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Introduction

The tendency to enhance computation power by
creasing the number of processing units insteacloak
frequency has been clearly seen in the recent y&his
trend encourages developers to revise well provemen-
ical methods for architectures with serial datacpesing.
The most unique approaches are required for mas
parallel systems like graphical processing unit® (B
which have good prospects for general purpose ceni
ting and already made a big impact in this areaNEv-
ertheless, classic parallel systems are still apple since
GPUs have programming specifics and comparatiy
small amount of available memory on each graphées
celerator. Thus, a GPU can be considered as aate
processing unit (CPU) with local memory, while egk
scale multi-GPU system looks like a classic paraies-
tem with GPUs instead of CPUs.

In this paper, we will discuss the numerical methg
for the problem of nonlinear laser pulse dynamicaon-
stationary media (e.g., plasma formed during opti
breakdown). This problem includes a number of ling
algebra methods: tridiagonal linear system solutfast
Fourier transform, and explicit Runge-Kutta methad.
numerical implementations proposed in this paperew
initially focused on classic parallel platforms popting
non-uniform memory access (i.e. each die has ita
memory controller and physical memory, which resint
enhanced bandwidth for local memory access and
duced bandwidth for concurrent access; see thestioty
in [2, 3]). Thus, the main goal was to maintaindlodata
processing in every part of the algorithm. Fromitiseies
highlighted in the previous paragraph such an agugirds
quite flexible and could be easily adopted for itiagority
of modern systems (e.g., GPU workstations).

The next subsection introduces the reader to tlgs-p
ical problem under consideration, shows its spedda-
tures and describes its importance. In the secabdes-
tion a discrete model will be introduced and thgpoathm
typically used for such problems will be describ&ec-
tion 2 concerns different features of algorithm lempen-
tation. The simulation results demonstrating resadet
pulse dynamics during the breakdown of ambienteer
presented in Section 3.

1. Algorithm
1.1. Background and mathematical model

Calculations of laser pulse dynamics are of great i
terest in modern physics {8]. This is due to rapid de-
velopment of lasers providing pulses with extremely
_duration and high peak intensity. The results aherical
S\@mulations of nonlinear processes give unique ,data
which cannot be measured directly from experiments.
Pfrom the high performance computer science point of
view the most interesting simulations concern dyigam
of laser pulse electric field in 3D space. In thaper we
elyill discuss the Cauchy problem for the distribatiof
Alaser pulse electric field in space and time. Thathe
Ntfatical model is based on reduced wave equatioh wit
some relations for electric currents or polarizatimndi-
tioned by media under consideration (ambient aioun
case). In most researches performed for linearrigelh
d pulses the model uses only one component of ladse p
electric field (scalar model). This is due to altnpearaxi-
C8al propagation of the pulse in the medium, so & rof
Pathe main component to other components remains. high
In this article we will discuss circular polarizati of a la-
ser pulse assumirig to be complex, with real and imagi-
€ nary parts representing orthogonal polarizationsthe
majority of cases back scattering is low and islewtgd,
Wthus allowing to focus on the laser pulse massecenta
(or the imaginary point propagating with the spexd
"fght in vacuum) and consider only comparativelgvs!
processes of nonlinear laser pulse shape dynamies i
new co-moving frame of reference. From the numier o
models, reduced according to the points highlighted
above, the one most applicable for extremely slaser
pulses is discussed below. The model considers lase
pulse dynamics in coordinatgsy andz=t—z/c, wherec
is the speed of light in vacuum. The initial coralis are
set at the cross-sectiamr z. The laser pulse dynamics is
described by the following equation:
2
. ®
T
whereN is some nonlinear function of field amplitulte
For the case of optical breakdown of air, it isegi\by the
following set of equations:

in-

.]

=AE+N(B),
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N=nE+ N+ N,

ov gL 18)’

2 &)
N, =|g" E
Ng = Iexp(r '—r)|E(r )|2 E(t),

wherengE is the air plasma response calculated accordin

the simplified Keldysh formula)k is Kerr instant responsé

and Ng is Raman delayed response. In this paper we
discuss the radial symmetric case, thus the Lapidai (1)
has the standard form in cylindrical coordinatés [9

2(:2)

rori o

The model (%+2) is quite modern compared to th
standard methods [4, 5] based on scalar equatyrent
velope [6], where vacuum dispersion should be ctece
via additional linear terms. Equation (1) has gqod-
spects for processes with severe spectrum broagle
and is well proven for the problem of ultra-sharbeg
laser pulse interaction with relativistic plasma,[11].

