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Introduction 
Theory of number systems is one of the most an-

cient mathematical theories. Historically number sys-
tems preceded to origin of number theory and were the 
first mathematical results influenced essentially on de-
velopment of number theory and on forming of its basic 
notions. The discovery of positional principle of num-
ber representation considers as one of the greatest 
mathematical discoveries of the ancient mathematics. 
The history of the positional number systems began in 
the Babylonian mathematics. As it is emphasized in [1], 
"the first of the familiar number systems based on the 
positional principle was the sexagesimal number system 
of the ancient Babylonians emerged about 2000 BC". 

Let us consider the representation of real number 
A in the positional number system: 

∑=
i

iRiaA  (1) 

where ai is the numeral of the i-th digit (i = 0, ±1, ±2, 
±3, …) of number system (2); R is a base or a radix of 
number system (2); Ri is the "weight" of i-th digit.  

Two basic properties are common for all posi-
tional number systems:  
(1) each digit takes the values from the finite set M of 

the permissible values;  
(2) the "weight" Ri of each digit is the function of its 

position and of some constant  called the base of 
the number system. 
The history of arithmetic [1] shows that the prop-

erly positional principle did not change starting since 
the Babylonian sexagecimal number system. A progress 
of the positional number systems was connected with a 
change of their bases and the set M of the numerals used 
for number representation. 

Historically there appeared first the positional 
number systems with the natural bases (2, 3, 10, 12, 20, 
60, etc.). The first step for extension of the functional 
possibilities of the positional number systems was made 
by the American scientist Claud  Shannon who intro-
duced the number systems with the negative bases [2]. 

In 1957 the American mathematician G. Bergman 
introduced the number system with an irrational base 
[3]. A peculiarity of Bergman's number system con-
sisted of the fact that Bergman used the number τ = 

2

51+
called the "golden section" or "golden ratio" as 

the base of his number system. 
The number system with irrational bases based on 

the generalized "golden ratios" were introduced by the 
author of the present article in the 80th [4]. 

Let us note one peculiarity of the positional repre-
sentation of (1) and its generalizations given in [3] and 
[4]. The expression of (1) gives only certain class of 
real numbers, which could be represented in the form of 
(1). It is clear that many irrational numbers, for instance 
the number of π, Euler's number of e cannot be repre-
sented in the form of (1). It means that the expression 
(1) divides all rational numbers into two parts, the con-
structive numbers, which could be represented (al-
though potentially) in the form of (1) and the non-
constructive numbers, which never (even potentially) 
cannot be represented in the form of (1).  

The works of the Russian scientist Khmelnik [5-9] 
is of a great interest since point of view of development 
of theory of number system. He introduced the number 
systems with complex bases [9] but the main his idea 
consists of the following. He considered the methods of 
the positional coding of the complicated mathematical 
objects so as vectors, matrices, functions, geometric 
figures [5-8].  

Although Khmelnik’s representations are compli-
cated for technical realization however his idea about 
development of the number system theory in the direc-
tion of the positional coding of the complicated mathe-
matical objects is very interesting and deserves for a 
special attention.  

The main purpose of the present article is to state 
the results of investigations of positional matrix repre-
sentation when the square matrix is represented as a 
sum of powers of special matrices called the Fibonacci 
matrices. 

1. Fibonacci Q-matrix 
In the last decades the theory of the Fibonacci 

numbers [10] was supplemented by the theory of so-
called Fibonacci Q-matrix [10-13]. The latter presents 
itself the 2×2 matrix of the following form: 
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⎟
⎠
⎞

⎜
⎝
⎛

=
01
11

Q  (2) 

Note that the determinant of the Q-matrix equals 
to -1. 

In the paper [13] devoted to the memory of Verner 
E. Hoggat, the creator of the Fibonacci Association, it is 
stated the history of the Q-matrix, given an extensive 
bibliography on the Q-matrix and on related questions 
and emphasized the Hoggatt’s contribution in develop-
ment of the Q-matrix theory. Although the name of the 
"Q-matrix" was introduced before Verner E. Hoggat,  
just from the paper [11] the idea of the Q-matrix 
"caught on like wildfire among Fibonacci enthusiasts. 
Numerous papers have appeared in  Fibonacci Quarterly 
authored by Hoggatt and/or his students and other col-
laborators where the Q-matrix method became a central 
tool in the analysis of Fibonacci properties" [13, 250]. 

