МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ ИЗЛУЧЕНИЯ ЧЕРЕЗ АНТИОТРАЖАЮЩУЮ РЕШЕТКУ, СФОРМИРОВАННУЮ ПО ТЕХНОЛОГИИ ШТАМПОВКИ НА ТОРЕЦ ГАЛОГЕНИДНОГО ИК-ВОЛНОВОДА

Б.О. Володкин¹, Д.Л. Головашкин², О.Ю. Моисеев², Ю.А. Орехова¹, В.С. Павельев²

¹ Самарский государственный аэрокосмический университет имени академика С.П. Королева, Самара, Россия, ² Институт систем обработки изображений РАН, Самара, Россия

Аннотация

Работа посвящена моделированию дифракции электромагнитного излучения среднего ИК-диапазона на галогенидной антиотражающей решетке. Методом вычислительного эксперимента обнаружен антиотражающий эффект и найдены закономерности его проявления.

<u>Ключевые слова</u>: антиотражающие структуры, штамповка галогенидного микрорельефа, разностное решение уравнений Максвелла.

Введение

Современное состояние оптики характеризуется повышением степени интеграции оптических элементов различного назначения. В частности, совмещение в одном элементе волноводной структуры и устройств ввода/вывода излучения позволяет упростить юстировку оптической системы и улучшить ее массогабаритные характеристики [1].

Развитие волноводной оптики среднего ИК-диапазона ставит задачи по формированию дифракционного микрорельефа на торце галогенидного волновода с целью управления волноводным излучением [2]. Технологические сложности, связанные со штамповкой микрорельефа дифракционного оптического элемента (ДОЭ) на торце, находят разрешение в работе [3], что обуславливает актуальность практического применения как метода штамповки, так и самих ДОЭ.

Существенной проблемой при использовании галогенидных ИК-волноводов остаются высокие френелевские потери на торце, объясняемые большой оптической плотностью материала (n=2,15). Штамповка антиотражающего субволнового рельефа на торец [4] (по той же технологии, что и штамповка ДОЭ) позволяет избежать нанесения тонкопленочного антиотражающего покрытия и связанных с этим технологических проблем.

В предлагаемой работе представлено исследование антиотражающего эффекта методом вычислительного эксперимента. Моделирование распространения излучения через поверхность с антиотражающим рельефом позволяет производить выбор режимов травления матрицы штамповки без самой процедуры штамповки и обеспечивает изучение антиотражающего эффекта для широкого диапазона длин волн.

1. Исследование матриц штамповки

Технология горячей штамповки дифракционного микрорельефа на торце волновода заключается в формировании штамповочной матрицы и переносе рельефа с матрицы на материал торца волновода [2]. Матрицы для нанесения антиотражающих структур изготавливались плазмохимическим травлением на кварцевых подложках. В распоряжении авторов находились матрицы двух типов: с «линейным» (рис. 1) и «нелинейным» (рис. 2) профилем рельефа (для исследования характеристик профиля использовались интерферометр «NewView 5000» и зондовый микроскоп «SOLVER-Pro»).

Рис.1. Общий вид штамповочной матрицы (а) и профиль (б) ее рельефа в «линейном» случае

Рис. 2. Общий вид штамповочной матрицы (а) и профиль (б) ее рельефа в «нелинейном» случае

Причиной несовпадения приведенных на рис. 1 и 2 профилей штамповочных матриц (изготовленных по одной технологии) следует признать отличия режимов их изготовления. Формирование топологии защитной маски из хрома (необходимой при травлении) связано с неустранимым варьированием толщины краевых областей, обуславливающим вышеуказанное несовпадение и характеризуемым случайными технологическими факторами (изменением температурного режима, вибрацией и т.д.).

В рамках данной работы предполагалось, что в результате процесса горячей штамповки антиотражающий микрорельеф адекватно и без искажений переносится на поверхность плоскопараллельной галогенидной пластинки. Кроме того, предполагалось отсутствие изменений показателя преломления и поглощения материала пластинки вследствие нагрева и механических нагрузок в процессе штамповки.

Учитывая, что результирующая галогенидная поверхность (оптическая плотность материала *n*=2,15) инверсна профилю матрицы штамповки, будем разделять случаи «треугольного» (рис. 3*a*) и «нелинейного» (рис. 3*б*) антиотражающего рельефа.

В вычислительном эксперименте один период решетки треугольного профиля аппроксимировался линейной функцией вида y = (-2h/(d-0.9 мкm))|x| для

 $|x| \le \frac{(d-0,9 \text{ мкм})}{2}$ и y = -h для $\left(\frac{(d-0,9 \text{ мкм})}{2}\right) < |x| \le \frac{d}{2}$; нелинейного профиля – параболой $y = \frac{4h}{d^2} |x|^2 - \frac{4h}{d} |x|$

для $|x| \leq d/2$.

