(49-3) 13 * << * >> * Русский * English * Содержание * Все выпуски
  
Interpretable graph methods for determining nanoparticles ordering in electron microscopy image
 M.Y. Kurbakov 1, V.V. Sulimova 1, O.S. Seredin 1, A.V. Kopylov 1
 1 Tula State University,
     300012, Russia, Tula, Lenina Av. 92
 
 PDF, 2458 kB
  PDF, 2458 kB
DOI: 10.18287/2412-6179-CO-1568
Страницы: 470-479.
Язык статьи: English.
 
Аннотация:
An  important step in determining the properties of carbon materials is the  analysis of images from a scanning electron microscope (SEM). These images show  the material surface after the application of metal nanoparticles. The order of  these nanoparticles is a key characteristic that affects the material  properties. We have previously proposed an approach to formalize the order  features based on the identification of lines by nanoparticles in the SEM  image. This paper proposes a novel approach to line allocation that is based on  the concept of constructing a minimum spanning forest. Additionally, it  introduces a set of novel ordering functions that are derived from this  approach. The experimental study demonstrates that the combination of these new  and previously extracted features improves the recognition quality of SEM images  with ordered and disordered nanoparticles arrangements. This approach allows us  to gain a better understanding of the nanoparticles arrangement and their  effect on the material properties.
Ключевые слова:
explainable machine  learning, image analysis, nanoparticle detection, nanoparticles ordering  features.
Благодарности
This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state task FEWG-2024-0001.
 
     Experiments were partially made using the equipment of the shared research facilities of HPC computing resources at the Lomonosov Moscow State University.
 
The authors thank the Scientific School of Academic V.P. Ananikov for the research topic, useful discussions and provided experimental data.
Citation:
Kurbakov MY, Sulimova VV, Seredin OS, Kopylov AV. Interpretable graph methods for determining nanoparticles ordering in electron microscopy images. Computer Optics 2025; 49(3): 470-479. DOI: 10.18287/2412-6179-CO-1568.
References:
  - Titirici M-M, White RJ, Brun N, Budarin VL, Su  DS, del Monte F, Clark JH, MacLachlan MJ. Sustainable carbon materials. Chem  Soc Rev 2015; 44(1): 250-290. DOI: 10.1039/C4CS00232F.
 
- Takakura A, Beppu K, Nishihara T, Fukui A,  Kozeki T, Namazu T, Miyauchi Y, Itami K. Strength of carbon nanotubes depends  on their chemical structures. Nat Commun 2019; 10: 3040. DOI: 10.1038/s41467-019-10959-7.
 
- Morishita K, Takarada T. Scanning electron  microscope observation of the purification behaviour of carbon nanotubes. J  Mater Sci 1999; 34: 1169-1174. DOI: 10.1023/A:1004544503055.
 
- Achaw O-W. A study of the porosity of  activated carbons using the scanning electron microscope. In Book: Kazmiruk V,  ed. Scanning electron microscopy. Ch 24. InTech; 2012. Source:  <https://www.intechopen.com/chapters/30949>. DOI: 10.5772/36337.
 
- Pentsak EO, Kashin AS,  Polynski MV, Kvashnina KO, Glatzel P, Ananikov VP. Spatial imaging of carbon  reactivity centers in Pd/C catalytic systems. Chem Sci 2015; 6: 3302-3313. DOI:  10.1039/C5SC00802F.
 
- Pokrajac L, Abbas A, Chrzanowski W, Dias GM,  Eggleton BJ, Maguire S, Maine E, Malloy T, Nathwani J, Nazar L, Sips A, Sone J,  van den Berg A, Weiss PS, Mitra S. Nanotechnology for a sustainable future: Addressing  global challenges with the international network4sustainable nanotechnology. ACS  Nano 2021; 15(12): 18608-18623. DOI: 10.1021/acsnano.1c10919.
 
- Zhang P, Guo Z, Ullah S, Melagraki G,  Afantitis A, Lynch I. Nanotechnology and artificial intelligence to enable sustainable  and precision agriculture. Nat Plants 2021; 7(7): 864-876. DOI:  10.1038/s41477-021-00946-6.
 
- Jenewein KJ, Torresi L, Haghmoradi N,  Kormanyos A, Friederich P, Cherevko S. Navigating the unknown with AI:  multiobjective Bayesian optimization of non-noble acidic OER catalysts. J Mater  Chem A 2024; 12: 3072-3083. DOI: 10.1039/D3TA06651G.
 