Let us take the following theorems for the Q-
matrix without a proof [10]: 

Theorem 1. For the given integer of n (n = 0, ±1, 
±2, ±3, …) the nth power of Q-matrix is given by  

⎟
⎠

⎞
⎜
⎝

⎛

−

+=
1

1
nFnF
nFnFnQ  (3) 

where Fn-1 , Fn , Fn+1  are the Fibonacci numbers given 
with recurrent correlation 

Fn = Fn-1 + Fn-2  (4) 
for the initial conditions 

F0 = 0, F1 = 1. (5) 
where n = 0, ±1, ±2, ±3, …. 

Theorem 2. 
Det Qn = (-1)n, (6) 

where n is an integer. 
From Theorems 1 and 2 there follows one of the 

fundamental properties connecting neighboring  
Fibonacci numbers: 

n
nFnFnF )1(2

11 −=−−+  (7) 

Let us represent the matrix of (3)  in the following 
form: 

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛

−−

−−+
−−

−=

=
−+−−+−

−+−−+
=

32
21

21
1

3221
211

nFnF
nFnF

nFnF
nFnF

nFnFnFnF
nFnFnFnFnQ

 (8) 

The next theorem follows from (8). 
Theorem 3.  
Qn = Qn-1 + Qn-2. (9) 
Let us represent the expression of (9) in the form: 
Qn-2= Qn - Qn-1. (9-a) 
The explicit forms of the matrices Qn (n = 0, ±1, 

±2, ±3, …) obtained by means of the recurrent formulas 
of (9), (9-a) are given in Table 1. 

Table 1 
n 0 1 2 3 4 

Qn
⎟
⎠
⎞

⎜
⎝
⎛

10
01

⎟
⎠
⎞

⎜
⎝
⎛

01
11

⎟
⎠
⎞

⎜
⎝
⎛

11
12

 ⎟
⎠
⎞

⎜
⎝
⎛

12
23

 ⎟
⎠
⎞

⎜
⎝
⎛

23
35

 

Q-n
⎟
⎠
⎞

⎜
⎝
⎛

10
01

⎟
⎠
⎞

⎜
⎝
⎛

−11
10

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
21
11

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
32

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
53
32

Theorem 4. 
Qm×Qk = Qk×Qm = Qm+k. (10) 

3.Generalized Fibonacci matrices for p-Fibonacci 
numbers 

Let us give some non-negative number p = 0, 1, 2, 
3, … and consider the following recurrent correlation 

Fp(n)=Fp(n-1)+Fp(n-p-1)  (11) 
for the initial conditions 

Fp(-p+1)=Fp(-p +2)=…=Fp(0)= 0; Fp(1) = 1(12) 
where n = 0, ±1, ±2, ±3, …. 

The numerical sequences generated with (11), 
(12) are called generalized Fibonacci numbers or p-
Fibonacci numbers [15]. 

Note that p-Fibonacci numbers include in itself an 
infinite number of numerical sequences, in particular, 
the binary numbers for the case of p=0 and the Fibo-
nacci numbers for the case of p=1. 

In [16] the general theory of the Fibonacci matri-
ces based on p-Fibonacci numbers was elaborated. A 
central notion of this theory is the notion of the Qp-
matrix:  

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

000001
100000
010000

001000
000100
000011

pQ  (13) 

where the index of p takes the values from the set {0, 1, 
2, 3, …}. 

Note that the Qp-matrix is the square (p+1)×(p+1) 
matrix. It contains the p×p identity matrix bordered by 
the last row of 0’s and the first column, which consists 
of 0’s bordered by 1’s. For the cases of p = 0, 1, 2, 3 the 
Qp-matrices have the following forms, respectively: 

Q0 = (1) ; 

QQ == ⎟
⎠
⎞

⎜
⎝
⎛

01
11

1 ; 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

001
100
011

2Q ;  
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⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

0001
1000
0100
0011

3Q . 

Let us take without a proof [16] the following im-
portant theorems concerning to the Qp -matrices. 

