АЛГОРИТМ МНОГОМЕРНОГО ГИПЕРКОМПЛЕКСНОГО ДПФ, РЕАЛИЗУЕМЫЙ В КОДАХ ГАМИЛЬТОНА-ЭЙЗЕНШТЕЙНА

Алиев М. В. 1 , Чичева М. А. 2 , Алиева М. Ф. 1

¹ Адыгейский государственный университет ² Институт систем обработки изображений РАН

Аннотация

В работе синтезируется «совмещенный» алгоритм многомерного гиперкомплексного дискретного преобразования Фурье вещественного сигнала по основанию три с представлением данных в обобщенных кодах Гамильтона-Эйзенштейна. Получена сложность арифметических операций в коммутативно-ассоциативной гиперкомплексной алгебре и ее представлении в обобщенных кодах. Приводятся оценки вычислительной сложности синтезируемого алгоритма.

Введение

В работе синтезируется «совмещенный» алгоритм многомерного гиперкомплексного дискретного преобразования Фурье (ГДПФ) вещественного сигнала:

$$\tilde{F}(\mathbf{\mu}) = \sum_{n_1, \dots, n_d = 0}^{N-1} f(\mathbf{v}) W(\mathbf{\mu}, \mathbf{v}), \qquad (1)$$

где
$$\mathbf{\mu} = (m_1, ..., m_d)$$
, $m_1, ..., m_d = 0, 1, ..., N-1$, $I = \{1, ..., d\}$, $W(\mathbf{\mu}, \mathbf{v}) = \prod_{i \in I} \omega_i^{m_i n_i}$, $\omega_i = e^{2\pi \varepsilon_i / N}$, a

 $\varepsilon_1^2 = ... = \varepsilon_d^2 = -1$, $\varepsilon_1, ..., \varepsilon_d$ – образующие элементы некоторой 2^d -мерной коммутативно-ассоциативной гиперкомплексной алгебры (КГА).

Как показано в ряде работ [3, 4] для синтеза быстрых алгоритмов ДПФ длины $N=3^p$, $p\in \mathbb{N}$ предпочтительней использовать представление комплексных чисел и кватернионов в так называемых циклотомических кодах (γ – кодах). В настоящей работе производится обобщение данного представления на случай многомерной КГА.

1. Коммутативно-ассоциативные гиперкомплексные алгебры

Коммутативно-ассоциативной алгеброй ${\bf B}_d$, согласно [1], будем называть 2^d –мерную алгебру над ${\bf R}$ с базисом:

$$\Lambda = \left\{ \prod_{i \in I} \varepsilon_i^{\alpha_i}, \ \alpha_i = 0, 1 \right\}, \tag{2}$$

где ε_i^0 =1, ε_i^1 = ε_i — образующие элементы со следующим правилом умножения:

$$\varepsilon_i \varepsilon_j = \varepsilon_j \varepsilon_i, \ \varepsilon_i^2 = \beta_i, \ i, j \in I.$$
 (3)

Алгебра ${\bf B}_d$ представима в виде прямой суммы 2^{d-1} комплексных алгебр [1].

Введем следующие обозначения

$$\gamma_i \in \mathbf{C}(\varepsilon_i), \ \gamma_i = e^{2\pi\varepsilon_i/3}, \ i \in I,$$

а гиперкомплексные числа $\overline{\gamma}_i$ есть соответствующие образы в \mathbf{B}_d элементов, сопряженных в $\mathbf{C}(\varepsilon_i)$ элементам γ_i .

Определение 1. Упорядоченный набор вещественных чисел $\left(\eta_0, ..., \eta_i, ..., \eta_{2^d-1}\right)$ таких, что:

$$h = \sum_{i \in T} \eta_i \cdot \prod_{j=1}^d \gamma_j^{\iota_j + 1} , \qquad (5)$$

где $T = \left\{0,\dots,2^d-1\right\}$, $i = \overline{\iota_1\dots\iota_d}$, $\iota = \left\{0,1\right\}$ назовем обобщенным $\gamma-$ кодом элемента h и будем обозначать $\langle h \rangle$.

Множество

$$\Upsilon = \left\{ \Gamma_i = \prod_{j=1}^d \gamma_j^{\iota_j + 1}, i = \overline{\iota_1 \dots \iota_d}, \iota_j = \{0, 1\} \right\}, \tag{6}$$

назовем базисом представления алгебры \mathbf{B}_d , а полученную алгебру обозначим $\hat{\mathbf{B}}_d$. Данное представление элементов алгебры \mathbf{B}_d однозначно и произвольный элемент $\langle g \rangle \in \hat{\mathbf{B}}_d$ примет вид:

$$\langle g \rangle = \sum_{i \in T} \xi_i \Gamma_i$$
.

