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Introduction 

The tendency to enhance computation power by in-
creasing the number of processing units instead of clock 
frequency has been clearly seen in the recent years. This 
trend encourages developers to revise well proven numer-
ical methods for architectures with serial data processing. 
The most unique approaches are required for massive 
parallel systems like graphical processing units (GPU) 
which have good prospects for general purpose compu-
ting and already made a big impact in this area [1]. Nev-
ertheless, classic parallel systems are still applicable since 
GPUs have programming specifics and comparatively 
small amount of available memory on each graphics ac-
celerator. Thus, a GPU can be considered as a central 
processing unit (CPU) with local memory, while a large-
scale multi-GPU system looks like a classic parallel sys-
tem with GPUs instead of CPUs. 

In this paper, we will discuss the numerical methods 
for the problem of nonlinear laser pulse dynamics in non-
stationary media (e.g., plasma formed during optical 
breakdown). This problem includes a number of linear 
algebra methods: tridiagonal linear system solution, fast 
Fourier transform, and explicit Runge-Kutta method. All 
numerical implementations proposed in this paper were 
initially focused on classic parallel platforms supporting 
non-uniform memory access (i.e. each die has its own 
memory controller and physical memory, which results in 
enhanced bandwidth for local memory access and re-
duced bandwidth for concurrent access; see the full story 
in [2, 3]). Thus, the main goal was to maintain local data 
processing in every part of the algorithm. From the issues 
highlighted in the previous paragraph such an approach is 
quite flexible and could be easily adopted for the majority 
of modern systems (e.g., GPU workstations). 

The next subsection introduces the reader to the phys-
ical problem under consideration, shows its specific fea-
tures and describes its importance. In the second subsec-
tion a discrete model will be introduced and the algorithm 
typically used for such problems will be described. Sec-
tion 2 concerns different features of algorithm implemen-
tation. The simulation results demonstrating real laser 
pulse dynamics during the breakdown of ambient air are 
presented in Section 3. 

1. Algorithm 

1.1. Background and mathematical model 

Calculations of laser pulse dynamics are of great in-
terest in modern physics [4 – 8]. This is due to rapid de-
velopment of lasers providing pulses with extremely low 
duration and high peak intensity. The results of numerical 
simulations of nonlinear processes give unique data, 
which cannot be measured directly from experiments. 
From the high performance computer science point of 
view the most interesting simulations concern dynamics 
of laser pulse electric field in 3D space. In this paper we 
will discuss the Cauchy problem for the distribution of 
laser pulse electric field in space and time. The mathe-
matical model is based on reduced wave equation with 
some relations for electric currents or polarization condi-
tioned by media under consideration (ambient air in our 
case). In most researches performed for linear polarized 
pulses the model uses only one component of laser pulse 
electric field (scalar model). This is due to almost paraxi-
al propagation of the pulse in the medium, so the ratio of 
the main component to other components remains high. 
In this article we will discuss circular polarization of a la-
ser pulse assuming E to be complex, with real and imagi-
nary parts representing orthogonal polarizations. In the 
majority of cases back scattering is low and is neglected, 
thus allowing to focus on the laser pulse mass center area 
(or the imaginary point propagating with the speed of 
light in vacuum) and consider only comparatively slow 
processes of nonlinear laser pulse shape dynamics in a 
new co-moving frame of reference. From the number of 
models, reduced according to the points highlighted 
above, the one most applicable for extremely short laser 
pulses is discussed below. The model considers laser 
pulse dynamics in coordinates x, y and τ =  t – z / c, where c 
is the speed of light in vacuum. The initial conditions are 
set at the cross-section z =  z0. The laser pulse dynamics is 
described by the following equation: 
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where N is some nonlinear function of field amplitude E. 
For the case of optical breakdown of air, it is given by the 
following set of equations: 
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where nPE is the air plasma response calculated according to 
the simplified Keldysh formula, NK is Kerr instant response 
and NR is Raman delayed response. In this paper we will 
discuss the radial symmetric case, thus the Laplacian in (1) 
has the standard form in cylindrical coordinates [9]: 

1
.r

r r r
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 (3) 

The model (1 – 2) is quite modern compared to the 
standard methods [4, 5] based on scalar equations for en-
velope [6], where vacuum dispersion should be corrected 
via additional linear terms. Equation (1) has good pro-
spects for processes with severe spectrum broadening, 
and is well proven for the problem of ultra-short strong 
laser pulse interaction with relativistic plasma [10, 11]. 