Theorem  5. 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

−−−−

+−−+−

+−+

=

)()1()(

)1()2()1(

)12()()1(

)1()()1(

pnpFnpFnpF

pnpFnpFnpF

pnpFpnpFpnpF

pnpFnpFnpF

n
pQ  

The formula has a number of (14). 
Theorem 6. 

Det n
pQ = (-1)pn, (15) 

where p = 0, 1, 2, 3, … ; n = 0, ±1, ±2, ±3, … . 
Theorem 7. 

n
pQ = 1−n

pQ  + 1−− pn
pQ . (16) 

Theorem 8. 
km

pQm
pQk

pQk
pQm

pQ +=×=×  (17) 

It is clear that Theorems 5, 6, 7 and 8 are the gen-
eralization of the well-known Theorems 1, 2, 3 and 4 
for the classical Fibonacci Q-matrix. 

4. Fibonacci matrix representation 
Let us consider the binary positional presentation 

of the square (p+1)×(p+1) matrix in the following 
form: 

∑=
i

i
p

QiaM  (18) 

where ai is the binary numeral {0, 1};  i
pQ  is the 

weight of i-th digit; Qp is the base of the number system 
(17); i =  0, ±1, ±2, ±3, … ; p = 1, 2, 3, … (the case of 
p = 0 is eliminated from consideration). 

The formula of (18) gives an infinite number of 
the matrix representations of (18) because each number 
p generates its proper matrix representation of (18).  

Note that the expression of (18) gives a certain 
class of the square (p+1)×(p+1) matrices, which could 
be represented in the form of (18). The matrices M, 
which could be represented (although potentially) in the 
form of (18) could be called the constructive matrices 
by analogy with the constructive numbers, which could 
be represented in the form of (1). 

Let us consider now the partial case of (18) corre-
sponding to p=1: 

∑=
i

iQiaM  (19) 

where Q is the Fibonacci Q-matrix of (2).  
The abridged notation of the sums of (18) and (19) 

has the following form: 

maaaaamamaM −−−−= ...21,01...1  (20) 

Let us consider the representation of the 2×2 ma-
trices in the code form of (20). It is clear that all powers 
of the Q-matrix are presented as the following code 
combinations: 

Q0= I = 1, 0; Q1= 10, 0; Q2=100, 0;  Q-1= 0, 1;  

Q-2= 0, 01; Q-3= 0, 001; … . 

Using (19) one may represent in the code form of 
(20) all the 2×2 matrices being some sums of the Q-
matrix powers. For example the matrix 

M = Q3 + Q1 + Q-1 + Q-4 = 

= ⎟
⎠
⎞

⎜
⎝
⎛

12
23

+ ⎟
⎠
⎞

⎜
⎝
⎛

01
11

+ ⎟
⎠
⎞

⎜
⎝
⎛

−11
10

+ ⎟
⎠
⎞

⎜
⎝
⎛
−

−
53
32

= 

= ⎟
⎠
⎞

⎜
⎝
⎛

51
16

 

is represented in the code form of (20) as the following: 
M = 1010, 1001.    
A special interest has the code representations of 

(20), which results from the following procedure. Let us 
consider the presentation of the identity matrix in the 
code form of (20): 

M1 = I = Q0 = ⎟
⎠
⎞

⎜
⎝
⎛

10
01

= 1, 00 (21) 

In accordance with the property (9) we can repre-
sent the identity matrix of (21) in the following form: 

I = Q0 = Q-1 + Q-2 (22) 
In fact, using Table 1 we get: 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

10
01

=
21-
1-1

+
1-1

10
. 

Using (22) we can represent the identity matrix I 
in the code form:  

I = 0,11 (23) 
Adding 1 (the identity matrix I) to the 0-th digit of 

(23) we get the following code combination: 
M2 =1,11 (24) 
Using (9), we get the new representation of the 

matrix M2: 
M2 = 10, 01 (25) 
The code combination of (25) corresponds to the 

sum 

I
-

-
+QQM 2

20
02

21
11

01
1121

2 ===−+= ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ . 
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Then adding 1 (the identity matrix I) to the  0th 
digit of code combination (25) and using (9), we get the 
new code combination 

M3 = 100, 01,  
which corresponds to the matrix  

I
-

-
+QQM 3

30
03

21
11

11
1222

3 ===−+= ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ . 