Пусть $\psi(j,t) = \prod_{i \in I} (-1)^{h_i(j,t)}$, где функция h_i -

умножение *i*-го разряда двоичного представления j,t . Тогда множество из 2^d отображений σ_j :

$$\sigma_i : \mathbf{B}_d \to \mathbf{B}_d$$
, (7)

таких, что $\sigma_j(\chi) = \sum_{i \in T} c_i \psi(j,i) E_i$, где $\chi \in \mathbf{B}_d$, $c_i \in \mathbf{R}$,

 $j{\in}T$, является множеством автоморфизмов алгебры \mathbf{B}_d .

Заметим, что $\sigma_j\left(\Gamma_i\right) = \Gamma_{i\oplus j}$, где \oplus – поразрядное сложение по основанию 2, так как $\sigma_j\left(\gamma_i\right) = \gamma_i^{1+h_i(j,j)} = \overline{\gamma}_i$, $i \in I$, $j \in T$. Тогда автоморфизмы (7) алгебры \mathbf{B}_d над \mathbf{R} приводят к следующему преобразованию кодов

$$\langle \sigma_j(g) \rangle = \sum_{i=x} \xi_{i \oplus j} \Gamma_{i \oplus j}$$
, (8)

причем переход от гиперкомплексного элемента к его автоморфному образу реализуется в кодах три-

виально, путем перестановки, и не требует дополнительных вещественных умножений.

В работе [1] показано, что для любого $d \ge 1$ существует только две различных коммутативно-ассоциативных алгебры: алгебра \mathbf{B}_d^+ , в которой $\beta_i = 1$ для каждого $i \in I$ и алгебра \mathbf{B}_d^- , в которой существует $i \in I$ такое, что $\beta_i = -1$.

Будем считать, что при оценке вычислительной сложности рассматриваемых алгоритмов один из сомножителей предполагается постоянным, поэтому все арифметические операции над его компонентами могут быть реализованы заранее. Умножения на степени числа 2 являются более простыми операциями, чем сложения и умножения и не учитываются при анализе вычислительной сложности алгоритмов ДПФ [2, 4].

Теорема 1. Умножение двух произвольных элементов в алгебре \mathbf{B}_d^- можно реализовать за $3 \cdot 2^{d-1}$ вещественных умножений и $(4d-1) \cdot 2^{d-1}$ вещественных сложений.

Доказательство. Пусть
$$g = \sum_{t \in T} \xi_t E_t$$
 , $h = \sum_{t \in T} \eta_t E_t$,

 $g,h\in \mathbf{B}_d^-$ и η_0^{d-1} , η_1^{d-1} , ξ_0^{d-1} , $\xi_1^{d-1}\in \mathbf{B}_{d-1}^-$ тогда данные элементы можно представить в следующем виде:

$$h = \eta_0^{d-1} + \eta_1^{d-1}E$$
, $g = \xi_0^{d-1} + \xi_1^{d-1}E$,

где, согласно [1], $E^2 = 1$. Тогда

$$h \cdot g = \frac{1}{2} \begin{pmatrix} \left(\xi^{+}\right) \left(\eta^{+}\right) + \left(\eta^{-}\right) \left(\xi^{-}\right) \\ \left(\xi^{+}\right) \left(\eta^{+}\right) - \left(\eta^{-}\right) \left(\xi^{-}\right) \end{pmatrix}, \tag{9}$$

где $\xi^\pm\!=\!\xi_0^{d-\!1}\!\pm\!\xi_1^{d-\!1}$, $\eta^\pm\!=\!\eta_0^{d-\!1}\!\pm\!\eta_1^{d-\!1}$. Следовательно, требуется выполнить два умножения элементов КГА размерности 2^{d-1} и четыре сложения элементов КГА размерности 2^{d-1} . Применяя те же самые рассуждения к ${\bf B}_{d-1}$ и далее, получаем алгоритм вычисления, на последнем шаге которого производится умножение элементов алгебры С (комплексных чисел). На k -ом шаге имеем 2^k узлов, то есть 2^k арифметических операций в алгебрах ${\bf B}_{d-k}$. Для каждого шага значения $(\eta_0^{d-k} + \eta_1^{d-k})$ и $(\eta_0^{d-k} - \eta_1^{d-k})$ могут быть рассчитаны заранее. Тогда количество вещественных умножений можно сократить, используя на последнем шаге заранее вычисленное произведение соответствующих констант. Следовательно, мультипликативная сложность вычисления произведения двух произвольных элементов алгебры \mathbf{B}_{d}^{-} составляет $3 \cdot 2^{d-1}$ вещественных умножений.

Аналогичными рассуждениями получаем, что аддитивная сложность умножения двух элементов алгебры \mathbf{B}_d^- составляет $(4d-1)\cdot 2^{d-1}$ вещественных сложений.

