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WAVEFRONT FORMATION IN LONGITUDINALLY
NONUNIFORM ASYMMETRIC GRADIENT WAVEGUIDES

A. B. VALYAEV and S. G. KRIVOSHLYKOV

Abstract—A new refractive index reference profile is suggested for describing asymmetric gradient
waveguides. The effect of regular longitudinal non-uniformities on the wavefront of beam in these
waveguides is studied. Relations have been determined for estimating the field amplitude across the beam
at the interface of two such waveguides. The possibility is demonstrated of determining medium parameters
through the known characteristics of the primary and final beams.

The determination and formation of beam wavefronts is of interest in the investigation of the
propagation of various sorts of radiation in artificial or natural waveguides.

If the refractive index of the medium n changes slowly on the scale of the wavelength A (i.e.
AVn/n <« 1), then for harmonic fields radiation propagation is described by the scalar Helmholtz
equation [1-3]:

AY = k2n?¥ =0, (1)

where k= 2n/A.

Equation (1) admits of an exact solution in quadratures only for a restricted number of n(z)—the
reference refractive index functions—which were surveyed in [1].

Gradient waveguides with symmetric profiles are usually approximated by a parabolic refractive
index distribution. In that case Eq. (1) is equivalent, in the paraxial approximation, to the
Schroedinger equation for a variable frequency harmonic oscillator, which means it can be studied
by well-developed quantum mechanical methods. For example, the coupling coefficients between
the modes of the initial and final longitudinally uniform sections were determined [4] in a waveguide
containing regular longitudinal nonuniformities. The expressions obtained there enable one to
determine the beam wavefront at the waveguide exit, given that it is known at the entrance.

On the other hand, a knowledge of beam parameters in such a waveguide allows one to solve
the inverse problem, namely, to determine the nonuniformity parameters of the medium. Thus, it
was proposed to utilize experimentally obtained relative intensities [5] in order to determine the
waveguide gradient parameter change and the transverse axial shift, while in [6] from measurements
of the final width of the beam for various initial widths the variability of the waveguide’s longitudinal
nonuniformities could be quantified.

The analogous problem for asymmetric gradient waveguides has not yet been investigated, even
though it is of interest, inasmuch as a series of gradient waveguides are characterized by explicit
asymmetries. Such waveguides are most underwater sonic channels (USC) in deep and shallow
oceans (for example, the USC of the Mediterranean sea [7]), as well as the ionospheric radio
channel [2]. Asymmetry in the transverse distribution of the refractive index is observed also in
diffusional integrated-optical lightguides, and in active waveguides generated in the transverse plane
of heterojunction lasers [3].

In the present investigation of the formation of wavefronts in asymmetric waveguides it is proposed
to adopt a new reference profile to account for the longitudinal nonuniformities of the gradient
medium. On the basis of the suggested model profile the following questions are examined:

—The influence of longitudinal nonuniformity parameters on the radiation wavefront,
—The reduction of nonuniformity parameters to known parameters of the radiation.

For simplicity, we consider a two-dimensional waveguide and introduce a reference refractive
index profile:
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where x, is the coordinate of the waveguide axis, n(x,; z) is the refractive index along the axis, w
is the refractive index gradient, and g is the asymmetry parameter.

Equation (1), in the paraxial approximation for the profile (2), is equivalent to the Schroedinger
equation for a single oscillator, so that quantum mechanical methods can be used to study it [8].

An arbitrary field [) in the waveguide (2) may be represented by a model expansion in which
the squared expansion coefficients |[(n|y|? assign the field distribution among the modes. If the
medium is uniform longitudinally, then in the paraxial approximation all modes propagate with
the same group velocity (the propagation constant spectrum is equispaced [9]), and the initial
phase front of the exciting beam periodically restores its own form. For points between those values
of z for which the beam front is reestablished, knowledge of the medium parameters enables one
to calculate the phase of the beam wavefront easily.

The presence of longitudinally nonuniform sections in the medium (2) induces a redistribution
of energy among the modes, i.e. a change in the wave field amplitudes.

The authors have set up recursion relations and using them calculated the mode coupling
coefficients for two butted asymmetric gradient waveguides. Given the wavefront in the first guide,
its value in the second can be calculated by using the relations we have derived. The mode overlap
integrals are given by the following:

2 i 1 1, 1\
" = GL‘“’E) S +a)+ 1<ﬂ> L, - a2)<r[“‘ tmt L nt ])
W +w,/2 w,/) 4 n+l,m+1

1 1 1 2 2
xr[M)—_F—]-F2<—(al+a2)+l;—n,—m;a1+1,a2+1; @ , s’ >, 3)
a, +1,a,+1 2 W, +w,; 0+,

where I'(¢) is the gamma function, and F, is the Appel function in two variables.
The coupling coefficients W are determined by the square moduli of the mode overlap integrals,
and the coordinate of the waveguide axis is related to the parameter a by

xpi=——70"; i=12. )

The shift in the waveguide axis is also completely determined through the specified parameters:
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In the following the effect of regular longitudinal changes in the gradient of the medium on the
wavefront is studied for a constant value of a. The mode coupling coefficients and recurrence
relations for calculating them are also obtained. The coupling coefficients are symmetric, W= W7,
and are completely fixed by the following numerical parameters: R the coefficient of super-barrier
reflection [4], and a, the asymmetry parameter of the medium (2).

In the experimental determination of these numerical parameters the relative mode intensities
g(m, n) = W™/W} are helpful. Thus,

24(2,0) T
R= —q(1,0) |, 6
[q(l’o) q(1,0) (6)
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The parameter R may be estimated for two butted waveguides with a = const and different
gradient parameters ©,, ®,. Thus, R'? = (0, — w,)/®w, + ©;) = Aw/2w. Then the gradient para-
meter change can be estimated from (6).

Finally, we generalize the method of reconstructing the longitudinal waveguide nonuniformities,
originally developed [6] for a parabolic index profile, to an asymmetric waveguide (2). The problem
is reducible to the solution of the Gelfand-Levitan-Marchenko integral equation:
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when F(x)=n""'Re |y r(w)e” " dw is the spectral function, and r(w)=R'?.¢®7%) js the
reflection coefficient.

In order to obtain the spectral function one must find the reflection coefficient for various widths
of the beam incident on the nonuniform section. The reflection coefficient may be calculated using
the expression [9]:

1
(x2y=— 2T (1 4 RY + 4R cos 26, — 4R cos 5,

ko, (1 — R)?
x [cosQw, & + 28, — J,)+ RcosQw, & —5,)1}.

This relation connects the final width of the beam with the reflection coefficient. From here we
determine the spectral function and solve the integral equation, extracting K(x, y) and thereby
reconstructing the unknown o from w?(&) = —(d/dx)K(x, y).
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