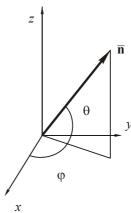
МЕТОД ВЫЧИСЛЕНИЯ УГЛОВ ОРИЕНТАЦИИ ОПТИЧЕСКОЙ ОСИ ЖИДКОГО КРИСТАЛЛА, НАХОДЯЩЕГОСЯ ВО ВНЕШНЕМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Г.В. Симоненко, В.И. Цой, Д.А. Яковлев Саратовский государственный университет, кафедра оптики


Аннотация

Предлагается эффективная вычислительная методика нахождения углов ориентации оптической оси жидкого кристалла, находящегося во внешнем электрическом поле, пригодная для различных граничных условий в ячейках с жидким кристаллом.

Как известно [1,2], все оптические свойства жидкого кристалла определяются ориентацией его оптической оси относительно падающего света. Ориентация оптической оси в ЖК задается единичным вектором, который называется директором. Поэтому описание оптических свойств ЖК однозначно связано с расположением директора относительно падающего на ЖК света, а умение находить ориентацию директора ЖК при изменении внешних условий, является важной задачей при теоретическом описании оптических свойств ЖК. Решение этой задачи актуально в связи с широким практическим использованием ЖК в системах отображения информации. В большинстве ЖК-устройств используются эффекты, основанные на переориентации директора монокристалла ЖК электрическим полем, например, управляемое полем двойное лучепреломление в закрученных, сверхзакрученных и незакрученных структурах нематического и нематохолестерического ЖК (НХЖК), твист - эффект и эффект "гость - хозяин" [1, 2]. Поэтому для исследования оптических характеристик этих эффектов важно уметь теоретически изучать переориентацию молекул монослоя ЖК в электрическом поле, для чего необходимо разработать физические модели и соответствующие математические методы и численные методики расчета переориентации директора ЖК в электрическом поле [1-3]. Подобные задачи решались многими авторами при различных ограничениях [3-12], главным из которых является предположение о симметричности граничных условий в ЖК-ячейке [4-6, 10-12]. Решение задачи при произвольных граничных условиях сопряжено с трудностями, в первую очередь связанными с неустойчивостью алгоритма решения к заданию начального приближения [3, 9], следствием чего является большое количество вычислений и малое быстродействие вычислительных программ. В данной работе предлагается быстродействующая численная методика расчета переориентации директора монослоя ЖК немато-холестерика в электрическом поле для граничных условий общего вида.

Рассмотрим плоскопараллельный слой ЖК (ЖК - ячейку), заполненный НХЖК смесью с положительной диэлектрической анизотропией и помещенный в электрическое поле E, приложенное перпендикулярно поверхности капилляра. Для описания ориентации ЖК в электрическом поле выберем декартову систему координат так, чтобы ось Z была направлена перпендикулярно ориентирующим по-

верхностям, а ось X совпадала с проекцией директора ЖК на плоскость XY на первой подложке. Тогда ориентацию директора ЖК n можно охарактеризовать двумя углами: углом наклона молекул ЖК к плоскости XY θ и углом поворота молекул ЖК φ (рис. 1).

Puc. 1. Ориентация директора жидкого кристалла в лабораторной системе координат XYZ.

Для большинства электрооптических эффектов в ЖК-ячейках, которые используются в ЖК-устройствах отображения информации, можно считать, что изменения ориентации директора ЖК n (n=($cos \theta cos \varphi$, $cos \theta sin \varphi$, $sin \theta$)) происходят только вдоль направления Z, а в плоскости XY ЖК однороден. Управляющее поле E при этом направлено параллельно оси Z. Тогда равновесное распределение углов ориентации директора n по толщине слоя ЖК, согласно континуальной теории [1, 2], достигается при минимальном значении свободной энергии, плотность которой F в данном случае можно записать в следующем виде:

$$2F = k_{11}(div n)^{2} + k_{22}(n \bullet rot n + 2\pi / \rho_{0}) + k_{33}(n \times rot n)^{2} - ED/4\pi$$
(1)

где k_{11} , k_{22} , k_{33} - постоянные упругости ЖК для S (поперечный изгиб) -, T - (кручение) - и B – (продольный изгиб) - деформаций; p_0 - естественный шаг спирали ЖК; D - индукция внешнего электрического поля.

