(49-3) 08 * << * >> * Русский * English * Содержание * Все выпуски
  
Перспективы применения методов восстановления подводных изображений для обеспечения морских геологоразведочных работ
 И.В. Семерник 1, А.А. Тарасенко 1, К.В. Самонова 1
 1 АО «ЮЖМОРГЕОЛОГИЯ»,
     353461, Россия, г. Геленджик, ул. Крымская, д. 20
 
 PDF, 1240 kB
  PDF, 1240 kB
DOI: 10.18287/2412-6179-CO-1520
Страницы: 406-434.
Аннотация:
В настоящей работе приведен обзор  современных методов восстановления и улучшения качества подводных изображений,  а также анализ преимуществ и недостатков методов применительно к результатам  съемки, полученным в ходе морских глубоководных геологоразведочных работ.
     В связи с тем, что основными критериями выбора  метода обработки является именно точность и достоверность восстановления  подводных изображений, а не быстродействие и улучшение восприятия кадра,  наиболее целесообразным является выбор методов, основанных на традиционном  подходе и использовании априорной информации, полученной от аппаратных датчиков  комплекса, об условиях съемки и взаимном положении камеры и объекта съемки.
Ключевые слова:
восстановление подводных  изображений, улучшение подводных изображений, морские геологоразведочные  работы, морские глубоководные комплексы, методы обработки подводных изображений.
Благодарности
Исследование выполнено за  счет гранта Российского научного фонда № 23-79-01253,  https://rscf.ru/project/23-79-01253/.
Цитирование:
Семерник, И.В. Перспективы применения методов восстановления подводных изображений для обеспечения морских геологоразведочных работ / И.В. Семерник, А.А. Тарасенко, К.В. Самонова // Компьютерная оптика. – 2025. – Т. 49, № 3. – С. 406-434. – DOI: 10.18287/2412-6179-CO-1520.
Citation:
Semernik IV, Tarasenko AA, Samonova CV. Prospects for the application of underwater image restoration methods to facilitate marine geological exploration. Computer Optics 2025; 49(3): 406-434. DOI: 10.18287/2412-6179-CO-1520.
References:
  - Zhou J, Zhang D, Zhang  W. Classical and state-of-the-art approaches for underwater image defogging: a  comprehensive survey. Front Inf Technol Electron Eng 2020; 21(12): 1745-1769.  DOI: 10.1631/FITEE.2000190.
 
- Zhang W, Dong L, Pan X,  Zou P, Qin L, Xu W. A survey of restoration and enhancement for underwater  images. IEEE Access 2019; 7: 182259-182279. DOI:  10.1109/ACCESS.2019.2959560.
 
- Yang M, Hu J, Li C, Rohde G, Du Y,  Hu K. An in-depth survey of underwater image enhancement and restoration. IEEE  Access 2019; 7: 123638-123657. DOI: 10.1109/ACCESS.2019.2932611.
 
- Pan T, He X, Zhang X, Liu J, Bai Y,  Gong F, Li T. Experimental study on bottom-up detection of underwater targets  based on polarization imaging. Sensors 2022; 22(8): 2827. DOI:  10.3390/s22082827.
 
- Shabalin  NV, Korost DV, Chava VA, Nazarenko SA, Sukhov SV, Kirichenko EA, Ints GA,  Egorov AA. Towed device for mapping seabed objects and their visual verification  [In Russian]. Pat RF of Invent N 2679922 C1 of February 14, 2018, Russian Bull  of Inventions N5, 2019.
 
- Tan C, Sluzek G, He D. A novel  applications of range-gated underwater laser imaging system in near target turbid  medium. Opt Lasers Eng 2005; 43(9): 995-1009. DOI: 10.1016/j.optlaseng.2004.10.005.
 
- Li H, Wang X, Bai T, et al. Speckle  noise suppression of range gated underwater imaging system. Proc SPIE 2009;  7443: 74432A. DOI: 10.1117/12.831994.
 
- Zhang T, Li Q, Li Y, Liu X.  Underwater optical image restoration method for natural/artificial light. J  Mar Sci Eng 2023; 11(3): 470. DOI: 10.3390/jmse11030470.
 