1.2. Background and mathematical model

The discrete model is based on an equidistantoné f
along both directions of andz. The approximation for
the Laplacian for vectox from R# is chosen in the fol-
lowing form:

AR =

Xt X—1_2)|( 2()§+1_ X)

dr? dr?(2i +1)

Fori=0 the same formula is used under the assu

tion x.1 = Xo. Such an approximation provides the Lapla
an in the radial symmetric case identical to the-fooint

approximation of 2D Laplacian discretization at tegn

point (=0 corresponds to=0). For calculation of the|

(N—1)-th term one should assume= Xn-1.

Considering the Laplacian in the form (4) with th

above assumptions one can see that the constroézd

ator A is Hermitian in the following metrics:

(x,y)= T‘Z_;x y, f(i)dr,
f(i) {3/8, i=0,

i+1/2, i0(oN -1

Formula (4) gives one order lower approximatiomth
the standard one [9], but provides Hermitian matoix
Laplacian operator, which leads to energy consenva
for the evolution operator built according to theafk-
Nicholson scheme.

In order to solve eq. (1) the split-step Fourierthod
[12] was used which assumes the evolution stepetg
split into two sub-steps: linear and nonlinear orEse

®3)

(4)

, Oio(oN-1).

®)

a

operator of partial derivative along thecoordinate can
be represented as simple as multiplicationdoyerm:

Qie =Ae_,

5 (6)
wheree-=F e is the Fourier image alongcoordinate of
the {€}i =E(r\i/nd, i modn:) Vector fromCN™N spacerepre-
senting the electric field= set on the numerical net,
F=Inn®@Fu is the full Fourier transformation matrix
J Bongz in C™ space]w is the identical square matrix of
N dimension,Fx; is the Fourier transformation matrix in
Wign: space, finally the operat6l =In & diag(wo,. .. ,kon-—1)
is the operator of multiplication kiy. The above approx-
imation of partial derivation assumes approximatd
values alongr coordinate via Fourier series, which is
quite convenient for oscillating wave packets. Tlse
place operator can be then writtenAss Ane @ In.. The

€ electric field vectoe can be propagated loiz alongz ac-
cording to eq. (6) using the Crank-Nicolson sch¢h3g:

-1
i)
2

1+L_j[

2

whereU is the evolution step operatdr,is the Hermitian
(in terms of metrics (5)) linear operator having tol-
lowing formL = Q1A =diag(wo?,... ion-1") @ Anr.

The method (7) has some useful properties. First of
all, (7) has a second order of approximation (eisor
equal toO (dZ2)), but more important is that is a unitary
operator. Thus, in terms of metrics (5) the refatio
lef=constis met, which corresponds to conservation of
leP integral along andr with metric weightr. This prop-
erty provides stability of the numerical schemegretor
very low frequencies.

def

e(z+dz)=Ue( 3= e(3. ™

nn

mp- The non-linear step is performed using the explicit
ti-predictor corrector method. The Eulerian approxiomat

(prediction)e. is calculated using Fourier transformation
alongr for eachr; independently:

e, :e(z)+F'1Q'1FN(e( z))oe( 2 dz (8)

Here,N is the nonlinear function of vector produc-
ing a vector of the same dimension and accordiregtts.
(2) providing approximation of the non-linear pasing
the trapezoid method of integration. We are notimgi
explicit expression foN(e) since it is evident, yet taking
much space. The symbeldenotes component-wise mul-
tiplication.

The final approximation (correction) fa(z+d2 has
the following form

e(z+dz) =e( J+( dtZ)(F‘lﬂ'lF I‘@e( )@oe( )z
+FIQFN (e, )oe, )

e

9)

The evolution operator (9) gives the second order o
approximation. For a circular polarization, vectdfe)
has only real components and appears to be smiott a
the r coordinate, thus the trapezoid method of integrati

linear part is then considered in Fourier spacesrevtthe

provides fair approximation.
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The proposed method was well proven for the probThomas algorithm fore data column, i.e. for elements

lems of laser plasma interaction in strongly ncgdinre-
gimes [10, 11].