Continuing this process, i. e. adding 1 (the identity 
matrix I) to the 0-th digit of the preceding code combi-
nation and using (9), we get the code representations of 
the following 2×2 matrices : 

1000,1000188

1000,0000177

1000,0101066

1001,0001055

0010,1010044

0010,0010033

0010,0100022

0000,100001

==
==
==
==
==
==
==
==

IM
IM
IM
IM
IM
IM
IM

IM

 

Continuing this process we could represent the 
matrix 

nI
n

n
nM == ⎟

⎠
⎞

⎜
⎝
⎛

0
0

 (26) 

in the form of (19). Thus the analyzed procedure of the 
2×2 matrix coding permits getting the 2×2 matrices of 
the kind (26) only and hence the matrix of the kind of 
(26) are constructive one's regarding to the definition of 
(19). 

Note there exists a one-to-one correspondence be-
tween the matrices of (26) regarding to the matrix rep-
resentation of (19) and natural numbers regarding to 
Bergman's number system [3]. It means that we can use 
the isomorphism property for getting of code represen-
tation of the 2×2 matrices of the kind of (26). With this 
aim in view first we have to get the τ-code of number n 
(the τ-code is representation of natural number n in 
Bergman's number system [3]). According to the iso-
morphism property the τ-codes of numbers n coincide 
with the code representations (20) of the 2×2 matrices 
of the kind of (26). 

Let us consider now the code representation of the 
2×2 matrices of the following kind: 

⎟
⎠
⎞

⎜
⎝
⎛

=
a-bb
ba

M , (27) 

where a and b are integers. 
For getting the code representation of the matrix 

of (27) we will apply the following procedure. Let us 
represent the number b as some sum of the Fibonacci 
numbers, i. e. 

b = Fn + Fp + … + Ft,  
where n>p> …>t.. 

Next let us form from the number b two new 
numbers b+ and b- according to the rule: 

b+ = Fn+1 + Fp+1 + … + Ft+1; 

b- = Fn- 1 + Fp-1 + … + Ft-1; 
Let us note that  b = b+ - b- . It follows from the 

definition (4) for the Fibonacci numbers. 
Let us represent now the matrix of  (27) as the 

sum of two matrices: 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

+=
-(a-b)-b

+a-b

-bb
b+b

M
0

0
= 

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

bb

bb
+ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+−
+−

ba
ba

0
0

. 

Then the matrix  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

bb

bb
 

can be represented as the following sum: 

=++

+=

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

1
1

1

1

1
1

t-FtF
tFt+F

...
p-FpF
pFp+F

n-FnF
nFn+F

-bb
b+b

 

= Qn + Qp + … + Qt. (28) 
The code representation of the matrix of  

⎟
⎠
⎞

⎜
⎝
⎛

+−
+−

ba
ba

0
0

 = (a - b+ ) ×I 

can be got using the isomorphism between the matrices 
of the kind of (26) and natural numbers. For that it is 
necessary to get the τ-code of the integer number of (a - 
b+). The latter representation togethe with the represen-
tation of (28) gives a possibility to represent the matrix 
of the kind of (27) in the form of (19).  

For example let us consider the presentation of the 
matrix  

⎟
⎠
⎞

⎜
⎝
⎛

=
1615
1531

R  

in the form of (18). With this aim in view let us repre-
sent the number 15 as the sum of two Fibonacci num-
bers:  

15 = F7 + F3 = 13 + 2. 
Let us form now the numbers 
15+ = F8 + F4 = 21 + 3 = 24 

and  
15- = F6 + F2 = 8 + 1 = 24 

and represent the matrix R in the following form: 
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457

4437737

70
07

12
23

813
1321

1615
1531

−++=

=−+++=++=

=++== ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

QQQ

)Q(QQQIQQ

R

. 

Thus the matrix R has the following code presen-
tation: 

R = 00110100000,0
1615
1531

=⎟
⎠
⎞

⎜
⎝
⎛ . 

Let us consider now the matrix 

⎟
⎠
⎞

⎜
⎝
⎛

=
215

1517
S .  

This one could be represented as the sum: 

( )4437737

70
07

12
23

813
1321

−+−+=−+=

=++= ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

QQQQIQQ

-
-

S
(29) 

Using (9) we can represent the sum of (29) in the 
form: 

52046

520236

4454

20464437

−+−+++=

=−+−++++=

=−+−−+−+

+−+++=−+−+

QQQQQ

QQQQQQ

)Q(QQQ

QQQQ)Q(QQQ

Thus the matrix S has the following code representation: 

010011010001
215

1517
,S == ⎟

⎠
⎞

⎜
⎝
⎛ . 

