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Abstract 

The concept of diffractive optical power is extended over the case of a square diaphragm and of the 
negative Fresnel numbers for the incident wave. The accurate interpolation formula for the image loca-
tion is represented. It contains the additional factor describing the dependence of the optical power on 
the incident wave front curvature. The high precision of the approximation is the conclusive evidence 
for the correctness of the physical model for the focusing action of the diaphragms. 
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Introduction 
The phenomenon of diffraction pulling or diffraction 

shift of image (focus) is at present being under the ac-
tive investigation for as gaussian beams [1, 2] as spheri-
cal and cylindrical waves [3-8]. The approximate for-
mulae for calculation of the diffraction focal shift for 
converging spherical light wave with different Fresnel 
numbers N have been proposed at the number of papers 
[4, 5, 6, 9]. Sufficiently accurate interpolation formula 
for the approximate calculation of the diffraction shift of 
image was found at [9], it is based on the concept of the 
diffractive optical power of a diaphragm.  

We consider the focusing action of the diaphragm to 
be connected with the well-known peculiarities of Fres-
nel diffraction pattern. According to the theory of the 
wave diffraction at the semi-plane, the light field dif-
fuses into the area of geometrical shade. Its intensity is 
increasing as it approaches the shade boundary, but at 
the boundary the intensity reaches only a quarter of the 
geometrical optics value. The light stripes are observed 
in the lighting area, the brightest stripe is the nearest to 

the boundary, and is 0 86. zλ  ( λ  is the wavelength, z 
denotes the distance from the aperture plane) distant 
from it. The maximum intensity is 1.37 in the same 
units. Qualitatively, these peculiarities are retained also 
under the diffraction at an aperture of any form and di-
mension, i.e. the light stripes fringe the shade boundary 
only if the distance to the first light stripe does not ex-
ceed half the diameter of the aperture that is if the con-

dition z aλ ≤ is fulfilled. Any finer structure in the 
transversal intensity distribution cannot exist because 

the condition 2~z aλ  means that there can be only one 
Fresnel zone on the aperture. Hence, when the first light 
stripe of Fresnel diffraction pattern comes onto the 
geometrical optics axis of the diffracted wave, intensity 
distribution at transversal section of the beam is unstruc-
tured. The intensity at the beam axis appears greater 
than its geometrical optics values, and the intensity dis-
tribution at the beam transversal section at the distance 

2z a= λ  becomes narrower than when the diffraction is 

not allowed for. This fact is interpreted as a focusing by 
the aperture and the definite optical power is attributed 
to the aperture. In its turn, the focusing apparently must 

result in the shift of the point source image. Thus the fo-
cusing and the diffraction shift of image are inherent in 
the apertures of arbitrary forms.  

In the Fresnel parabolic approximation the modulus 

of the amplitude of the diffracted field ( ),E z0  on the 

axis of a converging spherical incident light wave with 
the curvature radius R depends explicitly on Fresnel 
number N for the centre of the wave front curvature and 
on difference m zN Nζ = −  ( zN  is Fresnel number for 

the current point z) and implicitly on the aperture form 
that determines the domain of integration. A linear-
hyperbolic interpolation with three parameters allows 
constructing the approximate analytical description of 
the diffraction shift. The difference of values exact

m mζ − ζ  

at two points and the difference of derivatives at one of 
them were reduced to zero. 

Analytical expression for the z co-ordinate of the in-

tensity maximum ( ) 2
,E z0   has the form of a lens for-

mula [9]: 

1 1
Dz R

= + Φ , 

( )
2 2

2

4
D

b

a N c N c bd

λΦ = ⋅
− + − +

. (1) 

Where 2N a R= λ , a is the radius of the circular 
aperture (or the radius of the circumscribing circle in the 
case of the polygon aperture). 

For the case of the aperture in the form of a rectilin-
ear polygon with l side, the numerical values of the co-
efficients b, c and d are presented in the Table 1. Coeffi-
cients values demonstrate the convergence to the circu-
lar aperture (l = ∞ ) as the variable l is increasing. 