Минимизируя интеграл свободной энергии стандартным образом, получим систему дифференциальных уравнений для нахождения распределения углов ориентации директора ЖК $\theta(z)$ и $\varphi(z)$ (z=z/L, L - толщина слоя ЖК) в электрическом поле, заданном величиной индукции D по Z-направлению:

$$\begin{cases}
\frac{d^2\theta}{dz^2} = \left(-f_1\left(\frac{d\theta}{dz}\right)^2 + g_1\left(\frac{b}{g} + g_2\right) + g_1\left(\frac{b}{g} + g_2\right) + g_1\left(\frac{b}{g} + g_2\right) - h_1V_0^2D_1^2\right) / P, \\
\frac{d\phi}{dz} = \frac{b}{g} + g_2
\end{cases} , \tag{2}$$

ΓДΕ $P = \cos^{2}\theta + k\sin^{2}\theta, f_{1} = (k-1)\sin\theta\cos\theta,$ $g = \cos^{2}\theta(k/\omega\cos^{2}\theta + k\sin^{2}\theta),$ $g_{1} = 2\sin\theta\cos^{3}\theta(k-k/\omega) - k\sin\theta\cos\theta,$ $g_{2} = v_{e}\frac{k}{\omega}\frac{1}{k/\omega\cos^{2}\theta + k\sin^{2}\theta},$ $g_{3} = 2v_{e}\frac{k}{\omega}\sin\theta\cos\theta,$ $h_{1} = \frac{\varepsilon\sin\theta\cos\theta}{1+\varepsilon}\frac{1}{\left(\sin^{2}\theta + \cos^{2}\theta/(1+\varepsilon)\right)},$ $V_{0} = 2\pi\sqrt{\left(\left(1+\left(\frac{\Phi_{T}}{\pi}\right)^{2}\left(k-\frac{2k}{\omega}(1-v_{e}/\Phi_{T})\right)\right)\frac{1+\varepsilon}{\varepsilon}\right)},$ $D_{1} = \frac{(D(L)}{E_{\uparrow}V_{c}} = const, V_{c} = V_{0}\sqrt{\frac{\pi k_{11}}{E_{\uparrow}}},$ $v_{e} = 2\pi L/p_{0}, b = const, k = k_{33}/k_{11},$ $\omega = k_{33}/k_{22}, E = (E_{\uparrow} - E_{\downarrow})/E_{1},$

 $\epsilon_{||}$, ϵ_{\perp} - диэлектрические постоянные ЖК параллельно и перпендикулярно директору, Φ_T - угол закрутки немато-холестерической структуры ЖК.

Для полного решения задачи о нахождении распределения углов ориентации директора $\theta(z)$ и $\phi(z)$ при заданном управляющем электрическом напряжении систему уравнений (2) необходимо дополнить еще одним уравнением для управляющего напряжения U:

$$\frac{dU}{dz} = \frac{D_1 V_c}{\sin^2 \theta + \frac{\varepsilon_\perp}{\varepsilon_\uparrow} \cos^2 \theta}.$$
 (3)

Интегрируя систему дифференциальных уравнений (2-3) с учетом соответствующих граничных условий, то есть условий ориентации ЖК на опорных поверхностях, можно найти распределение углов ориентации ЖК $\theta(z)$ и $\varphi(z)$.

Граничные условия в общем виде для закрученной структуры имеют вид [1,13]:

$$\frac{d\theta}{dz}(\cos^2\theta + k\sin^2\theta)\Big|_{z=0,1} = \frac{L}{k_{11}}\frac{dW_{\theta}}{d\theta}\Big|_{\theta=\theta_0,\theta_L}, (4a)$$

$$\frac{d\phi}{dz}(\cos^2\theta + \omega\sin^2\theta)\Big|_{z=0,1} = \frac{L}{k_{22}}\frac{dW_{\phi}}{d\phi}\Big|_{\theta=\phi_0,\phi_L}, (46)$$

где W_{θ} и W_{φ} - соответственно полярная и азимутальная поверхностные плотности энергии взаимодействия ЖК с ориентирующими его поверхностями; индексы $0,\ 1$ относятся к первой и второй ориентирующей поверхности соответственно.