Теорема 2. Пусть $\langle g \rangle = (\xi_0, ..., \xi_{2^d-1})$, $\langle h \rangle = (\eta_0, ..., \eta_{2^d-1})$, тогда умножения $\langle hg \rangle$ можно выполнить посредством 3^d вещественных умножений и $3(3^d-2^d)$ вещественных сложений.

Доказательство. Заметим, что в обобщенных кодах также имеет место соотношение:

$$\langle g \rangle = \alpha \gamma_i + \beta \overline{\gamma}_i, \ \langle h \rangle = a \gamma_i + b \overline{\gamma}_i,$$
 (10)

где $\langle \alpha \rangle, \langle \beta \rangle, \langle a \rangle, \langle b \rangle \in \hat{\mathbf{B}}_{d-1}$. Тогда умножение $\langle hg \rangle$ можно реализовать за 3 умножения и за 3 сложения обобщенных кодов размерности 2^{d-1} . Получаем алгоритм вычисления умножения в обобщенных кодах, аналогичный синтезированному в теореме 1. Суммируя сложность на каждом шаге, получаем, что умножение двух произвольных элементов алгебры $\hat{\mathbf{B}}_d$ реализуется посредством 3^d веществен-

ных умножений и $\sum_{i=1}^{d} 3^i 2^{d-i} = 3(3^d - 2^d)$ вещественных сложений, что и требовалось доказать.

Следствие 1. Пусть $g \in \hat{\mathbf{B}}_k$, $h \in \hat{\mathbf{B}}_d$, где k < d. Тогда умножение элементов $\langle g \rangle$ и $\langle h \rangle$ реализуется посредством $3^k 2^{d-k}$ вещественных умножений и $3 \cdot 2^{d-k} \cdot \left(3^k - 2^k\right)$ вещественных сложений.

2. Алгоритм многомерного ГДПФ вещественного сигнала по основанию три

Пусть $f(\mathbf{v}) \in \mathbf{R}$ - преобразуемый многомерный $\binom{N^d}{}$ - массив, $N=3^r$. Его гиперкомплексный спектр определяется соотношением (1). Константы $W(\mathbf{\mu}, \mathbf{v})$, ω_i считаются заданными обобщенными кодами Гамильтона-Эйзенштейна.

Спектр (1) можно представить в форме:

$$\tilde{F}(\boldsymbol{\mu}) = \sum_{r_1, \dots, r_d=0}^{2} \tilde{F}_{\boldsymbol{\rho}}(\boldsymbol{\mu}) W(\boldsymbol{\mu}, \boldsymbol{\rho}) ,$$

где

$$\tilde{F}_{\rho}(\mu) = \sum_{n_1,\dots,n_2=0}^{N/3-1} f_{\rho}(3\nu+\rho)W(\mu,3\nu+\rho).$$

Значения $\tilde{F}_{\rho}\left(\mu\right)$ достаточно полностью вычислять для векторов $\mu{\in}\Delta$, где Δ - фундаментальная область:

$$\Delta = \{ \mu : 0 \le m_1, \dots, m_d \le N/3 - 1 \}$$
.

Значения $\tilde{F}_{
ho}\left(\mu + \mathbf{a}\right)$ для векторов $\mu + \mathbf{a}$, лежащих в областях, полученных из области Δ аддитивными сдвигами на векторы

$$\mathbf{a} = \left(\alpha_1 \frac{N}{3}, \dots, \alpha_d \frac{N}{3}\right), \alpha_i = 0, 1, 2,$$

отличаются от соответствующих $\tilde{F}_{\mathbf{p}}\left(\mathbf{\mu}\right)$ лишь множителями $\gamma_1,...,\gamma_d$, $\overline{\gamma}_1,...,\overline{\gamma}_d$, и не требуют для вычисления дополнительных вещественных операций. При вычислении $\tilde{F}_{\mathbf{p}}\left(\mathbf{\mu}\right)$ достаточно ограничиться значениями $\mathbf{\mu} \in \Delta_0 \subset \Delta$:

$$\Delta_0 = \left\{ \mu : 0 \le m_1, \dots, m_d \le \frac{1}{2} \left(\frac{N}{3} + 1 \right) \right\}$$
.

Значения спектра в остальных точках области Δ вычисляются с использованием тождеств:

$$\begin{split} & \sigma_{\rho} \left(\tilde{F}_{\rho} \left(\boldsymbol{\mu} \right) \omega_{1}^{a\mu} \omega_{2}^{b\upsilon} \right) \prod_{i \in I} \gamma_{i}^{\alpha_{i}+1} = \\ & = & \tilde{F}_{\rho} \left(\boldsymbol{\mu} \right) \left(\frac{N}{3} \cdot \mathbf{a} + \boldsymbol{\mu} \right) W \left(\frac{N}{3} \cdot \mathbf{a} + \boldsymbol{\mu} \right) \end{split}$$

Умножения на $\prod_{i \in I} \gamma_i^{\alpha_i}$ и выполнение отображе-

ний $\sigma_{
m p}$ не требуют нетривиальных вещественных умножений.