1.2. Background and mathematical model 

The discrete model is based on an equidistant net for E 
along both directions of r and τ. The approximation for 
the Laplacian for vector x from ℝN is chosen in the fol-
lowing form: 
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For i  =  0 the same formula is used under the assump-
tion x-1 =  x0. Such an approximation provides the Laplaci-
an in the radial symmetric case identical to the four-point 
approximation of 2D Laplacian discretization at center 
point (i  = 0 corresponds to r = 0). For calculation of the 
(N – 1)-th term one should assume xN =  xN–1. 

Considering the Laplacian in the form (4) with the 
above assumptions one can see that the constructed oper-
ator ∆ is Hermitian in the following metrics: 
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Formula (4) gives one order lower approximation than 
the standard one [9], but provides Hermitian matrix for 
Laplacian operator, which leads to energy conservation 
for the evolution operator built according to the Crank-
Nicholson scheme. 

In order to solve eq. (1) the split-step Fourier method 
[12] was used which assumes the evolution step to be 
split into two sub-steps: linear and nonlinear ones. The 
linear part is then considered in Fourier space, where the 

operator of partial derivative along the τ coordinate can 
be represented as simple as multiplication by iω term: 

~ ~,
z

∂ =
∂

Ω e ∆e  (6) 

where e~ = F e is the Fourier image along τ coordinate of 
the { e} i

 = E(r⌊I / Nτ⌋, τi mod Nτ) vector from ℂNrNτ space repre-
senting the electric field E set on the numerical net, 
F = INr ⊗ FNτ is the full Fourier transformation matrix 
along τ in ℂNrNτ space, INr is the identical square matrix of 
Nr dimension, FNτ is the Fourier transformation matrix in 
ℂNτ space, finally the operator Ω = INr ⊗ diag(iω0,…,iωNτ–1) 
is the operator of multiplication by iω. The above approx-
imation of partial derivation assumes approximation of E 
values along τ coordinate via Fourier series, which is 
quite convenient for oscillating wave packets. The La-
place operator can be then written as ∆

 = 
∆Nr

 ⊗ INτ. The 
electric field vector e can be propagated by dz along z ac-
cording to eq. (6) using the Crank-Nicolson scheme [13]: 
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where U is the evolution step operator, L is the Hermitian 
(in terms of metrics (5)) linear operator having the fol-
lowing form L =  Ω

-1
 ∆ = diag(iω0

-1,…,iωNτ–1
-1) ⊗ ∆Nr. 

The method (7) has some useful properties. First of 
all, (7) has a second order of approximation (error is 
equal to O (dz3)), but more important is that U is a unitary 
operator. Thus, in terms of metrics (5) the relation 
|e|2 = const is met, which corresponds to conservation of 
|e|2 integral along τ and r with metric weight r. This prop-
erty provides stability of the numerical scheme, even for 
very low frequencies ω. 

The non-linear step is performed using the explicit 
predictor corrector method. The Eulerian approximation 
(prediction) e+ is calculated using Fourier transformation 
along τ  for each r i independently: 

( ) ( )( ) ( )1 1 .z N z z dz− −
+ = +e e F Ω F e e�  (8) 

Here, N is the nonlinear function of e vector produc-
ing a vector of the same dimension and according to eqns. 
(2) providing approximation of the non-linear part using 
the trapezoid method of integration. We are not writing 
explicit expression for N(e) since it is evident, yet taking 
much space. The symbol ∘ denotes component-wise mul-
tiplication. 

The final approximation (correction) for e (z+dz) has 
the following form 
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The evolution operator (9) gives the second order of 
approximation. For a circular polarization, vector N(e) 
has only real components and appears to be smooth along 
the τ coordinate, thus the trapezoid method of integration 
provides fair approximation. 
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The proposed method was well proven for the prob-
lems of laser plasma interaction in strongly nonlinear re-
gimes [10, 11]. 