2. High performance implementation of the algorithm

2.1. Linear part
Assuming fast Fourier transformation to be the rtioss

wasting function, the elements ef2 were organized in
memory in the natural way providing the smallestatice
between cells that have neighboring values atofipis data
order reduces the utmost unwanted data transdugimveen
the nodes. But this brings some difficulties falimation of
U from equation (7). Further we will use additiomab-

index notation foe- components€}ij={e}i:+j. Since (7)
implies the solution ofN, three-diagonal linear equation
with dimensionN,, the value €}i+14 depends on all
{el}j<i+1,q values in the forward run of the Thomas [14]
gorithm and on all§.}; >+ 1,4 values in the backward run. |
the case of a classic parallel system, the soldtioreach
sub-system (corresponding to differen) can be obtained
by independent processing of data in parallel, likés
shown in the scheme in fig. 1. As the Thomas algorihas
a small arithmetic load, the performance dependstlynon
memory bandwidth. This leads to a bottleneck camdit
when several processing units access the samefrdata
shared memory (see fig. 1).

N __

('shared memory
[ node 0)
ooe G L i PU;
g i
S | pPu,
node 11| y
=
i PU,
<« Multichannel memory
interface
P/ogewm unit
.oe PU (C PU)
PU mluc onnect
| ) (HT/QOPI/LAN)

Fig.1. An illustration for inefficient method of gprocessing

along columns in case of non-uniform memory access

architecture. All processing units perform memaopgm@tions
for data located in the physical memory space effittst
processing unit leading to a bottleneck condition

Modern processors have integrated memory contyoll
thus the shared memory is non-uniform [2, 3]. Talis

lows obtaining a bandwidth of independent memory ¢p
erations equal to the bandwidth of each node (CRU|d

with its physical memory) multiplied by the numbefr

({elo. o....{€}nr/nn-1, 9. At the second stage, the second
node (nodg@ continues forward integration according to
the Thomas algorithm for elements of zero columa, i
elements (€}nr/nnor-...{€}2onr/nn-1,0, While the first
node begins to operate with elements from the skcon
column wi, i.e. elements €}o,1,....{€}Nnr/Nn-1, 7). At

the third stage, the first node starts operatinthethird
column, the second one operates in the second aglum
and the third node continues with new elements filoen
first column. AfterN, stages all the nodes operate simul-
taneously with delay along as is shown in fig. 2. Thus,
each node operates only W|th its own physical mgmor

shared memory

block not fully

ready block under
) ) parallel processed

block processing &
Fig. 2. An illustration for efficient method of dgprocessing
along columns in case of non-uniform memory access
architecture. All processing units perform memapgmtions
for data located only in their own physical memspace. Small
portions of data are rarely transferred between rmdbus
making negligible impact on efficiency. The mainetipenalty
is due to the delayed start of the first blocks
(shaded in the scheme)

In the final implementation, blocks of data shoblel
used instead of columns. It is conditioned by tR&J@rchi-
tecture designed to read and write an L1 cacheitirmne
r/w cycle, so each step of integration in the Thoalge-
rithm should batch proceed for some nexd{;, {e}i+1,
{e}ij+2... values. The dimensions of the blocks should be
N:/Nn% (size of L1 cache lineHence, larger data dimen-
sions should be used to obtain good performance.

er 2.2. Non-linear part

For minimizing the number of Fourier transfor-
mations the next scheme should be used. The nearlin
part can be calculated according te-(®) as follows:

nodes in the system. So, all operations should dre p &e, = N(e(z))oe( z)

formed within each node with a small amount of srgs

access (access of CPU from one node to the phyjJ
memory of another node).

Such an algorithm can be implemented based on
following idea. Let the number of nodes Mg At the
first stage, all the nodes except the first onedéjoare
idle, while the first node executes the forwardt dirthe

5 =€(z)+F'Q'Fde, dz
e (z+dg=e_( 2+( dtZ)Q’lF(6e+ + PQe+)oe+),
ee(z) =F"e_( 2.

In the above scheme only four Fourier transfor-
mations are needed.

(10)

—
>
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During the tests it was found that the computatioe
of the non-linear terrl is strongly non-uniform along the
r coordinate. The reason for that is the differémetfor
calculation of the exponent in (2). Moreover, tlwnpu-
ting load of (2) can be reduced by setting a ttoleshalue
for [{€}i;| under which the ionization rate in the right-ha
side of egns. (2)) can be assumed to be zero ancbthe-
sponding calculation of ionization rate can be tadit This
requires some algorithm to balance the size® slb-
vectors located at each node. Here, the followiggrahm
implementation will be discussed. The tifiespent by
each nodé on actual calculations was accumulated dur
some quite significant number of evolutional stdps,us

say 100. After that, new sizes ®sub-vectors were calcut

lated according to the following formulae
Nn
], c=ty N
Ni= T

Further, the sub-vectors located at each node w
merged to a vector representing the figlén the whole
mesh Nr x N,) and then split according to (11) along the
coordinate — each new sub-vectoMafx N, dimension is
distributed to thé-th node.