- Wang Y, Song W, Fortino G, Qi L-Z,  Zhang W, Liotta A. An experimental-based review of image enhancement and image  restoration methods for underwater imaging. IEEE Access 2019; 7:  140233-140251. DOI: 10.1109/ACCESS.2019.2932130.
 
- Yu K, Cheng Y, Li L, Zhang K, Liu Y,  Liu Y. Underwater image restoration via DCP and Yin–Yang pair optimization. J  Mar Sci Eng 2022; 10(3): 360. DOI: 10.3390/jmse10030360.
 
- Lee HS, Moon SW, Eom IK. Underwater  image enhancement using successive color correction and superpixel dark channel  prior. Symmetry 2020; 12(8): 1220. DOI: 10.3390/sym12081220.
 
- Drews  P, Nascimento E, Moraes F, Botelho S, Campos  M. Transmission estimation in underwater single images. Proc IEEE Int  Conference on Computer Vision Workshops 2013: 825-830. DOI:  10.1109/ICCVW.2013.113.
 
- Jiao Q, Liu M, Li P, Dong L, Hui M,  Kong L, Zhao Y. Underwater image restoration via non-convex non-smooth  variation and thermal exchange optimization. J Mar Sci Eng 2021; 9(6):  570. DOI: 10.3390/jmse9060570.
 
- Drews PLJ, Nascimento ER, Botelho  SSC, Campos  MFM. Underwater depth estimation and image restoration based on single images. IEEE  Comput Graph Appl 2016; 36(2): 24-35. DOI: 10.1109/MCG.2016.26.
 
- Carlevaris-Bianco N, Mohan A,  Eustice RM. Initial results in underwater single image dehazing. Oceans 2010  MTS/IEEE Seattle 2010: 1-8. DOI: 10.1109/OCEANS.2010.5664428.
 
- Du R, Li W, Chen S, Li C, Zhang Y.  Unpaired underwater image enhancement based on CycleGAN. Information  2022; 13(1): 1. DOI: 10.3390/info13010001.
 
- Awan  HSA, Mahmood MT. Underwater image restoration through color correction and  UW-Net. Electronics 2024; 13(1): 199. DOI: 10.3390/electronics13010199.
 
- Hu K, Weng C, Zhang Y, Jin J, Xia Q.  An overview of underwater vision enhancement: From traditional methods to  recent deep learning. J Mar Sci Eng 2022; 10(2): 241. DOI:  10.3390/jmse10020241.
 
- Ancuti  C, Ancuti CO, Haber T, Bekaert P. Enhancing underwater images and videos by  fusion. Proc 2012 IEEE Conf on Computer Vision and Pattern Recognition 2012:  81-88. DOI: 10.1109/CVPR.2012.6247661.
 
- Yang X, Yin C, Zhang Z, Li Y, Liang W, Wang D, Tang Y, Fan H. Robust  chromatic adaptation based color correction technology for underwater images. Appl Sci 2020; 10(18):  6392. DOI: 10.3390/app10186392.
 
- Zhou J, Wei X, Shi J, Chu W, Lin Y.  Underwater image enhancement via two-level wavelet decomposition maximum  brightness color restoration and edge refinement histogram stretching. Opt  Express 2022; 30(10): 17290-17306. DOI: 10.1364/OE.450858.
 
- Zhang W, Liu W, Li L. Underwater  single-image restoration with transmission estimation using color constancy. J  Mar Sci Eng 2022; 10(3): 430. DOI: 10.3390/jmse10030430.
 
- Dixit S, Tiwari SK,  Sharma P. Underwater image enhancement using DCP with ACCLAHE and homomorphism  filtering. Proc 2016 Int Conf on Signal Processing, Communication, Power and  Embedded System (SCOPES) 2016: 2042-2046. DOI:  10.1109/SCOPES.2016.7955807.
 
- Malathi V, Manikandan A. An  enhancement of underwater images using DCP and CLAHE algorithm. Int J  Eng Adv Technol 2019; 9(2): 2805-2813. DOI: 10.35940/ijeat.A9607.129219.
 
- Chang HH, Chen PF, Guo JK, et al. A  self-adaptive single underwater image restoration algorithm for improving  graphic quality. J Image Video Proc 2020; 2020: 41. DOI:  10.1186/s13640-020-00528-0.
 