The quantity DΦ  can be considered as the optical 
power of the aperture due to the diffraction by origin. In 
addition to the factor 2aλ  it contains the additional 

factor describing the dependence DΦ  on N or on the 

wave front curvature 1 R . The precision of these equa-
tions proves to be as over the precision of the equations 
offered in [4 – 6] as ten times. 
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Table 1. Numerical values for coefficients 

l 0ζ  b c d 

∞ 1.000 12/π2= 
=1.2159 

0.0357 1.2516 

8 1.106 1.4793 0.0393 1.2452 
6 1.192 1.6965 0.0410 1.2282 
5 1.282 1.9152 0.0376 1.1940 

In the case of the divergent incident wave, the ques-
tion about the opportunity for the applicability of the 
diffractive optical power concept to the action of a dia-
phragm demands the additional analysis. The question is 
that the first light stripe of Fresnel diffraction pattern is 
not able to come onto the axis of the diffracted beam if 

( (R  is sufficiently small quantity ( 0R < ). In this spe-

cific case the physical basis of the concept is failed. 
This paper expands on the previous study [9, 10]. The 
possibility of the diffractive focusing of the divergent 
wave is considered. Special attention is given to the dif-
fraction at the square diaphragm. 

1. A converging spherical incident light wave 

Let us consider the modulus of the amplitude of the 

diffracted field ( ),E z0  at the axis of a spherical inci-

dent wave with the curvature radius R. We center the 
origin of co-ordinates on the aperture. Analyzing 
Kirchhoff integral in the parabolic approximation, we 
will use the effective Fresnel numbers N and zN  de-

fined through the radius 0a  of the circumscribing circle: 
2
0

z

a
N

z
=

λ ⋅
, 

2
0a

N
R

=
λ ⋅

, (2) 

the difference 
2
0 1 1

z

a
N N

z R
 ζ = − = − λ  

 (3) 

will be the main dimensionless variable. 
With this specific notation the modulus of the field 

amplitude ( ),E z0  can be written as 

( ) ( ) ( ), 1E z N f= + ζ ζ0 ,  

( ) ( )expf i dζ = ζ πζ ⋅∫
2r r . (4) 

Here r  is the radius vector at the aperture plane, 
normalised on 0a . The co-ordinate z is measured from 
the centre of the aperture.  The integral is evaluated over 
the surface of the aperture, using conventional normali-
sation the geometrical optics quantity is 1E = . 

It can be seen the function ( , )E z0  explicitly de-

pends on two parameters - N and ζ , and implicitly -- on 
the aperture form, which defines the domain of integra-

tion. Substantially, the function f(ζ) depends only on ζ 
and the form of the aperture, and explicitly it does not 
depend on the radius of curvature R for the incident 
wave front. In this sense f(ζ) is universal, it equally de-
scribes the diffraction of plane, converging and diverg-
ing waves. The quantity R begins to influence f(ζ) only 
after the transition from ζ to variable z by formulae (2) 
and (3). With variables N, ζ  the field amplitude depends 
on R only over the factor 1 N+ ζ . The phenomenon of 
the diffraction shift for image is connected just with the 
factor 1 N+ ζ .  

The variable ζ  is also convenient in the problem of 

calculation accuracy of the diffraction shift. Usually it is 
not the absolute value of the image position uncertainty 

zδ  that is important but its ratio to the diffraction focal 
tolerance z∆  (length of the beam waist): 

2

2
z

z z
z

Na

λ
∆ ≈ = , 

z

z z
N

z z

δ δ= = −δζ
∆

. (5) 

For a square aperture the function ( )f ζ  in formula 

(4) is expressed in terms of Fresnel integrals: 

( ) ( ) ( )2 22f C S ζ = ζ + ζ
 

, (6) 

( ) 2

0

cos d
2

C t t
ζ π ζ =  

 
∫ , 

( ) 2

0

sin d
2

S t t
ζ π ζ =  

 
∫ . 