В настоящее время предполагается, что могут быть различные потенциалы взаимодействия ЖК с ориентирующими его подложками [1, 13-5]. Чаще всего считается, что для теоретического описания эффектов ориентации ЖК и соответствующих измеряемых характеристик достаточно хорошим приближением является потенциал Рапини [15] $W=(W_0 \sin^2(\theta - \theta_{0J}))/2$.

Как правило, для ориентации ЖК в ячейках используются такие методы, при которых реализуется либо сильное сцепление молекул ЖК с ориентирующей подложкой ($W_{\theta}=W_{\varphi}=\infty$), либо слабое сцепление молекул ЖК с опорными поверхностями только в полярном направлении ($W_{\theta}<< W_{\varphi}=\infty$).

Таким образом, интегрируя систему дифференциальных уравнений (2-3) с учетом соответствующих граничных условий (4а), можно найти распределение углов ориентации директора ЖК $\theta(z)$ и $\phi(z)$ при постоянном управляющем электрическом напряжении. Однако прямое решение этой задачи сталкивается с двумя существенными трудностями, первая из которых связана с устойчивостью решения к заданию начальных условий, а вторая связана с большим количеством требуемых при этом вычислений вследствие с необходимостью многократно интегрировать уравнения (2) [3]. С этой точки зрения лучшим является подход, при котором численные процедуры применяются не непосредственно к дифференциальным уравнениям (2), а к их интегралам [5, 6]:

$$\begin{cases}
z = \int_{\theta_0}^{\theta} \sqrt{p/(A - g(d\varphi/dz) + V_0^2 D_1^2/(1 + \varepsilon \sin^2 \theta))} d\theta \\
z = \int_{\theta_0}^{\varphi} g(b - (k V_e/\omega) \sin^2 \theta))^{-1} d\varphi
\end{cases} (5)$$

Однако методы решения уравнений (5) были разработаны ранее другими авторами только для симметричных граничных условий ($\theta_0 = \theta_L$) [5-9]. В настоящей работе предлагается способ учета произвольных граничных условий для углов наклона директора θ_0 , θ_L к подложкам при решении уравнений (5). Практически удобно применять уравнения (5) не для полного расчета ориентационного поля $\theta(z)$, $\varphi(z)$, а только для определения начальных условий для дифференциальных уравнений (2). При этом поле директора определяется путем однократного численного интегрирования уравнений (2).

Учитывая, что зависимость $\theta(z)$ имеет экстремум (минимум или максимум) в какой-то точке z_m , то есть $\theta_m = \theta(z_m)$, и в этой точке $(d\theta/dz) = 0$, получим:

$$\begin{split} A &= g_m (d\phi/dz)^2_m + V_0^2 D_1^2 / (1 + \epsilon sin^2 \theta_m), \\ \text{где } g_m &= \cos^2 \theta_m k (\cos^2 \theta_m / \omega + \sin^2 \theta_m), \\ (d\phi/dz)_m &= (b - k v_e sin \theta_m / \omega) / g_m. \end{split}$$

Если ввести замену переменных $sinx = (sin\theta/sin\theta_m)^{\pm 1}$ в системе уравнений (5), одновременно дополняя эту систему третьим уравнением для управляющего электрического напряжения, то получим систему нелинейных уравнений для нахождения начальных условий для дифференциальных уравнений (2):