- Song W, Liu Y, Huang D, Zhang B,  Shen Z, Xu H. From shallow sea to deep sea: research progress in underwater  image restoration. Front Mar Sci 2023; 10: 1163831. DOI:  10.3389/fmars.2023.1163831.
 
- Tao Y, Dong L, Xu W. A novel two-step  strategy based on white-balancing and fusion for underwater image enhancement. IEEE  Access 2020; 8: 217651-217670. DOI: 10.1109/ACCESS.2020.3040505.
 
- Gao F, Wang K, Yang Z, Wang Y, Zhang  Q. Underwater image enhancement based on local contrast correction and  multi-scale fusion. J Mar Sci Eng 2021; 9(2): 225. DOI:  10.3390/jmse9020225.
 
- Alsakar  YM, Sakr NA, El-Sappagh S, Abuhmed T, Elmogy M. Underwater image restoration  and enhancement: A comprehensive review of recent trends, challenges, and  applications. 2023. Source:  <https://www.preprints.org/manuscript/202307.0585/v1>. DOI:  10.20944/preprints202307.0585.v1.
 
- Zhao L, Lee S-W. Multi-domain rapid  enhancement networks for underwater images. Sensors 2023; 23(21): 8983.  DOI: 10.3390/s23218983.
 
- Yang Hua, Tian Fei, Qi Qi, Wu Q. M.  Jonathan, Li Kunqian. Underwater image enhancement with latent consistency  learning‐based color transfer. IET Image Process 2022; 16(6): 1594-1612.  DOI: 10.1049/ipr2.12433.
 
- Zheng M, Luo W. Underwater image  enhancement using improved CNN based defogging. Electronics 2022; 11(1):  150. DOI: 10.3390/electronics11010150.
 
- Liu Y, Xu H, Zhang B, Sun K, Yang J,  Li B, Li C, Quan X. Model-based underwater image simulation and learning-based  underwater image enhancement method. Information 2022; 13(4): 187. DOI:  10.3390/info13040187.
 
- Akkaynak D, Treibitz T. Sea-Thru: A  method for removing water from underwater images. 2019 IEEE/CVF Conf on  Computer Vision and Pattern Recognition (CVPR) 2019: 1682-1691. DOI:  10.1109/CVPR.2019.00178.
 
- Liu D, Zhou J, Xie X, Lin Z, Lin Y.  Underwater image restoration via background light estimation and depth map  optimization. Opt Express 2022; 30(16): 29099-29116. DOI:  10.1364/OE.462861.
 
- Peng Y-T, Cosman PC. Underwater  image restoration based on image blurriness and light absorption. IEEE  Trans Image Process 2017; 26(4): 1579-1594. DOI: 10.1109/TIP.2017.2663846.
 
- Zhou  J, Liu Q, Jiang Q, et al. Underwater camera: Improving visual perception via  adaptive dark pixel prior and color correction. Int J Comput Vis 2023. DOI:  10.1007/s11263-023-01853-3. Source:  <https://link.springer.com/content/pdf/10.1007/s11263-023-01853-3.pdf>.
 
- Raihan AJ, Abas PE, De Silva LC.  Role of restored underwater images in underwater imaging applications. Appl  Syst Innov 2021; 4(4): 96. DOI: 10.3390/asi4040096.
 
- Zhou J, Yang T, Ren W, Zhang D,  Zhang W. Underwater image restoration via depth map and illumination estimation  based on a single image. Opt Express 2021; 29(19): 29864-29886. DOI:  10.1364/OE.427839.
 
- Zhuang Z, Fan Z, Jin H, Gong K, Peng  J. Local linear model and restoration method of underwater images. Opt  Express 2022; 30(17): 30949-30968. DOI: 10.1364/OE.458816.
 
- Zhou J, Liu D, Zhang D, Zhang W.  Light attenuation and color fluctuation for underwater image restoration. In  Book: Wang L, Gall J, Chin T-J, Sato I, Chellappa R, eds. Computer Vision –  ACCV 2022. 16th Asian Conference on Computer Vision, Macao, China, December 4–8, 2022,  Proceedings, Part III. Cham, Switzerland: Springer Nature Switzerland  AG; 2022: 374-389. DOI: 10.1007/978-3-031-26313-2_23.
 
