10.1038/s41598-020-74399-w.
  178. The program of fundamental scientific research in the Russian Federation for the long time (2021 – 2030) [In Russian]. 2022. Source:         <http://static.government.ru/media/files/skzO0DEvyFOIBtXobzPA3zTyC71cRAOi.pdf>.
  179. Muhammad G, Alshehri F, Karray F, Saddik AE, Alsulaiman M, Falk TH. A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Inf Fusion 2021; 76: 355-375. DOI: 10.1016/j.inffus.2021.06.007.
  180. Vasquez-Correa JC, Arias-Vergara T, Orozco-Arroyave JR, Eskofier BM, Klucken J, Noth E. Multimodal assessment of Parkinson’s disease: a deep learning approach. IEEE J Biomed Health Inform 2019; 23(4): 1618-1630. DOI: 10.1109/JBHI.2018.2866873.
  181. Markello RD, Shafiei G, Tremblay C, Postuma RB, Dagher A, Misic B. Multimodal phenotypic axes of Parkinson’s disease. npj Parkinson's Disease 2021; 7: 6. DOI: 10.1038/s41531-020-00144-9.
  182. Hodashinsky I, Sarin K, Shelupanov A, Slezkin A. Feature selection based on swallow swarm optimization for fuzzy classification. Symmetry 2019; 11(11): 1423. DOI: 10.3390/sym11111423.
  183. Jiao Z, Chen S, Shi H, Xu J. Multi-modal feature selection with feature correlation and feature structure fusion for MCI and AD classification. Brain Sciences 2022; 12(1): 80. DOI: 10.3390/brainsci12010080.
  184. Hodashinsky I, Sarin K. Feature selection for classification through population random search with memory. Autom Remote Control 2019; 80(2): 324-333. DOI: 10.1134/S0005117919020103.
  185. Slezkin AO, Hodashinsky IA, Shelupanov AA. Binarization of the Swallow swarm optimization for feature selection. Program Comput Softw 2021; 47(5): 374-388. DOI: 10.1134/S0361768821050066.
  186. Bucholc M, Ding X, Wang H, Glass DH, Wang H, Prasad G, Maguire LP, Bjourson AJ, McClean PL,Todd S, Finn DP, Wong-Lin KF. A practical computerized decision support system for predicting the severity of Alzheimer’s disease of an individual. Expert Syst Appl 2019; 130: 157-171. DOI: 10.1101/573899.
  187. Shao W, Peng Y, Zu C, Wang M, Zhang D. Hypergraph based multi-task feature selection for multimodal classification of Alzheimer's disease. Comput Med Imaging Graph 2020; 80: 101663. DOI: 10.1016/j.compmedimag.2019.101663.
  188. Zhang DQ, Shen DG. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 2012; 59: 895-907. DOI: 10.1016/j.neuroimage.2011.09.069.
  189. Wang B, Mezlini A, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A. Similarity network fusion for aggregating data types on a genomic scale. Nature Methods 2014; 11(3): 333. DOI: 10.1038/nmeth.2810.
  190. Heidarivincheh F, McConville R, Morgan C, McNaney R, Masullo A, Mirmehdi M, Whone AL Craddock I. Multimodal classification of parkinson’s disease in home environments with resiliency to missing modalities. Sensors 2021; 21(12): 4133. DOI: 10.3390/s21124133.
  191. Emmert-Streib F, Yli-Harja O, Dehmer M. Explainable artificial intelligence and machine learning: A reality rooted perspective. WIREs Data Mining and Knowledge Discovery 2020; 10(6): e1368. DOI: 10.1002/widm.1368.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20