$$\begin{split} &\Phi_{T} = \mu \sqrt{\frac{\omega}{k}} \int_{x_{1}}^{\pi/2} \frac{F_{-x}(x)F_{k-1}^{1/2}(x)}{F_{-1}^{3/2}(x)F_{\omega-1}(x)R_{\omega-x}^{1/2}(x)} dx \mu + \\ &+ \mu \sqrt{\frac{\omega}{k}} \int_{x_{1}}^{\pi/2} \frac{F_{-x}(x)F_{k-1}^{1/2}(x)}{F_{-1}^{3/2}(x)F_{\omega-1}(x)R_{\omega-x}^{1/2}(x)} dx, \\ &\Phi_{T} = \mu \frac{\chi}{\chi_{0}} \sqrt{\frac{\omega}{k}} \int_{x_{1}}^{\pi/2} \frac{F_{k-1}^{1/2}(x)}{F_{-1}^{1/2}(x)R_{\omega-x}^{1/2}(x)} dx + \\ &+ \mu \frac{\chi}{\chi_{0}} \sqrt{\frac{\omega}{k}} \int_{x_{1}}^{\pi/2} \frac{F_{k-1}^{1/2}(x)}{F_{-1}^{1/2}(x)R_{\omega-x}^{1/2}(x)} dx, \\ &U = 2\sqrt{\pi k_{11}/(\varepsilon_{\perp}\varepsilon)} \int_{x_{1}}^{\pi/2} \frac{F_{k-1}^{1/2}(x)}{F_{-1}^{1/2}(x)F_{\varepsilon}(x)R_{\mu-x}^{1/2}(x)} dx + \\ &+ 2\sqrt{\pi k_{11}/(\varepsilon_{\perp}\varepsilon)} \int_{x_{1}}^{\pi/2} \frac{F_{k-1}^{1/2}(x)}{F_{-1}^{1/2}(x)F_{\varepsilon}(x)R_{\mu-x}^{1/2}(x)} dx, \end{split}$$

$$\text{ГДе}$$

$$&\chi = 2\pi L k/(\omega\rho_{0}b), \ \mu^{2} = 4\pi\varepsilon b^{2}\omega^{2}/(k^{2}D_{1}^{2}), \\ &q = \sin^{2}\theta_{m}, \ F_{v}(x) = 1 + vq^{2}\sin^{\pm 2}x, \\ &x_{1} = ar\sin(\theta_{0}/q), \ x_{2} = ar\sin(\theta_{L}/q), \\ &R_{\mu-x}(x) = \left(\frac{1}{F_{\varepsilon}(x)F_{\varepsilon}(\pi/2)} + \mu^{2}R\right) \bullet (\pm\sin x)^{1\mp 1}, \\ &R = \begin{pmatrix} F_{x^{2}+\omega-1}(x) + F_{x^{2}+\omega-1}(\pi/2) - \omega - 2\chi + (F_{\chi}(\pi/2) - 1)x \\ \times (F_{-1-2x+2\omega+\omega x}(x) - 1) \end{pmatrix}/r, \\ &r = F_{-1}(x)F_{-1}(\pi/2)F_{\omega-1}(\pi/2), \ \chi_{0} = v_{e}/\Phi_{T}, \end{split}$$

Здесь верхний знак относится к случаю, когда $\theta_m >$ $\theta_{0,L}$, а нижний - когда $\theta_{m} < \theta_{0,L}$. Таким образом, задавая физические постоянные ЖК, параметры, характеризующие ориентацию ЖК на подложках, управляющее напряжение U и, решая нелинейные уравнения (6) с соответствующими граничными условиями, находим постоянные А, В и D. После этого искомое распределение углов ориентации директора ЖК $\theta(z)$ и $\varphi(z)$ при заданном управляющем напряжении U находим из уравнений (2). Однако такая схема расчета одномерного распределения углов ориентации директора θ и ϕ требует больших затрат машинного времени, и поэтому нами реализован другой подход к решению поставленной задачи, который основан на замене одного входного параметра на другой. В качестве входного параметра используется не управляющее напряжение, а значение максимального (минимального) угла наклона молекул ЖК в ячейке θ_m значение напряжения вычисляется. Такое решение вопроса кроме простоты и существенного выигрыша в быстродействии оправдывается еще тем, что для большинства задач моделирования электрооптических эффектов необходимо рассчитывать всю вольт-контрастную кривую в целом, и поэтому неважно, что является входным параметром. Решение задачи о нахождении распределения углов ориентации ЖК в электрическом поле заметно упрощается, если используются некоторые ограничения, накладываемые на вид граничных условий и не противоречащие практике получения однородно ориентированных образцов ЖК:

- 1) полярные углы ориентации молекул ЖК на обеих подложках равны $\theta_0 = \theta_L$ (симметричные граничные условия);
- 2) молекулы ЖК на подложках при подаче управляющего электрического напряжения не меняют свою ориентацию (жесткие граничные условия). Тогда необходимо решать систему всего первых двух нелинейных уравнений системы (6) для нахождения постоянных *A*, *b* и *D* и последующего интегрирования уравнений (3). В этом случае нелинейные уравнения (6) переходят в уравнения, аналогичные полученным в работе [6].