- Lakshmi MD, Murugan SS. Modified  restoration technique for improved visual perception of shallow underwater imagery.  Current Sci 2021; 121(1): 103-108. DOI: 10.18520/cs/v121/i1/103-108.
 
- Park E, Sim J-Y. Underwater image  restoration using geodesic color distance and complete image formation model. IEEE  Access 2020; 8: 157918-157930. DOI: 10.1109/ACCESS.2020.3019767.
 
- Berman D, Levy D, Avidan S, Treibitz  T. Underwater single image color restoration using haze-lines and a new  quantitative dataset. IEEE Trans Pattern Anal Mach Intell 2021; 43(8):  2822-2837. DOI: 10.1109/TPAMI.2020.2977624.
 
- Zhou J, Wang Y, Zhang W, Li C.  Underwater image restoration via feature priors to estimate background light  and optimized transmission map. Opt Express 2021; 29(18): 28228-28245.  DOI: 10.1364/OE.432900.
 
- Ge WY, Lin Y, Wang Z, Yang T. Multi-prior underwater  image restoration method via adaptive transmission. Opt Express 2022;  30(14): 24295-24309. DOI: 10.1364/OE.463865.
 
- Chang H-H. Single underwater image  restoration based on adaptive transmission fusion. IEEE Access 2020; 8:  38650-38662. DOI: 10.1109/ACCESS.2020.2971019.
 
- Hu Y, Wang K, Zhao X, Wang H, Li Y.  Underwater image restoration based on convolutional neural network. Proc  10th Asian Conf on Machine Learning (PMLR) 2018; 95: 296-311.
 
- Desai C, Reddy BSS, Tabib RA, Patil  U, Mudenagudi U. AquaGAN: Restoration of underwater images. 2022 IEEE/CVF Conf  Computer Vision and Pattern Recognition Workshops (CVPRW) 2022: 295-303. DOI:  10.1109/CVPRW56347.2022.00044.
 
- Han  J, et al. Single underwater image restoration by contrastive learning. 2021  IEEE Int Geoscience and Remote Sensing Symposium (IGARSS) 2021: 2385-2388. DOI:  10.1109/IGARSS47720.2021.9553857.
 
- Yan S, Chen X, Wu Z, Tan M, Yu J.  HybrUR: A hybrid physical-neural solution for unsupervised underwater image  restoration. IEEE Trans Image Process 2023; 32: 5004-5016. DOI:  10.1109/TIP.2023.3309408.
 
- Mu  P, Fang J, Qian H, Bai C. Transmission and color-guided network for underwater  image enhancement. 2023 IEEE Int Conf on Multimedia and Expo (ICME) 2023:  1337-1342: DOI: 10.1109/ICME55011.2023.00232.
 
- Yan K, Lan L, Zheng Z, Wang G, Yang  Y. Medium transmission map matters for learning to restore real-world  underwater images. Appl Sci 2022; 12(11): 5420. DOI: 10.3390/app12115420.
 
- Li C, Anwar S, Porikli F. Underwater  scene prior inspired deep underwater image and video enhancement. Pattern  Recognition 2020; 98: 107038. DOI: 10.1016/j.patcog.2019.107038.
 
- Xu Y, Wang H, Cooper GD, Rong S, Sun  W. Learning-based dark and blurred underwater image restoration. Complexity  2020; 2020(2): 6549410. DOI: 10.1155/2020/6549410.
 
- Mello CD, Drews PL, Botelho SC. Degradation-driven  underwater image enhancement. 2021 Latin American Robotics Symposium (LARS),  2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education  (WRE) 2021: 186-191. DOI: 10.1109/LARS/SBR/WRE54079.2021.9605460.
 
- Mello CD, Moreira BU, Drews PLJ,  Botelho SC. Alternative underwater image restoration based on unsupervised  learning and autoencoder with degradation block. 2020 Latin American Robotics  Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop  on Robotics in Education (WRE) 2020: 1-6. DOI:  10.1109/LARS/SBR/WRE51543.2020.9307136.
 
- Zhou J, Pang L, Zhang D, Zhang W.  Underwater image enhancement method via multi-interval subhistogram perspective  equalization. IEEE J Oceanic Eng 2023; 48(2): 474-488. DOI:  10.1109/JOE.2022.3223733.
 