A plot of the function ( )f ζ  is shown in Fig.1 (curve 1). 
In case of plane incident wave (N=0), the principal ampli-
tude maximum is caused by maximum of the function 

( )f ζ , which appears first as ζ  increases up to the value  

0 1.4629ζ = ζ = . (7) 

At this point 

0( ) 1.801f ζ = , 2
0( ) 3.244f ζ = . (8) 

A plot of the function ( )f ζ  for the circular aperture 
is shown in Fig. 1 (curve 2). Here at the point 

0 1ζ = ζ = , (0, ) 2E z = , i. e. it is twice the value ob-

tained from the geometrical optics, and the intensity is 
four times, and the transversal distribution has approxi-
mately half the width determined under the geometrical 
optics. Therefore, the diffraction focal effect of a square 
aperture is less (19%) than that of circular aperture. 

The point of maximum intensity is given by the root 

of the equation ( ), 0E z
′

=0  from which the explicit 

form of the inverse function ( )mN ζ  follows: 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3/2

2 2

cos / 2 sin / 2

cos / 2 sin / 2

m m m m m

m

m m m m m m m

C S
N

C S C S

 ζ ζ πζ + ζ πζ
 ζ =

 ζ + ζ − ζ ζ πζ + ζ πζ
 

 (9)
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The function ( )m Nζ  of interest is found by linear 

interpolation from calculated values of ( )mN ζ . 

 
Fig. 1. The function ( )f ζ  for square and circular 

diaphragms (curve 1 and 2, respectively) 

The behaviour of ( )mN ζ  in the limiting cases of 

small and large diffraction shifts is derived from equa-
tion (9) using the corresponding power expansions of 
trigonometric integrands: 

2

45

2 m

N =
π ζ

, 1mζ << , (10) 

( )0 mN = γ ζ − ζ , 0 1mζ − ζ << , (11) 

where the coefficient 

( ) ( )
( ) ( )

2 2
0 0 0 0

2 2
0 0

1
2.1157

2

C S

C S

 ζ π ζ ζ + ζ −  γ = =
 ζ + ζ
 

. 

For the analytical description of the dependence ζm 
on N, we propose the approximating formula, which is 
based on the asymptotic values (10), (11), and in which, 
instead of the trigonometric functions and Fresnel inte-
grals, included in the ratio (9), the power series are 
used: 

k
k m k

m

b
N d c= − ζ + +

ζ
. (12) 

Three coefficients bk, ck, dk are defined according to 
the limiting values (10), (11):  

245 2 2.2797kb = π = ; 2
0 1.0500k kd b= γ − ζ = ; 

0 0 0.0230k k kc d b= ζ − ζ = − . (13) 

Equation (12) allows one to get the analytical ex-
pression for the function ( )m Nζ :  

( )2

2

4

k
m

k k k k

b

N c N c b d
ζ =

− + − +
. (14) 

If we turn into the dimensional variables we will 
write (14) as (1). 

The differences of the accurate and approximate 
values were numerically calculated from (9) and (14). 
The maximal error in equation (14) takes place for 
N=2.3 and is equal to 0.0015. 

The attractive attempt to reduce the shift with a 
square aperture to the shift with an effective circular ap-

erture to be rather rough in fact. The form of pupil dis-
plays, in particular, in the difference of signs of the pa-
rameter c. We tried to apply Eq.(1)  with numerical val-
ues of coefficients for circular aperture (from Tabl.1) to 
determine the focal shift in the case of a square aperture 
by substituting N by Nα , where the coefficient α was 
found by the least square method. The optimal fitting 
yields the estimation error ζm equal to − 0.083 if 
N>2.68, and equal to 0.4 if 0N →  (α=0.3758). In other 
words, diffraction shift with a square aperture and effec-
tive circular aperture are equivalent only with such ac-
curacy. At the same time, approximation formula en-
sures much higher accuracy (~0.0015) with the proper 
choice (13) for coefficients. 

2. A divergent spherical incident light wave 

Now consider the divergent spherical wave diffrac-
tion at the square diaphragm. Ray tracing through the 
diaphragm is shown at Fig. 2. Here F is the point light 
source. The co-ordinate plane ( ),x y  is placed at the 

diaphragm plane. The observation plane is parallel to 
the diaphragm and is z distant. The typical plot of Fres-
nel intensity distribution ( )0 ,0I x  at the observation 

plane ( )0 0,x y  is given at Fig. 2. 