Описанный выше метод вычисления одномерных распределений углов ориентации директора ЖК в электрическом поле позволяет не только использовать единообразный алгоритм поиска решения для разнотипных граничных условий, но и обеспечивает устойчивость. Кроме этого, описанный метод решения позволяет значительно сократить объем необходимых вычислений, так как в дифференциальные уравнения приходится интегрировать всего один раз.

Если рассматривать статические одномерные деформации твист- или незакрученной структуры нематического ЖК без хиральной добавки ($\Phi_{7} \le 90^{\circ}$, $2\pi L/p_0 = 0$), то соответствующие дифференциальные и нелинейные уравнения сильно упрощаются, но методика отыскания распределения углов ориентации директора ЖК в электрическом поле $\theta(z)$ и $\varphi(z)$ остается прежней.

На основе описанного выше метода разработаны алгоритм и компьютерная программа для вычисления распределений углов ориентации директора ЖК в электрическом поле при различных условиях ориентации ЖК на подложках. Для апробации метода, алгоритма и вычислительной программы, было проведено сопоставление рассчитанных и экспериментально определенных пороговых напряжений, крутизны вольт-контрастных кривых и зависимостей пропускания от напряжения для твист-эффекта и эффекта «гость-хозяин», которое показало, что расхождение между ними не превышает 5%. Хорошее количественное согласие между расчетными и экспериментальными данными, а также полное согласие расчетных данных, полученных с использованием предложенного метода, с другими известными методами [4-6, 10-12] позволяет сказать, что предложенный метод пригоден для компьютерного моделирования

 $v = -1, k, \omega, k - 1...$

характеристик устройств отображения информации на ЖК. Разработанная на его основе программа используется в системе компьютерного моделирования характеристик устройств отображения информации на основе ЖК "ЭЛЕКТРООПТИКА-М" [16-19], которая нашла применение при исследовании и разработке различных типов ЖК-индикаторов и ЖК-укранов [20-22] и позволила избавиться от проведения натурного моделирования ЖК-устройств отображения информации. Эта программа используется также в универсальной компьютерной системе MOUSE-LCD, разработанной совместно кафедрой оптики СГУ и группой профессора В.Г. Чигринова (Институт кристаллографии РАН) [23-26].

Работа выполнена в рамках грантов CRDF REC-006 (U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union) и "Ведущие научные школы" № 00-15-96667 Российского фонда фундаментальных исследований.

Литература

- 1. V.G. Chigrinov Liquid Crystal Devices // Physics and Applications. Artech House. Boston. London. 1999.
- 2. Сухариер А.С. Жидкокристаллические индикаторы // М., Радио и связь, 1991.
- D.W. Berreman Phil. Trans. R. Soc. 1983. V. A309. P. 203.
- G.Z. Van Doorn, J. Appl Phys. 1975. V. 46. № 9. P. 3738
- Deuling H.J. Mol. Cryst. Liq. Cryst // 1974. V. 27. P. 81
- 6. M.E. Becker, J. Nehring, T.J. Scheffer, J. Appl Phys. 1985. V. 57. № 10. P. 4539.
- M.E. Becker, J. Nenmer Jap. Display- 89. 1989.
 P. 294
- 8. H.A. Van Sprang, P.A. Bredels, J. Appl Phys. 1986. V. 60. N 3. P. 978.
- 9. Симоненко Г.В., Цой В.И., Финкель А.Г. Жидкие кристаллы и их практическое использование // Тез. Всесоюзной V конференции Чернигов. 1988. Т.2. С. 191.
- 10. Сухариер А.С., Буланов В.М., Бурханов А.И. и др. Эл. техн. Сер.4. 1985. В.З. С.50