- Pandey  V, Padmakumar A, Padmakumar A, Rasal T, Khandelwal H. Underwater Image  Enhancement and Restoration using AI & ML. Int J Res Publ Rev 2023; 4(4):  3372-3377.
 
- Joel  Fathimson J, Bibis S, Aswanth R, Gayatri S. Underwater image restoration using  UICCS method in Matlab. Int J New Technol Res 2018; 4(2): 01-06.
 
- Fu X, Fan Z, Ling M, Huang Y, Ding  X. Two-step approach for single underwater image enhancement. 2017 Int  Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)  2017: 789-794. DOI: 10.1109/ISPACS.2017.8266583.
 
- Tian N, Cheng L, Li Y, Li X, Xu N.  Enhancing underwater images via color correction and multiscale fusion. Appl  Sci 2023; 13(18): 10176. DOI: 10.3390/app131810176.
 
- Chen E, Ye T, Chen Q, Huang B, Hu Y.  Enhancement of underwater images with retinex transmission map and adaptive  color correction. Appl Sci 2023; 13(3): 1973. DOI: 10.3390/app13031973.
 
- Huang S, Wang K, Liu H, Chen J, Li  Y. Contrastive semi-supervised learning for underwater image restoration via  reliable bank. 2023 IEEE/CVF Conf on Computer Vision and Pattern Recognition  (CVPR) 2023; 18145-18155. DOI: 10.1109/CVPR52729.2023.01740.
 
- Wang Q, Fu B, Fan H. Underwater image enhancement via  a channel-wise transmission estimation network. IET Image Process 2023; 17(10): 2958-2971. DOI: 10.1049/ipr2.12845.
 
- Zhou J, et al. UGIF-Net: An  efficient fully guided information flow network for underwater image enhancement.  IEEE Trans Geosci Remote Sens 2023; 61: 4206117. DOI:  10.1109/TGRS.2023.3293912.
 
- Zhang D, Cao W, Zhou J, Peng Y-T,  Zhang W, Li Z. Two-branch underwater image enhancement and original resolution  information optimization strategy in ocean observation. J Mar Sci Eng  2023; 11(7): 1285. DOI: 10.3390/jmse11071285.
 
- Zhang D, Zhou J, Guo CL, Zhang W, Li  C. Synergistic multiscale detail refinement via intrinsic supervision for  underwater image enhancement. arXiv Preprint. 2023. Source: <https://arxiv.org/abs/2308.11932>.  DOI: 10.48550/arXiv.2308.11932.
 
- Wang Z, Shen L, Yu M, Lin Y, Zhu Q.  Single underwater image enhancement using an analysis-synthesis network.  Journal of Latex Class Files 2015; 14(8). Source:  <https://arxiv.org/abs/2108.09023>. DOI:  10.48550/arXiv.2108.09023.
 
- Ren T, Xu H, Jiang G, Yu M, Luo T.  Reinforced swin-convs transformer for underwater image enhancement. Proc 36th  Conf on Neural Information Processing (NeurIPS) 2022. Source:  <https://arxiv.org/abs/2205.00434>. DOI: 10.48550/arXiv.2205.00434.
 
- Jiang J, Huang P, Tong L, Yin J,  Chen E. LPS-Net: Lightweight parallel strategy network for underwater image enhancement.  Appl Sci 2023; 13(16): 9419. DOI: 10.3390/app13169419.
 
- Zhang D, Wu C, Zhou J, Zhang W, Li  C, Lin Z. Hierarchical attention aggregation with multi-resolution feature  learning for GAN-based underwater image enhancement. Eng Appl Artif  Intell 2023; 125: 106743. DOI: 10.1016/j.engappai.2023.106743.
 
- Zhang D, Shen J, Zhou J, Chen E,  Zhang W. Dual-path joint correction network for underwater image enhancement. Opt  Express 2022; 30(18): 33412-33432. DOI: 10.1364/OE.468633.
 
- Li C, et al. An underwater image  enhancement benchmark dataset and beyond. IEEE Trans Image Process 2020;  29: 4376-4389. DOI: 10.1109/TIP.2019.2955241.
 