Учитывая сложность арифметических операций в обобщенных ү-кодах, получаем:

$$M_3^d \left(N^d \right) = \frac{4^d - 1}{3^d} N^d \log_3 N + O(N^d),$$
 (11)

$$A_3^d \left(N^d \right) = \frac{4^d - 3}{3^{d - 1}} N^d \log_3 N + O(N^d), \tag{12}$$

$$G_3^d \left(N^d \right) = \frac{4^{d+1} - 10}{3^d} N^d \log_3 N + O(N^d),$$
 (13)

где $M_3^d\left(N^d\right)$, $A_3^d\left(N^d\right)$, $G_3^d\left(N^d\right)$ соответственно мультипликативная, аддитивная и общая сложность алгоритма.

Заключение

Предлагаемое представление КГА позволяет синтезировать алгоритмы ГДПФ по основанию три произвольной размерности входного сигнала. При этом с ростом размерности сложность алгоритма возрастает достаточно медленно.

Благодарности

Работа выполнена при поддержке Министерства образования РФ, Администрации Самарской области и Американского фонда гражданских исследований и развития (CRDF Project SA-014-02) в рамках российско-американской программы «Фундаментальные исследования и высшее образование» (ВRHE); а также при поддержке Российского фонда фундаментальных исследований (РФФИ), проекты №№ 03-01-00736, 05-01-96501.

Литература

- Алиев М.В. Быстрые алгоритмы d-мерного ДПФ вещественного сигнала в коммутативно-ассоциативных алгебрах 2d размерности над полем действительных чисел // Компьютерная оптика, 2002. № 24. С. 130-136
- 2. Алиев М.В., Чичева М.А. Алгоритмы двумерного ДПФ с представлением данных в алгебре гиперкомплексных чисел // Алгебра и линейная оптимизация: Труды международного семинара, посвященного 90-летию со дня рождения С.Н. Черникова. Екатеринбург: УрО РАН, 2002. С. 18-26
- 3. Фурман Я.А., Кревецкий А.В., Передреев .К. Введение в контурный анализ; приложения к обработке изображений и сигналов // Под ред. Фурмана Я.А. М.: ФИЗМАТЛИТ, 2002. 592c.
- Geometric Computing with Clifford Algebra // Sommer G. (Ed.). Berlin: Springer-Verlag, Springer Series in Information Sciences, 2001.
- Labunets E.V., Labunets V.G., Egiazarian K., Astola J. Hypercomplex moments application in invariant image recognition // Int. Conf. On Image Processing 98, 1998. P. 256–261.

Multidimensional hypercomplex DFT algorithm implemented in Hamilton-Eisenstein codes

M.V. Aliev¹, M.A. Chicheva², M.F. Alieva¹

¹ Adyghe State University

² Image Processing Systems Institute of RAS

Abstract

The paper synthesizes a "combined" algorithm for a multidimensional hypercomplex discrete Fourier transform of a real signal at base three with data representation in generalized Hamilton-Eisenstein codes. The complexity of arithmetic operations in commutative-associative hypercomplex algebra and its representation in generalized codes is determined. The computational complexity of the synthesized algorithm is evaluated.

<u>Keywords</u>: DFT algorithm, multidimensional hypercomplex, Hamilton-Eisenstein codes, Fourier transform.

<u>Citation</u>: Aliev MV, Chicheva MA, Alieva MF. Multidimensional hypercomplex DFT algorithm implemented in Hamilton-Eisenstein codes. Computer Optics 2004; 26: 99-101.

References

- [1] Aliev MV. Fast algorithms of d-dimensional DFT of real signal in commutative-associative algebras of 2d dimensionality over the real number field [In Russian]. Computer Optics 2002; 24: 130-136.
- [2] Aliev MV, Chicheva MA. Algorithms of two-dimensional DFT with data representation in hypercomplex algebra. Algebra and linear optimization [In Russian]. Proc Int Seminar Dedicated to the 90th Anniversary of S.N. Chernikov 2002: 18-26.
- [3] Furman YA, Krevetskii AV, Peredereev AK. Introduction to contour analysis. Applications for image and signal processing [In Russian]. Moscow: "Fizmatlit" Publisher; 2002.
- [4] Sommer G, ed. Geometric computing with Clifford algebra. Berlin: Springer-Verlag; 2001.
- [5] Labunets EV, Labunets VG, Egiazarian K, Astola J. Hypercomplex moments application in invariant image recognition. Proc 1998 Int Conf on Image Processing (ICIP98) 1998: 256-261.