2. High performance implementation of the algorithm 

2.1. Linear part 

Assuming fast Fourier transformation to be the most time 
wasting function, the elements of e(z) were organized in 
memory in the natural way providing the smallest distance 
between cells that have neighboring values along τ. This data 
order reduces the utmost unwanted data transaction between 
the nodes. But this brings some difficulties for realization of 
U from equation (7). Further we will use additional two-
index notation for e~ components {e~} i,j = {e~} iNτ + j. Since (7) 
implies the solution of Nτ three-diagonal linear equations 
with dimension Nr, the value {e~} i + 1, q depends on all 
{e~} j < i + 1, q values in the forward run of the Thomas [14] al-
gorithm and on all {e~} j > i + 1, q values in the backward run. In 
the case of a classic parallel system, the solution for each 
sub-system (corresponding to different ωq) can be obtained 
by independent processing of data in parallel, like it is 
shown in the scheme in fig. 1. As the Thomas algorithm has 
a small arithmetic load, the performance depends mostly on 
memory bandwidth. This leads to a bottleneck condition 
when several processing units access the same data from 
shared memory (see fig. 1). 

 
Fig.1. An illustration for inefficient method of data processing 

along columns in case of non-uniform memory access 
architecture. All processing units perform memory operations 

for data located in the physical memory space of the first 
processing unit leading to a bottleneck condition 

Modern processors have integrated memory controller, 
thus the shared memory is non-uniform [2, 3]. This al-
lows obtaining a bandwidth of independent memory op-
erations equal to the bandwidth of each node (CPU die 
with its physical memory) multiplied by the number of 
nodes in the system. So, all operations should be per-
formed within each node with a small amount of cross 
access (access of CPU from one node to the physical 
memory of another node). 

Such an algorithm can be implemented based on the 
following idea. Let the number of nodes be Nn. At the 
first stage, all the nodes except the first one (node0) are 
idle, while the first node executes the forward part of the 

Thomas algorithm for ω0 data column, i.e. for elements 
({ e~} 0, 0,…,{e~} Nr / Nn – 1, 0). At the second stage, the second 
node (node1) continues forward integration according to 
the Thomas algorithm for elements of zero column, i.e. 
elements ({e~} Nr / Nn, 0,…,{e~} 2Nr / Nn – 1, 0), while the first 
node begins to operate with elements from the second 
column ω1, i.e. elements ({e~} 0, 1,…,{e~} Nr / Nn – 1, 1). At 
the third stage, the first node starts operating in the third 
column, the second one operates in the second column, 
and the third node continues with new elements from the 
first column. After Nn stages all the nodes operate simul-
taneously with delay along ω as is shown in fig. 2. Thus, 
each node operates only with its own physical memory. 

 
Fig. 2. An illustration for efficient method of data processing 

along columns in case of non-uniform memory access 
architecture. All processing units perform memory operations 

for data located only in their own physical memory space. Small 
portions of data are rarely transferred between nodes, thus 

making negligible impact on efficiency. The main time penalty 
is due to the delayed start of the first blocks 

 (shaded in the scheme) 

In the final implementation, blocks of data should be 
used instead of columns. It is conditioned by the CPU archi-
tecture designed to read and write an L1 cache line in one 
r / w cycle, so each step of integration in the Thomas algo-
rithm should batch proceed for some next {e~} i, j, {e~} i, j + 1, 
{e~} i, j + 2,… values. The dimensions of the blocks should be 
Nr / Nn × (size of L1 cache line). Hence, larger data dimen-
sions should be used to obtain good performance. 

2.2. Non-linear part 

For minimizing the number of Fourier transfor-
mations the next scheme should be used. The non-linear 
part can be calculated according to (9 – 10) as follows: 
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In the above scheme only four Fourier transfor-
mations are needed. 
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During the tests it was found that the computation time 
of the non-linear term N is strongly non-uniform along the 
r coordinate. The reason for that is the different time for 
calculation of the exponent in (2). Moreover, the compu-
ting load of (2) can be reduced by setting a threshold value 
for |{e} i,j| under which the ionization rate in the right-hand 
side of eqns. (2)) can be assumed to be zero and the corre-
sponding calculation of ionization rate can be omitted. This 
requires some algorithm to balance the sizes of e sub-
vectors located at each node. Here, the following algorithm 
implementation will be discussed. The time Ti spent by 
each node i on actual calculations was accumulated during 
some quite significant number of evolutional steps, let us 
say 100. After that, new sizes for e sub-vectors were calcu-
lated according to the following formulae 

0

1 1 1
3 ,      .
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nN
ri ri

ri ri
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N N
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C T N T
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Further, the sub-vectors located at each node were 
merged to a vector representing the field E on the whole 
mesh (Nr

 × Nτ) and then split according to (11) along the r 
coordinate – each new sub-vector of Nri

 × Nτ dimension is 
distributed to the i-th node. 