- Islam MJ, Xia Y, Sattar J. Fast  underwater image enhancement for improved visual perception. IEEE Robot  Autom Lett 2020; 5(2): 3227-3234. DOI: 10.1109/LRA.2020.2974710.
 
- Wang Z, Shen L, Xu M, Yu M, Wang K,  Lin Y. Domain adaptation for underwater image enhancement. IEEE Trans  Image Process 2023; 32: 1442-1457. DOI: 10.1109/TIP.2023.3244647.
 
- Gonzalez-Sabbagh S, Robles-Kelly A,  Gao S. DGD-cGAN: A dual generator for image dewatering and restoration. Pattern  Recognition 2024; 148: 110159. DOI: 10.1016/j.patcog.2023.110159.
 
- Luo G, He G, Jiang Z, Luo C.  Attention-based mechanism and adversarial autoencoder for underwater image enhancement.  Appl Sci 2023; 13(17): 9956. DOI: 10.3390/app13179956.
 
- Zhang T, Liu Y. MTUW-GAN: A  multi-teacher knowledge distillation generative adversarial network for underwater  image enhancement. Appl Sci 2024; 14(2): 529. DOI: 10.3390/app14020529.
 
- Chen Y, Li Q, Lu D, Kou L, Ke W, Bai  Y, Wang Z. A novel underwater image enhancement using optimal composite  backbone network. Biomimetics 2023; 8(3): 275. DOI:  10.3390/biomimetics8030275.
 
- Han J, Zhou J, Wang L, Wang Y, Ding  Z. FE-GAN: Fast and efficient underwater image enhancement model based on  conditional GAN. Electronics 2023; 12(5): 1227. DOI:  10.3390/electronics12051227.
 
- Mousavi M, Estrada R, Ashok A.  iDehaze: Supervised underwater image enhancement and dehazing via physically  accurate photorealistic simulations. Electronics 2023; 12(11): 2352.  DOI: 10.3390/electronics12112352.
 
- Jia H, Xiao Y, Wang Q, Chen X, Han  Z, Tang Y. Underwater image enhancement network based on dual layers  regression. Electronics 2024; 13(1): 196. DOI:  10.3390/electronics13010196.
 
- Wei Y, Zheng Z, Jia X. UHD  underwater image enhancement via frequency-spatial domain aware network. In  Book: Wang L, Gall J, Chin T-J, Sato I, Chellappa R, eds. Computer Vision –  ACCV 2022. 16th Asian Conference on Computer Vision, Macao, China, December 4–8, 2022,  Proceedings, Part III. Cham, Switzerland: Springer Nature Switzerland  AG; 2023. DOI: 10.1007/978-3-031-26313-2_2.
 
- Mello CD Jr, Moreira BU, de Oliveira Evald PJD, Drews  PJL, Botelho SSC. Self-learning methodology based on degradation estimation for  underwater image enhancement. In Book: Xavier-Junior JC, Rios RA, eds. Intelligent  Systems. 11th Brazilian Conference, BRACIS 2022, Campinas, Brazil,  November 28 – December 1, 2022, Proceedings, Part II. Cham, Switzerland: Springer Nature Switzerland AG;  2022. DOI: 10.1007/978-3-031-21689-3_7.
 
- Shi Z, Wang Y, Zhou Z, Ren W.  Integrating deep learning and traditional image enhancement techniques for underwater  image enhancement. IET Image Process 2022; 16(13): 3471-3484. DOI:  10.1049/ipr2.12544.
 
- Zhu  S, Luo W, Duan S. Enhancement of underwater images by CNN-based color balance  and dehazing. Electronics 2022; 11(16): 2537. DOI:  10.3390/electronics11162537. 
 
- Yang  H, Cai H, Jiang C, Zhang R, Zhang J. Underwater image enhancement via  multi-scale feature fusion network guided by medium transmission. Research  Square2024. Preprint. Source:  <https://www.researchgate.net/publication/379416571_Underwater_Image_Enhancement_via_Multi-Scale_Feature  _Fusion_Network_Guided_by_Medium_Transmission/fulltext/66080a4f10ca8679872a67bf/Underwater-Image-Enhancement-via-Multi-Scale-Feature-Fusion-Network-Guided-by-Medium-Transmission.pdf?_  tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19>.  DOI: 10.21203/rs.3.rs-4082073/v1.
 