The result of adaptive mesh splitting is shown
fig. 3. Fig. 3 presents the times (measured withes()
from syg/times.h) of actual computing (time spent in lif
ear and nonlinear steps until non-blocking pthreadex
synchronization is reached) depending on the ewniuf
step (the step in the plot is divided by 100 — rthenber
of steps between mesh re-splitting procedure)ign3b
the same times are shown it are set to be constant
the mesh adapting is turned off. It is well seeat tdapt-
ing the mesh strongly reduc&sax representing the time
of each step, including synchronization time ovadse
From fig. X it is well seen that sub-vector sizes vary g
preciably. The number of steps before re-spit aoe
was invoked is conditioned by two factors: maskafg
time overheads due to merging efsub-vectors and
memory reallocation and averaging of execution s$ifhe

ri

1 1N
Ny ==| 3N, +=
ri 4( Nn CT

(11)

3. Sample simulation of optical breakdown and retsul

Numerical simulations were held for mesh dimensid
Nr=1024,Nr=512. The entire the simulation took 340(
evolution steps. The testing platform was a duatg@ssor
workstation equipped with a pair of Intel Nehalef85%0
@ 2.67 Ghz, all memory channels were populated W
PC3-8500 modules (total amount of memory was 96 G
The code was built with g++ 6.1.1 with O3 optimiaat
and run on Linux 4.7.2 with NUMA support.

Fig. 4 presents three snapshots of simulated fesddr
amplitude. The initial pulse (Figa} was calculated by
parabolic phase correction with conventional leasirg
focal length 1500 mm and translation by 1300 mmg@lg
the optical axis towards the focal point appliedhe col-
limated 4.5 mJ pulse of Gaussian shape aloagdr of
35 fs FWHM duration and 10 mm FWHM diameter.

The translation was performed to skip the lineaaggh

step_time, s

7"’77(1,\’

min

— Tjepo.7]

. . step, x10*
ng o i 2 3
step time, s
6 T T T T
— Lmax
= L min
5t — Tjeqo.7]

ere

in o 1 2 3
Ny for each CPU
.]_ 300 [ T T T T ]
200
100}
p_
. step, x10*
Q) 0 1 2 3

Fig. 3. Performance of adaptive mesh algorithmasid
algorithm with fixed block sizes. Execution timeaditial
calculation for each node {T Tmaxand Tmnare maximal
and minimal times for the case of adaptive meshs@e
ns parameters for the case of fixed mesh (b); subevesize
0 variation (c). One step on abscissa axis corresgond
to 100 actual steps

vitgins and plasma starts to refract the laser puisatiog

sbptructures also observed in [4]. In the third pietthe re-
sult of the strong interaction of optical breakdoplasma
and laser pulse is presented: the laser pulselitsirsp
two, the last part of the laser pulse is refocused cre-
ates the second impact of ionization.

Comparison of fig. 4 and fig. 3 shows the correlati
between the calculation speed and the laser phkgees
It is hard to predict the size of sub-vectors beeanf the
complicated mechanism of calculating the ionizatiate.
Thus, adaptive mesh splitting allows pronouncedoper
mance improvement. The ratio of simulation times fo
adaptive and fixed methods was about 0.7.

of laser pulse propagation.
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0.3 —
[ | | | S8 B
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0 0.001

|E|?, arb.units
Fig. 4. An example of simulated optical breakdowragShots
of |EPcorrespond to step 0, step= 11300 and step 17000
from left to right. The presented simulation exanpl
corresponds to the one in fig. 3

Conclusion

Some techniques of numerical simulation of the tv
dimensional nonlinear Cauchy problem have beenidon
ered. It was shown that, despite the non-localreaifidata
processing in implicit algorithms, it is possilbdedevelop an
approach free from time overhead due to data trigs&m
between the nodes of a distributed computatiorsitsy.

The proposed method is applicable for abstracesyst

At the same time, the specific example of NUMA sys-
tems shows its advantages even in small-scale work-
stations. It is shown that in the case of merging @eal-
location of memory the mesh adapting proceduraiiteq
efficient. By increasing the number of steps betwako-
cations this method may be used for large-scalesys
with Ethernet/InfiniBand connection of nodes.
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