Above we considered in detail the code represen-
tations of the 2×2 matrices in the form of (19). The for-
mula of (18) expands a class of Fibonacci matrix repre-
sentations and is a source of new investigations in this 
field.     

5. Fibonacci matrix arithmetic 
The identities of (9), (10) and their generaliza-

tions of (16), (17) form the basis of the Fibonacci ma-
trix arithmetic.  

Let us consider the simplest Fibonacci matrix 
arithmetic corresponding to the case of p=1. Using (9) 
we can represent the sum of two matrix Q powers in the 
following form: 

Qn + Qn = Qn + Qn-1 + Qn-2 = Qn+1 + Qn-2 . (30) 
The identities of (30) underlie the matrix addition. 

Table 2 gives the addition rule of two single-digit 2×2 
matrices.  

Table 2 

)(100111
)(11111

110
101
000

b
a

=+
=+
=+
=+
=+

 

Using Table 2 for the addition of the matrices S+S 
= 2S, we get the following code representation  

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

==

=−+−++=

==

215
1517

2
430

3034

5338
001011000010012

ґ

QQQQ

,S

. 

The identity of (10) underlies the 2×2 matrix mul-
tiplication. Table 3 gives the rule of the matrix multipli-
cation.  

Table 3 

111
001
010
000

=×
=×
=×
=×

 

Let us apply this rule for multiplication of the two 
matrices  

M2 = 10,01   and   M2 = 101,01 
For multiplication let us represent these matrices 

in the form with the floating point: 
M2 = 1001×Q-2; M4 = 10101×Q-2.  
After multiplication of the code combinations 
101011001×  we get the product 

M2 × M4 = 2I × 4I =100010001×Q-4 =  

=10001, 0001=  Q4 + Q0 + Q-4 =  

= ⎟
⎠
⎞

⎜
⎝
⎛

23
35

 + ⎟
⎠
⎞

⎜
⎝
⎛

10
01

 + ⎟
⎠
⎞

⎜
⎝
⎛
−

−
53
32

= 8I. 

Conclusion 
The positional matrix representations considered 

in the present article expand essentially the notion of the 
mathematical object positional representation. Unlike to 
the classical positional number systems where the num-
bers are the objects of code representation the objects of 
new positional presentation considered in the article are 
square matrices, which are more complicated mathe-
matical objects in comparison to numbers. The bases of 
new positional representations are special matrices 
called the Fibonacci matrices.  

It is shown in the article that only the matrices of 
the special kinds, so called constructive matrices, could 
be represented using new methods of matrix representa-
tion. This fact restricts practical applications of posi-
tional representations considered above. However, the 
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article puts forward a number of theoretical problems 
concerning to matrix theory, in particular the problem to 
find a general method of Fibonacci matrix representa-
tion for arbitrary square matrix. 

The American mathematician George Bergman 
who is the pioneer in non-traditional number systems 
wrote in conclusion of his article [3]: "I do not know of 
any useful application for systems such as this, except 
as a mental exercise and pastime, though it may be of 
some service in algebraic number theory". 

However progress of computer science refuted 
this pessimistic Bergman's statement. Just Bergman's 
number system and its generalization, the "Codes of the 
Golden Ratios" [4], became of source of modern inves-
tigations in the field of the super-fast algorithms of digi-
tal signal processing [16]. 

Probably the matrix representations based on the 
Fibonacci matrices could bring to new and unexpected 
applications to digital signal processing. 
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Abstract  

Theory of number systems is one of the most ancient mathematical theories. Historically number 
systems preceded to origin of number theory and were the first mathematical results influenced es-
sentially on development of number theory and on forming of its basic notions. The discovery of 
positional principle of number representation considers as one of the greatest mathematical discov-
eries of the ancient mathematics. The history of the positional number systems began in the Baby-
lonian mathematics. As it is emphasized in [1],"the first of the familiar number systems based on 
the positional principle was the sexagesimal number system of the ancient Babylonians emerged 
about 2000 BC". 
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