- Li T, Zhou T. Multi-scale fusion  framework via retinex and transmittance optimization for underwater image enhancement.  PLoS ONE 2022; 17(9): e0275107. DOI: 10.1371/journal.pone.0275107.
 
- Li H, Zhuang P, Wang W, Li J.  Underwater image enhancement based on dehazingand color correction. Proc 2019  IEEE Int Conf on Parallel & Distributed Processing with Applications, Big  Data & Cloud Computing, Sustainable Computing & Communications, Social  Computing & Networking 2019: 1290-1295. DOI:  10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00192.
 
- Qi H, Zhou H, Dong J, Dong X. Deep  color-corrected multiscale retinex network for underwater image enhancement. IEEE  Trans Geosci Remote Sens 2024; 62: 4200613. DOI: 10.1109/TGRS.2023.3338611.
 
- Semernik IV, Demyanenko AV, Samonova  CV, Bender OV, Tarasenko AA. Modelling of an underwater wireless optical  communication channel. 2023 Radiation and Scattering of Electromagnetic Waves  (RSEMW) 2023: 468-471. DOI: 10.1109/RSEMW58451.2023.10202133.
 
- Lerner RM, Summers JD. Monte Carlo description of time- and space-resolved  multiple forward scatter in natural water. Appl Opt 1982; 21(5):  861-869. DOI: 10.1364/AO.21.000861.
 
- Mobley CD, Gentili B, Gordon HR, Jin  Z, Kattawar GW, Morel A, Reinersman P, Stamnes K, Stavn RH. Comparison of  numerical models for computing underwater light fields. Appl Opt 1993; 32(36):  7484-7504. DOI: 10.1364/AO.32.007484.
 
- Li C, Dong X, Wang Y, Wang S.  Enhancement and optimization of underwater images and videos mapping. Sensors  2023; 23(12): 5708. DOI: 10.3390/s23125708.
 
- Lin J-C, Hsu C-B, Lee J-C, Chen C-H,  Tu T-M. Dilated generative adversarial networks for underwater image restoration.  J Mar Sci Eng 2022; 10(4): 500. DOI: 10.3390/jmse10040500.
 
- Zheng J, Zhao R, Yang G, Liu S,  Zhang Z, Fu Y, Lu J. An underwater image restoration deep learning network combining  attention mechanism and brightness adjustment. J Mar Sci Eng 2024;  12(1): 7. DOI: 10.3390/jmse12010007.
 
- Chang S, Gao F, Zhang Q. Underwater  image enhancement method based on improved GAN and physical model. Electronics  2023; 12(13): 2882. DOI: 10.3390/electronics12132882.
 
- Sun B, Mei Y, Yan N, Chen Y. UMGAN:  Underwater image enhancement network for unpaired image-to-image translation. J  Mar Sci Eng 2023; 11(2): 447. DOI: 10.3390/jmse11020447.
 
- Jain N, Matta GR, Mitra K. Towards  realistic underwater dataset generation and color restoration. Proc Thirteenth  Indian Conf on Computer Vision, Graphics and Image Processing (ICVGIP'22) 2022:  29. DOI: 10.1145/3571600.3571630.
 
- Saleem A, Paheding S, Rawashdeh N,  Awad A, Kaur N. A non-reference evaluation of underwater image enhancement  methods using a new underwater image dataset. IEEE Access 2023; 11:  10412-10428. DOI: 10.1109/ACCESS.2023.3240648.
 
- Wang  Y, Guo J, He W, Gao H, Yue H, Zhang Z, Li C. Is underwater image enhancement  all object detectors need? arXiv Preprint. 2023. Source:  <https://arxiv.org/abs/2311.18814>. DOI: 10.48550/arXiv.2311.18814. 
 
- Chen  J, Zhu S, Luo W. Instance segmentation of underwater images by using deep  learning. Electronics 2024; 13(2): 274. DOI:  10.3390/electronics13020274.
 
- Liu Z,  Zhuang Y, Jia P, Wu C, Xu H, Liu Z. A novel underwater image enhancement  algorithm and an improved underwater biological detection pipeline. J Mar  Sci Eng 2022; 10(9): 1204. DOI: 10.3390/jmse10091204.
 