The result of adaptive mesh splitting is shown in 
fig. 3. Fig. 3a presents the times (measured with times() 
from sys / times.h) of actual computing (time spent in lin-
ear and nonlinear steps until non-blocking pthread mutex 
synchronization is reached) depending on the evolution 
step (the step in the plot is divided by 100 – the number 
of steps between mesh re-splitting procedure). In fig. 3b 
the same times are shown but Nri are set to be constant – 
the mesh adapting is turned off. It is well seen that adapt-
ing the mesh strongly reduces Tmax representing the time 
of each step, including synchronization time overheads. 
From fig. 3c it is well seen that sub-vector sizes vary ap-
preciably. The number of steps before re-spit procedure 
was invoked is conditioned by two factors: masking of 
time overheads due to merging of e sub-vectors and 
memory reallocation and averaging of execution times Ti. 

3. Sample simulation of optical breakdown and results 

Numerical simulations were held for mesh dimensions 
Nr = 1024, Nτ = 512. The entire the simulation took 34000 
evolution steps. The testing platform was a dual processor 
workstation equipped with a pair of Intel Nehalem X5550 
@ 2.67 Ghz, all memory channels were populated with 
PC3-8500 modules (total amount of memory was 96 Gb). 
The code was built with g++ 6.1.1 with O3 optimization 
and run on Linux 4.7.2 with NUMA support. 

Fig. 4 presents three snapshots of simulated laser field 
amplitude. The initial pulse (Fig. 4a) was calculated by 
parabolic phase correction with conventional lens having 
focal length 1500 mm and translation by 1300 mm along 
the optical axis towards the focal point applied to the col-
limated 4.5 mJ pulse of Gaussian shape along r and τ of 
35 fs FWHM duration and 10 mm FWHM diameter.  

The translation was performed to skip the linear phase 
of laser pulse propagation.  

a)  

b)  

c)  
Fig. 3. Performance of adaptive mesh algorithm vs basic 
algorithm with fixed block sizes. Execution times of actual 
calculation for each node (Ti), Tmax and Tmin are maximal 

and minimal times for the case of adaptive mesh (a); same 
parameters for the case of fixed mesh (b); sub-vector size 

variation (c). One step on abscissa axis corresponds  
to 100 actual steps 

In the second snapshot the process of ionization be-
gins and plasma starts to refract the laser pulse creating 
structures also observed in [4]. In the third picture the re-
sult of the strong interaction of optical breakdown plasma 
and laser pulse is presented: the laser pulse is split into 
two, the last part of the laser pulse is refocused and cre-
ates the second impact of ionization.  

Comparison of fig. 4 and fig. 3 shows the correlation 
between the calculation speed and the laser pulse shape. 
It is hard to predict the size of sub-vectors because of the 
complicated mechanism of calculating the ionization rate. 
Thus, adaptive mesh splitting allows pronounced perfor-
mance improvement. The ratio of simulation times for 
adaptive and fixed methods was about 0.7. 
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Fig. 4. An example of simulated optical breakdown. Snapshots 
of |E|2 correspond to step =  0, step =  11300 and step =  17000 

from left to right. The presented simulation example 
corresponds to the one in fig. 3 

Conclusion 
Some techniques of numerical simulation of the two-

dimensional nonlinear Cauchy problem have been consid-
ered. It was shown that, despite the non-local nature of data 
processing in implicit algorithms, it is possible to develop an 
approach free from time overhead due to data transmission 
between the nodes of a distributed computational system. 

The proposed method is applicable for abstract systems.  

At the same time, the specific example of NUMA sys-
tems shows its advantages even in small-scale work-
stations. It is shown that in the case of merging and real-
location of memory the mesh adapting procedure is quite 
efficient. By increasing the number of steps between allo-
cations this method may be used for large-scale systems 
with Ethernet/InfiniBand connection of nodes. 
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