- F. Gharadjedaghi, J. Appl Phys. 1983. V. 54. No 9. P. 4989.
- Симоненко Г.В., Татаринов С.И., Финкель А.Г., Яковлев Д.А. Эл. техн. Сер.4. 1988. В. 1. С. 43-47.
- 13. Пикин С.А. Структурные превращения в жидких кристаллах // М.: Наука, 1981.
- 14. Барник М.И., Блинов Л.М., Коркишко Т.В., и др. ЖЭТФ 1983. Т. 85. С. 176.
- 15. A. Rapini, M. J. Papoular Phys. (Paris) Cooloq. 1969. V. 30. C. 4-5.
- 16. G.V. Simonenko, D.A. Yakovlev, V.I. Tsoy, A.G. Finkel' Abs. Summer European Liquid Crystals // Conference Vilnius 1991. V. 2. P. 165.
- 17. D.A. Yakovlev, G.V. Simonenko Abstr 15 th International Liquid Crystal Conference. 1994. Budapest, Hungary, 1994. V. 2. P. 945.
- D.A. Yakovlev, G.V. Simonenko, V.I. Tsoy et al Abstr 15 th International Liquid Crystal Conference 1994. Budapest, Hungary, 1994. V. 2. P. 952.
- Яковлев Д.А., Симоненко Г.В., Цой В.И. и р. Информат. Сер. Средства отображения информации. ВНИИ межотрасл. инф. 1993. № 2. С. 90.
- Сухариер А.С., Линькова И.С., Цой В.И., Симоненко Г.В. Эл. тех. Сер. 4 1991. В. 4. С. 59-64.
- D.A. Yakovlev, G.V. Simonenko, V.M. Kozenkov et all Abstr. EURODISPLAY'93 Int. conf., September 1-3, 1993. V.1. P. 244.
- 22. D.A. Yakovlev, G.V. Simonenko, V.M. Reznikov, et all Abstr. Eur. Conf. on Liquid Crystal Science and TechnologyFlims, Switzerland. 7-12 March, 1993. P. 96.
- 23. V.G. Chigrinov, D.A. Yakovlev, G.V. Simonenko et all SPEI, 1996. V. 2650. P. 160-172.
- 24. V.G. Chiogrinov, D.A. Yakovlev, G.V. Simonenko Asia Display 95. Proceed. of the fifthenth Internat. Display Research Conference. Japan. 1995. P. 159-162.
- 25. V.G. Chigrinov, Y.B. Podyachev, G.V. Simonenko et all Proc. of the 18th Int. Dis. Research confer. Asia display 98. Seoul. Korea. P. 565-568.
- 26. V.G. Chigrinov, H.S. Kwok, D.A Yakovlev et all ASID' 00. Digest. Xi'an, China, 2000. P. 244-246.

Method of computing the alignment angles of the optical axis of an LC in an external electric field

G.V. Simonenko, V.I. Tsoi, D.A. Yakovlev Saratov State University, Department of Optics

Abstract

The article proposes an efficient computational technique for finding the orientation angles of the optical axis of a liquid crystal in an external electric field. This technique is suitable for various boundary conditions in liquid crystal cells.

<u>Citation</u>: Simonenko GV, Tsoi VI, Yakovlev DA. Method of computing the alignment angles of the optical axis of an LC in an external electric field. Computer Optics 2001; 21: 88-91.