 
Fig. 2. Ray tracing through the diaphragm 

Let find the maximum value N  (R<0) for the inci-

dent wave for which diffractive forming of the point im-
age is possible in the sense, that the first light stripe of 
Fresnel diffraction pattern comes onto the axis of the dif-
fracted beam. For the divergent wave the first light stripe 
maximum is x1 distant (Fig. 2) from the shade boundary. 
According to [11] the distance x1 is expressed by  

( )1 1 1 2x v z R z= + λ , 1 1.21720v = . (15) 

At the plane ( ),x z  the first light stripe maximum 

describe the curve under the variation of z. The curve 
equation is  

( ) ( ) ( )0
11 1 2

2

a
x z z R v z R z= + − + λ . (16) 

Under the condition R → ∞  (the plane incident 

wave) the point z, in which the first light stripe comes 
onto the axis ( )0x = , can be find from (16):  

2 2
0 1mz a v= λ , 2

1 1.4816v = . (17) 

According to (1) the exact value for z co-ordinate of 
the intensity maximum at the axis is equal to 
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( )2
0 1.4626mz a= λ . Thus the qualitative relations, 

based on Fresnel diffraction pattern characteristics, 
bring to the result differed from the exact calculation 
only by 1.3%. Formula (17) evaluate the diffractive 
back focal length for the diaphragm or 1 DΦ . 

Let introduce the dimensionless variable x aξ = , 

z Rη =  and rewrite the equation (16) as 

( ) ( )

( )
1

1

1 1

1 1

v N

v N

ξ η = + η− η + η =

= + η + η − η
. (18) 

The geometric loci for the first diffraction stripe 
maximum under the various N are given as curves at 
Fig. 3. Curves under the small N cross the optical axis 
and, therefore, the diffraction focusing is carried out for 
weakly divergent waves.  

 
Fig. 3. The geometric locus for the first diffraction stripe 

maximum under the various N 

The point mη  for the validity of the equa-

tion ( ) 0ξ η =  can be find from (18): 

( (( )2
11 1m v Nη = − . (19) 

Hence, the focusing is actualised if 
2
1| |N v≤ . (20) 

Or in absolute values  

( )2 2
0 1R a v≥ λ , ( )2 2

0 1R a v− ≥ λ . (21) 

The equality in the expression (20) and (21) evaluate 
the front diffractive focal length R of the diaphragm. This 
length coincides with the back diffractive focal length 
(17) up to a sign. That is, the well-known ratio for the 
perfect optical systems is satisfied in this instance. 

If ( )2 2
0 1R a v< λ  than the diffractive optical power 

of the diaphragm is low to focus the real point image 
and it would be the virtual image ( )0mη < . 

All of it becomes explicitly clear if to rewrite the 
equation (19) by the absolute value: 

1 1 1m Dz R f+ = ,   2 2
1 01 Df v a= λ . (22) 

Then fulfil the analysis for the Fresnel diffraction in-
tegral. The intensity distributions along the z axis under 

0 0x = , 0N <  and along the 0x  axis under N<0 (di-
vergent waves) are of interest, that is the case of the 
one-dimensional problem is of interest. Let write the in-
tensity at the point 0, 0,x z  (Fig. 2) as  

( ) ( ) ( )
2

1

2

2
0

1
, 1 exp 2 d

2

t

t

I x z N j t t= + ζ π∫ , (23) 

1,2 0 z kt x N a= ± ζ − ζ . 

At Fig. 4 the plots show the intensity distributions at 
the optical axis in relation to z R at given N.  

