Algorithm for calculation of the power density distribution of the laser beam to create a desired thermal effect on technological objects
S.P. Murzin, R. Bielak, G. Liedl

 

Samara National Research University, Samara, Russia,
Vienna University of Technology, Vienna, Austria

Full text of article: English language.

Abstract:
Based on the use of methods for solving the inverse problem of heat conduction, we developed an algorithm for calculating the power density distribution of the laser beam to create a desired thermal effect on technological objects. It was shown that the redistribution of power density of moving distributed surface heat sources can adjust the temperature distribution in the treated zone. The results of thermal processes calculation show the ability of the developed algorithm to create a more uniform temperature field across the width of the heat affected zone. Equalization of maximum temperature values is achieved in the center and on the periphery of the heat affected zone with an increase in the width of the regions, where required temperature is reached. The application of diffractive optical elements gives an opportunity to obtain the required properties of treated materials in the heat affected zone. The research performed has enabled parameters of the temperature field in chrome-nickel-molybdenum steel to be adjusted for laser heat treatment. In addition to achieving uniform temperature conditions across the width of the heat affected zone, the proposed approach allows the increase of the width of the isotherms of the temperature fields; this provides an opportunity to process a larger area per unit time at the same laser beam power.

Keywords:
laser beam, power density distribution, formation, moving heat source, material, thermal effect.

Citation:
Murzin SP, Bielak R, Liedl G. Algorithm for calculating of the power density distribution of the laser beam to create a desired thermal effect on technological objects. Computer Optics 2016; 40(5): 679-684. DOI: 10.18287/2412-6179-2016-40-5-679-684.

References:

  1. Lawrence J, Pou J, Low DKY, Toyserkani E, eds. Advances in laser materials processing: technology, research and application. Cambridge, UK: Woodhead Publishing; 2010. ISBN: 978-1-84569-474-6.
  2. Ion JC. Laser processing of engineering materials: principles, procedure and industrial application. Oxford, UK: Elsevier Butterworth-Heinemann; 2005. ISBN: 978-0-7506-6079-2.
  3. Schaaf P, ed. Laser processing of materials: fundamentals, applications and developments. Berlin, Heidelberg: Springer-Verlag; 2010. ISBN: 978-3-642-13280-3. DOI: 10.1007/978-3-642-13281-0.
  4. Ready JF, Farson DF, Feeley T, eds. LIA handbook of laser materials processing. Berlin, Heidelberg: Springer-Verlag; 2001. ISBN: 978-3-540-41770-5.
  5. Dahotre NB, Harimkar SP. Laser fabrication and machining of materials. New York, US: Springer Science+Business Media; 2008. ISBN: 978-0-387-72343-3. DOI: 10.1007/978-0-387-72344-0.
  6. Steen WM, Mazumder J. Laser material processing. 4th ed. London, UK: Springer; 2010. ISBN: 978-1-84996-061-8. DOI: 10.1007/978-1-84996-062-5.
  7. Kannatey-Asibu E Jr. Principles of laser materials processing. Hoboken, NJ: John Wiley & Sons; 2009. ISBN: 978-0-470-17798-3. DOI: 10.1002/9780470459300.
  8. Dickey FM, Holswade SC, eds. Laser beam shaping: theory and techniques. New York, Basel: Marcel Dekker, Inc.; 2000. ISBN: 0-8247-0398-7.
  9. Doskolovich LL, Kazanskiy NL, Kharitonov SI, Usplenjev GV. Focusator for laser-branding. Opt Laser Eng 1991; 15(5): 311-322. DOI: 10.1016/0143-8166(91)90018-O.
  10. Volkov AV, Kazanskiy NL, Moiseev OJu, Soifer VA. A method for the diffractive microrelief forming using the layered photoresist growth. Opt Laser Eng 1998; 29(4-5): 281-288. DOI: 10.1016/S0143-8166(97)00116-4.
  11. Pavelyev VS, Borodin SA, Kazanskiy NL, Kostyuk GF, Volkov AV. Formation of diffractive microrelief on diamond film surface. Opt Laser Technol 2007; 39(6): 1234-1238. DOI: 10.1016/j.optlastec.2006.08.004.
  12. Kazanskiy NL. Research & education center of diffractive optics. Proc SPIE 2012; 8410: 84100R. DOI: 10.1117/12.923233.
  13. Dowden JM, ed. The theory of laser materials processing: heat and mass transfer in modern technology. Bristol, UK: Canopus Academic Publishing Limited; 2009. ISBN: 978-1-4020-9339-5.
  14. Yilbas BS. Laser heating applications: analytical modeling. Waltham, MA: Elsevier; 2012. ISBN: 978-0-12-415782-8.
  15. Mackwood AP, Crafer RC. Thermal modelling of laser welding and related processes: a literature review. Opt Laser Technol 2005; 37(2): 99-115. DOI: 10.1016/j.optlastec.2004.02.017.
  16. Van Elsen M, Baelmans M, Mercelis P, Kruth J-P. Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing. International Journal of Heat and Mass Transfer 2007; 50(23-24): 4872-4882. DOI: 10.1016/j.ijheatmasstrans­fer.2007.02.044.
  17. Otto A, Schmidt M. Towards a universal numerical simulation model for laser material processing. Physics Procedia 2010; 5(A): 35-46. DOI: 10.1016/j.phpro.2010.08.120.
  18. Murzin SP. Optimization of the temperature field at the laser treatment of materials with using the focusators of radiation. [In Russian]. Computer Optics 2002; 22: 96-99.
  19. Tikhonov AN, Arsenin VY. Solutions of ill-posed problems. Scripta Series in Mathematics. New York: John Wiley & Sons; 1977. ISBN: 978-0-470-99124-4.
  20. Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG. Numerical methods for the solution of ill-posed problems. Dordrecht, Netherlands: Springer Science+Business Media Dordrecht; 1995. ISBN: 978-0-7923-3583-2. DOI: 10.1007/978-94-015-8480-7.
  21. Cole KD, Beck JV, Haji-Sheikh A, Litkouhi B. Heat conduction using Green's functions. 2nd ed. Boca Raton: CRC Press Taylor & Francis; 2010. ISBN: 978-1-439-81354-6.
  22. Hahn DW, Özisik MN. Heat Conduction. 3rd ed. Hoboken, NJ: John Wiley & Sons; 2012. ISBN: 978-0-470-90293-6. DOI: 10.1002/9781118411285.ch1.
  23. Kazanskiy NL, Murzin SP, Klochkov SYu. Formation of the required energy action at the laser treatment of materials with using radiation focusators [In Russian]. Computer Optics 2005; 28: 89-93.
  24. Murzin SP. Formation of nanoporous structures in metallic materials by pulse-periodic laser treatment. Opt Laser Technol 2015, 72, 48-52. DOI: 10.1016/j.optlastec.2015.03.022.
  25. Murzin SP. Local laser annealing for aluminium alloy parts. Laser Eng 2016, 33(1-3), 67-76.
  26. Murzin SP. Formation of structures in materials by laser treatment to enhance the performance characteristics of aircraft engine parts. Computer Optics 2016; 40(3): 353-359. DOI: 10.18287/2412-6179-2016-40-3-353-359.
  27. Murzin SP, Balyakin VB. Microstructuring the surface of silicon carbide ceramic by laser action for reducing friction losses in rolling bearings. Opt Laser Technol 2017, 88, 96-98. DOI: 10.1016/j.optlastec.2016.09.007.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20