References

- [1] Chigrinov V.G. Liquid crystal devices: Physics and applications. Boston, London: Artech House; 1999.
- [2] Sukharier AS. Liquid crystal indicators [In Russian]. Moscow: "Radio i Svyaz" Publisher; 1991.
- [3] Berreman D.W. Numerical modelling of twisted nematic devices. Phil Trans R Soc, Ser A 1983; 309(1507): 203-216.
- [4] Van Doorn GZ. Dynamic behavior of twisted nematic liquid-crystal layers in switched fields. J Appl Phys 1975; 46(9): 3738-3745.
- [5] Deuling HJ. Deformation pattern of twisted nematic liquid crystal layers in an electric field. Mol Cryst Liq Cryst 1974; 27(1-2): 81-93.
- [6] Becker ME, Nehring J, Scheffer TJ. "Theory of twisted nematic layers with weak boundary. J Appl Phys 1985; 57(10): 4539-4542.
- [7] Becker ME, Nenmer J. Jap Display-89 1989: 294.
- [8] Van Sprang HA, Bredels PA. Numerical calculations of director patterns in highly twisted nematic configurations with nonzero pretilt angles. J Appl Phys 1986; 60(3): 968.
- [9] Simonenko GV, Tsoi VI, Finkel AG. Liquid crystals and their practical application. Proceedings of the V All-Union Conference 1988; 2: 191.
- [10] Sukharier AS, Bulanov VM, Burkhanov AI, et al. Numerical simulation of liquid crystal indicators on the twist effect [In Russian]. El Tech, Ser 4 1985; 3: 50.
- [11] Gharadjedaghi F. Computer simulation of a nematic guest host display. J Appl Phys 1983; 54(9): 4989.
- [12] Simonenko GV, Tatarinov SI, Finkel AG, Yakovlev DA. Electro-optical characteristics of liquid crystal indicators operating on the basis of the "guest-host" effect [In Russian]. El Tech, Ser 4 1988; 1: 43-47.
- [13] Pikin SA. Structural transformations in liquid crystals. Moscow: "Nauka" Publisher; 1981.
- [14] Barnik MI, Blinov LM, Korkishko TV, et al. New type of boundary conditions for orientation deformations In homeotropic layers of nematic liquid crystals. J Exp Theor Phys 1983; 58(1): 102-107.
- [15] Rapini A, Papoular MJ. Distorsion d'une lamelle nematique sous champ magnetique conditions d'ancrage aux parois. J Phys (Paris) Cooloq 1969; 30: 4-54.
- [16] Simonenko GV, Yakovlev DA, Tsoy VI, Finkel' AG. ELECTROOPTIC -2: An effective software tool for liquid crystal devie research and development. Abstr Summer European Liquid Crystals Conference Vilnius 1991; 2: 165.
- [17] Yakovlev DA, Simonenko GV. Electrooptics'4R: An effective software tool for simulation and optimization of supertwisted nematic displays. 15th International Liquid Crystal Conference 1994; 2: 945.
- [18] Yakovlev DA, Simonenko GV, Tsoy VI, et al. Computer modelling of liquid crystal electrooptics by universal system (MOUSE LCD). 15th International Liquid Crystal Conference 1994; 2: 952.
- [19] Chigrinov VG, Simonenko GV, Yakovlev DA, Tsoy VI, Khokholov NA, Podyachev YuB. Universal computer complex programs for optimizing the design of liquid crystal displays [In Russian]. Informat Ser Sredstva otobrazheniya informatsii VNII Mezhotrasl Inf 1993; 2: 90-94.
- [20] Sukharier AS, Linkova IS, Tsoy VI, Simonenko GV. Peculiarities of the dynamic characteristics of LC cells based on the STN structure [In Russian]. El Tech, Ser 4 1992; 4: 9-11.
- [21] Yakovlev DA, Simonenko GV, Kozenkov VM, et al. New concept to achieve color LCDs with linearly photopolymerized LCD substrates. Proc 13th Int Display Research Conf (EuroDisplay'93) 1993; 1: 17-20.
- [22] Yakovlev DA, Simonenko GV, Reznikov VM, et al. Eur Conf on Liquid Crystal Science and Technology 1993: 96.
- [23] Chigrinov VG, Yakovlev DA, Simonenko GV, Khokhlov NA, Podyachev YuA. Application of universal computer modeling system for development of LCSs with high contrast and wide viewing angles. Proc SPIE 1996; 2650: 160-172.
- [24] Chigrinov VG, Simonenko GV, Yakovlev DA, Khokhlov NA, Podjachev YuB. Computer universal system of LC electrooptics: MOUSE LCD. Proc 5th Int Display Research Conf (Asia Display–95) 1995: 159-162.
- [25] Chigrinov VG, Simonenko GV, Yakovlev DA, Podjachev YuB. Computer optimization of liquid crystal displays using MOUSE LCD system. Proc 18th Int Displays Research Conf (Asia Display–98) 1998: 565-568.
- [26] Chigrinov VG, Simonenko GV, Yakovlev DA, Kwok HS, Podjachev YuB. LCD modeling and optimization on system MOUSE LCD. In Book: ASID 2000. Digest. Xian, China: 2000: 244-246.