 
Fig. 4. The plots show the intensity distribution at the optical 

axis in relation to z R  distance under various N 

The units of measure for the intensity I are choose so 
that the quantity I is equal to 1.8014 under N=0. The dis-
tinct maximum is observed in the curves for the absolute 
value of |N| satisfied the inequality: 1.4816N < . As  |N| is 

growing the maximum location is displaced toward the 
bigger z values. This fact agrees with the “lens formula” 
(22). Maxima exist under 1.4816N > , but they are 

marked feebly. Transverse intensity distributions ( )0 ,I x z  

in relation to 0x a in the planes of the ( ),I z0  maxima are 

shown at Fig. 5. Value N is indicated as bracketed number 
above the curve. The corners mark the geometrical optics 
boundary of the shade for every curve at the Fig. 5. As the 
figure indicates the constriction of the lighted field has re-
sulted from the diffraction at any case. The intensity 
maximum at the axis has the less height than it from Airy 
disk under N=0 and the intensity do not decrease down to 
zero. The lighted field is enlarged and the intensity maxi-
mum height is decreased as far as |N| is growing. In the 
curve 3 (Fig. 5) the peak at the axis 0 0x a =  is not de-
lineated and the second peak is placed almost in the point 

kx a= . This fact conforms to the analogy among the dif-
fractive and the geometrical optics focusing: the value N = 
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–1.48 answers the light source position at the front focus of 
the diffractive lens when the half width of the beam would 
be equal to ak according to the geometrical optics. 

In the curve 4 and 5 (Fig. 5) the maximum at the 
axis x0/a=0 is not observed, the focusing is absent in the 
case of N = –1.48. 

 
Fig. 5. Transverse intensity distributions I in relation to 0x a  in the plane of ( ),I z0  maxima under various N 

The root of the equation ( )d , d 0E z z =0  gives the 

maximum intensity location mζ  at the axis. The explicit 

form (9) for the function ( )mN ζ  is correct for the nega-

tive N, too. The inverse interpolation function ( )m Nζ  

coincides with (1). 
The accuracy of approximate expression (1) is calcu-

lated with help of (9). The 100-fold magnified differ-

ence ( )exact
m mζ −ζ  of the results of the direct determina-

tion of the location of the intensity maximum and the 
calculation of mζ  from approximating formula subject to 

N is illustrated by curve 1, figure 6. The error of the cal-
culation of the image location from formula (1) does not 
exceed 0.15% of the diffraction depth of focus in the re-
gion 0.37 N− < < ∞ . In the region 1.48 0.37N− < ≤ −  
the error grow and the accuracy of the approximate ex-
pression (1) decrease down to 2.86% for N = − 1.48. 

In the case of negative N, the next more accurate in-
terpolation formula for the maximum location has to be 
applied: 

m mN = β ζ + σ − δζ , 

( )2

2

4
m

N N

βζ =
−σ + − σ + δβ

, (24) 

where the coefficients 2.4330β = , 0.2326σ = −  and 
0.9783δ =  are determined from the values in the point 

of interpolation:  

0 00, 1.4626N = ζ = , 
0

2.1157dN d
ζ=ζ

ζ = − ; 

1 11, 2.0172N = − ζ = .  

The curve 2 (Fig. 6) gives the difference 

( ) 100exact
m mζ −ζ ×  obtained with a help of (24) subject 

to N. The error of the calculation of the image location 
from formula (24) does not exceed 0.07% of the diffrac-
tion depth of focus in the region 1.015 0N− ≤ < , then it 
increase as far as N decrease and it become equal to 
1.0% under 1.4815N = − .  

 

Fig. 6. The 100-fold magnified difference ( )exact
m mζ −ζ   

of the results of the direct determination of the intensity 
maximum location and the calculation of mζ  from 

approximated  formula (1)  (curve 1)  
and  formula (24) (curve 2) 

3. Conclusion 
As a result of the consideration of diffractive shift of 

an image we have extended the concept of the optical 
power of a diaphragm over the case of square dia-
phragm and the negative Fresnel number. The high ap-



Diffractive optical power of a square diaphragm  I. G. Palchikova, S. G. Rautian 

 248 

proximation precision (0.07%) is the conclusive evi-
dence for the correctness of our physical model for the 
focusing action of the diaphragms. 
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Аннотация 

Концепция дифракционной оптической силы расширена на случай квадратной диафраг-
мы и отрицательных чисел Френеля падающей волны. Найдена интерполяционная формула 
для определения местоположения изображения, которая содержит дополнительный член, 
учитывающий зависимость оптической силы от радиуса кривизны падающего волнового 
фронта. Высокая точность этого приближения является убедительным доказательством ис-
тинности предложенной физической трактовки фокусирующего действия диафрагм. 
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