- Wu Z,  Ji Y, Song L, Sun J. Underwater image enhancement based on color correction and  detail enhancement. J Mar Sci Eng 2022; 10(10): 1513. DOI:  10.3390/jmse10101513.
 
- Qian  J, Li H, Zhang B, Lin S, Xing X. DRGAN: Dense residual generative adversarial  network for image enhancement in an underwater autonomous driving device. Sensors  2023; 23(19): 8297. DOI: 10.3390/s23198297.
 
- Ning  Y, Jin Y-P, Peng Y-D, Yan J. Underwater color-cast image enhancement by noise  suppression and block effect elimination. J Mar Sci Eng 2023; 11(6):  1226. DOI: 10.3390/jmse11061226.
 
- Wang  Z, Zhang G, Luan K, Yi C, Li M. Image-fused-guided underwater object detection  model based on improved YOLOv7. Electronics 2023; 12(19): 4064. DOI:  10.3390/electronics12194064.
 
- Gong  T, Zhang M, Zhou Y, Bai H. Underwater image enhancement based on color feature  fusion. Electronics 2023; 12(24): 4999. DOI:  10.3390/electronics12244999.
 
- Yang  M, Yin G, Wang H, Dong N, Xie Z, Zheng B. A underwater sequence image dataset  for sharpness and color analysis. Sensors 2022; 22(9): 3550. DOI:  10.3390/s22093550.
 
- Han J,  Shoeiby M, Malthus T, Botha E, Anstee J, Anwar S, Wei R, Armin MA, Li H,  Petersson L. Underwater image restoration via contrastive learning and a real-world  dataset. Remote Sens 2022; 14(17): 4297. DOI: 10.3390/rs14174297.
 
- Kim  H-G, Seo J, Kim SM. Underwater optical-sonar image fusion systems. Sensors  2022; 22(21): 8445. DOI: 10.3390/s22218445.
 
- Hou X,  Zhang F, Wang Z, Song G, Huang Z, Wang J. DFFA-Net: A differential  convolutional neural network for underwater optical image dehazing. Electronics  2023; 12(18): 3876. DOI: 10.3390/electronics12183876.
 
- Kaplunenko  DD, Zotov SS, Subote AE, Fisshenko VK. Application of neural networks for  classification of biological objects by underwater cameras of the Popov Island  MES [In Russian]. Podvodnye Issledovaniia i Robototehnika 2022; 1(39):  72. DOI: 10.37102/1992-4429_2022_39_01_07.
 
- Grekov  AN, Shishkin YE, Peliushenko SS, Mavrin   AS. Application of the YOLOV5  model for the detection of micro-objects in the marine environment [In  Russian]. Monitoring Systems of Environment 2022; 4(50): 112-122. DOI:  10.33075/2220-5861-2022-4-112-122.
 
- Pavin  AM. Identification of arbitrary-shaped underwater objects in seabed photographs  [In Russian]. Underwater Investigations and Robotics 2011; 2(12): 26-30.
 
- Hu K,  Zhang Y, Lu F, Deng Z, Liu Y. An underwater image enhancement algorithm based  on MSR parameter optimization. J Mar Sci Eng 2020; 8(10): 741. DOI:  10.3390/jmse8100741.
 
- Porto  Marques T, Branzan Albu A, Hoeberechts M. A contrast-guided approach for the  enhancement of low-lighting underwater images. J Imaging 2019; 5(10):  79. DOI: 10.3390/jimaging5100079.
 
- Li W,  Lin C, Luo T, Li H, Xu H, Wang L. Subjective and objective quality evaluation  for underwater image enhancement and restoration. Symmetry 2022; 14(3):  558. DOI: 10.3390/sym14030558.
 
- Mangeruga  M, Cozza M, Bruno F. Evaluation of underwater image enhancement algorithms  under different environmental conditions. J Mar Sci Eng 2018; 6(1): 10.  DOI: 10.3390/jmse6010010. 
- Mangeruga M, Bruno F, Cozza M, Agrafiotis P, Skarlatos  D. Guidelines for underwater image enhancement based on benchmarking of  different methods. Remote Sens 2018; 10(10): 1652. DOI:  10.3390/rs10101652.
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20