- Boiko DA, Pentsak EO, Cherepanova VA, Gordeev  EG, Ananikov VP. Deep neural network analysis of nanoparticle ordering to  identify defects in layered carbon materials. Chem Sci 2021; 12(21): 7428-7441.  DOI: 10.1039/D0SC05696K.
 
- Kurbakov MY, Sulimova VV, Kopylov AV, Seredin  OS, Boiko DA, Pentsak EO, Cherepanova   VA, Ananikov VP. Determining the  orderliness of carbon materials with nanoparticle imaging and explainable  machine learning. Nanoscale 2024; 16(16): 13663-13676. DOI: 10.1039/d4nr00952e.
 
- Boiko DA,  Sulimova VV, Kurbakov MY, Kopylov AV, Seredin OS, Cherepanova VA, Pentsak EO,  Ananikov VP. Automated recognition of nanoparticles in electron microscopy  images of nanoscale palladium catalysts. Nanomaterials 2022; 12(21): 3914. DOI:  10.3390/nano12213914.
 
- Prim RC. Shortest connection networks and some  generalizations. Bell Syst Tech J 1957; 36(6): 1389-1401. DOI: 10.1002/j.1538-7305.1957.tb01515.x.
 
- Gorban  A, Kégl  B, Wunch D, Zinovyev A, eds. Principal manifolds for data visualization and  dimension reduction. Berlin, Heidelberg: Springer-Verlag; 2008. ISBN:  978-3-540-73749-0.
 
- Hu M-K. Visual pattern recognition by moment  invariants. IRE Trans Inf Theory 1962; 8(2): 179-187. DOI: 10.1109/TIT.1962.1057692.
 
- Surkov EE,  Seredin OS, Kopylov AV. Locally optimal solutions in the shortest unclosed path  search problem. Ural-Siberian Conference on Biomedical Engineering, Radioelectronics  and Information Technology (USBEREIT) 2023: 221-224. DOI:  10.1109/USBEREIT58508.2023.10158834.
 
- Nesetril J, Milkova E, Nesetrilova H. Otakar  Boruvka on minimum spanning tree problem translation of both the 1926 papers,  comments, history. Discrete Math 2001; 233(1-3): 3-36. DOI: 10.1016/S0012-365X(00)00224-7.
 
- Kruskal JB. On the shortest spanning subtree of  a graph and the traveling salesman problem. Proc American Mathematical Society  1956; 7: 48-50. DOI: 10.1090/S0002-9939-1956-0078686-7.
 
- Boiko DA, Pentsak EO, Cherepanova VA, Ananikov  VP. Electron microscopy dataset for the recognition of nanoscale ordering  effects and location of nanoparticles. Sci Data 2020; 7(1): 101. DOI:  10.1038/s41597-020-0439-1.
 
- Shannon CE. A  mathematical theory of communication. Bell Syst Tech J 1948; 27(4): 623-656.  DOI: 10.1002/j.1538-7305.1948.tb00917.x.
 
- Cover TM,  Thomas JA. Elements of Information Theory. Hoboken, New Jersey:  Wiley; 1991. ISBN: 978-0-471-24195-9.
 
- Kohavi R. A study of cross-validation and  bootstrap for accuracy estimation and model selection. 14th Int Joint Conf on  Artificial Intelligence 1995; 2: 1137-1143.
 
- Esfahani MSh, Dougherty ER. Effect of separate  sampling on classification accuracy. Bioinformatics 2014; 30(2): 242-250. DOI:  10.1093/bioinformatics/btt662.
 
- Powers DM. Evaluation: from precision, recall  and F-measure to ROC, informedness, markedness and correlation.       Int J Mach Learn Technol 2011; 2(1):  37-63.
 
- Seredin OS, Kopylov AV, Harmonic Averaging in  Classifier Quality Assessment. Pattern Recognition and Image Analysis 2024;  34(4): 1160–1171.
 
- Pedregosa F, Varoquaux G, Gramfort A, Michel V,  Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas  J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn:  Machine learning in Python. J Mach Learn Res 2011; 12: 2825-2830.
 
- Kurbakov MY, Sulimova VV. High-performance  two-level parallel computing scheme for nanoparticles detection in SEM images.  Int Arch Photogramm Remote Sens Spatial Inf Sci XLVIII-2/W3-2023: 145-150. DOI:  10.5194/isprs-archives-XLVIII-2-W3-2023-145-2023. 
- Kurbakov  MYu, Sulimova VV, Seredin OS, Kopylov AV. A program for detecting nanoparticles in images from an electron  microscope based on the exponential approximation method [In Russian]. Certificate of state registration of the computer program No. 2023688122 of December 20, 2023.
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20