2. Выбор параметров вычислительных экспериментов

Наиболее общей моделью вычислительной электродинамики традиционно признаются уравнения Максвелла, для решения которых широкое распространение получил конечно-разностный подход [5]. Его использование позволяет преодолеть ограничения геометрической и скалярной оптики, несовместимые с исследованием субволновых неоднородностей, присущих структурам на рис. 1 и 2.

При постановке вычислительных экспериментов применялась двумерная явная разностная схема Yee [6] и универсальная сеточная область с объединением поглощающих слоев и TFF методикой задания падающего поля [7]. На антиотражающий рельеф по нормали падала плоская однородная волна (интенсивностью I=1 Вт/м²) с линейно поляризованной электрической компонентой, ориентированной вдоль канавок двумерной решетки. Длина волны λ варьировалась в диапазоне от 3 до 8 мкм с шагом 0,5 мкм. Зависимость показателя преломления материала решетки от длины волны в расчетах не учитывалась.

Сеточная область налагалась из расчета 100 узлов на длину волны по пространству; 200 узлов по времени на интервал, за который плоская электромагнитная волна в вакууме проходит расстояние в λ (скорость распространения – с); время распространения $T=30\lambda/c$ считалось достаточным для предположения о монохроматичности поля в области вычислительного эксперимента.

3. Моделирование распространения излучения через галогенидную антиотражающую решетку

Первая серия вычислительных экспериментов связана с исследованием треугольной галогенидной решетки (рис. 3*a*). Анализируя зависимость интенсивности прошедшей волны от λ (таблица 1 – вторая колонка, рис. 4 – непрерывная кривая), следует отметить, что штамповка антиотражаю-

щего рельефа позволяет снизить потери на френелевское отражение с 13,5 % (в случае плоской границы раздела сред) до 1,64% (для $\lambda = 4,0$ мкм). При этом для длины волны $\lambda = 3,0$ мкм антиотражающий эффект не наблюдается, для $\lambda = 3,5$ мкм он незначителен, на отрезке 4,0 мкм $\leq \lambda \leq 8,0$ мкм энергия отраженной волны линейно возрастает до 8,37% от энергии падающей.

Таблица 1. Зависимость интенсивности

прошедшей волны (It) от длины волны (λ) и вида антиотражающего рельефа

λ(мкм)	<i>It</i> (Bt/m ²)	
	треугольный рельеф	нелинейный рельеф
3,0	0,759731934403	0,75373461491
3,5	0,892690708612	0,878725427555
4,0	0,983593020634	0,964543801324
4,5	0,977737342693	0,95683722126
5,0	0,958442050933	0,943581456424
5,5	0,952196721158	0,933828377992
6,0	0,944074932385	0,927267071625
6,5	0,935283529434	0,919724928504
7,0	0,93082025626	0,914721585106
7,5	0,920783584132	0,90840703814
8,0	0,916301544165	0,905736344544

I, Bm/м²

Рис.4. Зависимость антиотражающего эффекта от длины волны для треугольной субволновой решетки (непрерывная кривая) и решетки с нелинейным рельефом (пунктирная кривая). Точечная линия соответствует интенсивности отраженной энергии для плоской границы раздела сред

Результаты второй серии экспериментов (таблица 1 – третья колонка, рис. 4 – пунктирная кривая) получены для антиотражающей решетки с нелинейным рельефом (рис. 36). В отличие от предыдущего случая френелевское отражение снижается лишь до 3,55% (при λ =4,0 мкм). Для $\lambda \leq$ 3,5 мкм антиотражающего эффекта не наблюдается, на отрезке 4,0 мкм $\leq \lambda \leq 8$,0 мкм интенсивность отраженной волны на 0,01-0,02 Вт/м² выше, чем при использовании треугольной решетки. С увеличением значения λ разница в результатах нивелируется.

Выводы

Согласно приведенным результатам расчетов штамповка антиотражающего рельефа на галогенидную поверхность с представленных матриц позволит существенно (до 1,64% от энергии падающей волны при $\lambda = 4,0$ мкм) снизить потери на френелевское отражение. Антиотражающий эффект проявится в максимальной степени для длины волны 4,0 мкм, при уменьшении λ резко спадет, при увеличении снизится постепенно. Следовательно, предложенная технология штамповки на торец волновода может с успехом применяться не только для формирования светоделительных решеток (как показано в [2]), но и для нанесения антиотражающих структур.

Отметим, что результаты моделирования находятся в качественном соответствии с экспериментальными результатами, приведенными в работе [4]. Экспериментально в [4] был зафиксирован антиотражающей эффект в диапазоне длин волн 4,5 мкм - 12 мкм при применении технологии штамповки [3] для создания антиотражающих структур на торце галогенидного волокна. Параметры штамповочных матриц, использованных в [4], были близки к параметрам матриц, использованных при моделировании.

Благодарности

Работа выполнена при поддержке гранта Президента Российской Федерации МД-5303.2007.9, гранта Президента Российской Федерации по поддержке ведущих научных школ НШ-3086.2008.9, гранта CRDF RVXO-014-SA-06 и грантов РФФИ 06-07-08074-офи, 07-02-12134-офи.

Литература

- Prasciolu, M. Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of ebeam lithography / M. Prasciolu [and other] // Microelectronic Engineering, June 2003. – V. 67-68. – P. 169-174.
- Бородин, С.А. Формирование и исследование дифракционного микрорельефа на торце галогенидного ИК волновода / С.А. Бородин [и др.] // Компьютерная оптика, 2005. – №27. – С.45-49.
- Моисеев, О.Ю. Полуавтоматическая установка для формирования микрорельефов на торцах галогенид-

ных ИК-волноводов / О.Ю. Моисеев // Компьютерная оптика, 2008. – Т.32, №.1. – С.62-63.

- Pavelyev, V. S. Realization and investigaton of diffractive microrelief on the end face of silver-halide waveguide / V.S. Pavelyev [and other] – [in *Photon Management III*, edited by John T. Sheridan, Frank Wyrowski] // Proceedings of SPIE, 2008. - Vol. 6994. - 69940Q. - (SPIE, Bellingham, WA 2008)
- Taflove, A. Computational Electrodynamics: The Finite-Difference Time-Domain Method: 2nd. ed. / A. Taflove, S. Hagness // Boston: Arthech House Publishers, 2000. – 852 p.
- Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media / K.S.Yee // IEEE Trans. Antennas Propag., 1966. – AP-14. – P. 302-307.
- Головашкин, Д.Л. Постановка излучающего условия при моделировании работы цилиндрических дифракционных оптических элементов методом разностного решения уравнений Максвелла / Д.Л. Головашкин // Математическое моделирование, 2007. – Т.19, №3. – С.3-14.

MODELLING LIGHT PROPAGATION IN AN ANTIREFLECTION STRUCTURE STAMPED ON THE END OF A HALOGENIDE IR FIBER

B.O. Volodkin¹, D.L. Golovashkin², O.Y. Moiseev², Y.A. Orekhova¹, V.S. Pavelyev² ¹ S.P. Korolyov Samara State Aerospace University, Samara, Russia,

² Image Processing Systems Institute of the RAS, Samara, Russia

Abstract

Diffraction of the mid-range IR radiation from a halogenide antireflection grating is modelled. In the computing experiment, an antireflection effect is discovered and characterized.

<u>Key words</u>: antireflection structure, halogenide microrelief stamping, finite-difference solution of Maxwell's equations.

<u>Citation</u>: Volodkin BO, Golovashkin DL, Moiseev YuA, Orekhova YuA, Pavelyev VS. Modelling light propagation in an antireflection structure stamped on the end of a halogenide IR fiber. Computer Optics 2008; 32(3): 191-4.

<u>Acknowledgements</u>: The work was supported by the President of the Russian Federation MD-5303.2007.9, grant of the President of the Russian Federation under-support of leading scientific schools NSH-3086.2008.9, grant CRDF RVXO-014-SA-06 and RFBR grants 06-07-08074-ofi , 07-02-12134-ofi.

References

- Prasciolu M. Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of ebeam lithography. Microelectronic Engineering, June 2003; 67-68: 169-174.
- [2] Borodin SA, Volkov FV, Kazanskiy NL, Karpeev SV, Moiseev OYu, Pavelyev VS, Yakunenkova DM, Runkov YuA, Golovashkin DL. Fabrication and characterization of a frontend diffractive microrelief in a halogenide IR waveguide [In Russian]. Computer Optics 2005; 27: 45-49.
- [3] Moiseev OYu. Semiautomatic plant for microrelief formation on the ends of IR halogenide waveguides [In Russian]. Computer Optics 2008; 32(1): 62-63.
- [4] Pavelyev VS. Realization and investigaton of diffractive microrelief on the end face of silver-halide waveguide. Photon Management III, edited by John T. Sheridan, Frank Wyrowski. Proceedings of SPIE 2008; 6994: 69940Q (SPIE, Bellingham, WA 2008).
- [5] Taflove A, Hagness S. Computational Electrodynamics: The Finite-Difference Time-Domain Method: 2nd. ed. Boston: Arthech House Publishers, 2000; 852 p.
- [6] Yee KS. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 1966; AP-14: 302-307.
- [7] Golovashkin DL. Formulation of the radiation condition for modeling the cylindrical doe operation using a finite difference solution of Maxwell's equations. Mathematical Modeling 2007, 19(3): 3–14.