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Abstract

The concept of diffractive optical power is extethdeer the case of a square diaphragm and of the
negative Fresnel numbers for the incident wave.adoarate interpolation formula for the image loca-
tion is represented. It contains the additionaiofadescribing the dependence of the optical pamer
the incident wave front curvature. The high precisif the approximation is the conclusive evidence
for the correctness of the physical model for tdaei$ing action of the diaphragms.
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Introduction

The phenomenon of diffraction pulling or diffractio
shift of image (focus) is at present being under dl-
tive investigation for as gaussian beams [1, Xpdeeri-
cal and cylindrical waves [3-8]. The approximate- fo
mulae for calculation of the diffraction focal ghfbr
converging spherical light wave with different Frek

numbersN have been proposed at the number of papers

[4, 5, 6, 9]. Sufficiently accurate interpolatioarmula
for the approximate calculation of the diffractisiift of
image was found at [9], it is based on the conoéphe
diffractive optical power of a diaphragm.

We consider the focusing action of the diaphragm to
be connected with the well-known peculiarities oég-
nel diffraction pattern. According to the theory thie
wave diffraction at the semi-plane, the light fialid-
fuses into the area of geometrical shade. Its ity s
increasing as it approaches the shade boundaryatbut
the boundary the intensity reaches only a quarté¢ne
geometrical optics value. The light stripes areeowsd
in the lighting area, the brightest stripe is tleanmst to

the boundary, and i9.86/Az (A is the wavelengthz
denotes the distance from the aperture plane) rdista
from it. The maximum intensity is 1.37 in the same
units. Qualitatively, these peculiarities are ne¢ai also
under the diffraction at an aperture of any fornd dit
mension, i.e. the light stripes fringe the shadenutary
only if the distance to the first light stripe domst ex-
ceed half the diameter of the aperture that ikéfdon-

dition vAz <ais fulfiled. Any finer structure in the
transversal intensity distribution cannot exist chese

the conditionAz ~ a® means that there can be only one
Fresnel zone on the aperture. Hence, when thdifjrst
stripe of Fresnel diffraction pattern comes onte th
geometrical optics axis of the diffracted wavegentity
distribution at transversal section of the beanmistruc-
tured. The intensity at the beam axis appears great
than its geometrical optics values, and the intgrdis-
tribution at the beam transversal section at tiséadce

z=a’/\ becomes narrower than when the diffraction is

not allowed for. This fact is interpreted as a feiog by
the aperture and the definite optical power isitaited
to the aperture. In its turn, the focusing appdyemust

result in the shift of the point source image. Tthesfo-
cusing and the diffraction shift of image are irdmerin
the apertures of arbitrary forms.

In the Fresnel parabolic approximation the modulus

of the amplitude of the diffracted fiel|rE(O, z)| on the

axis of a converging spherical incident light wawith

the curvature radiu®k depends explicitly on Fresnel
numberN for the centre of the wave front curvature and
on difference,, =N, - N (N, is Fresnel number for

the current poing) and implicitly on the aperture form
that determines the domain of integration. A linear
hyperbolic interpolation with three parameters @hlo
constructing the approximate analytical descriptafn
the diffraction shift. The difference of valué§™ -,
at two points and the difference of derivative®ia¢ of
them were reduced to zero.

Analytical expression for theco-ordinate of the in-

tensity maximum/E (0, z)|2 has the form of a lens for-

mula [9]:
1:_1+¢D'
z R
@, =20 2 ®

" N—c+y(N-c)* +abd

Where N =a?/AR, a is the radius of the circular

aperture (or the radius of the circumscribing eirici the
case of the polygon aperture).

For the case of the aperture in the form of alieeti
ear polygon withH side, the numerical values of the co-
efficientsb, candd are presented in the Table 1. Coeffi-
cients values demonstrate the convergence to tbe-ci

lar aperture [ = o ) as the variableis increasing.

The quantity @, can be considered as the optical
power of the aperture due to the diffraction byiri In
addition to the factor\/a® it contains the additional
factor describing the dependense, on N or on the
wave front curvaturd/R . The precision of these equa-

tions proves to be as over the precision of thegons
offered in [4 — 6] as ten times.
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Table 1. Numerical values for coefficients

| Z, b c d
12fP=

00 1.000 | -°5 cg| 0.0357 | 1.2516

8 1.106 1.4793] 0.0393 1.245p

6 1.192 1.6965| 0.0410 1.228p

5 1.282 1.9152| 0.0376 1.194D

In the case of the divergent incident wave, thesque
tion about the opportunity for the applicability tfe
diffractive optical power concept to the actionaotlia-
phragm demands the additional analysis. The quektio
that the first light stripe of Fresnel diffractigattern is
not able to come onto the axis of the diffractednef
(R( is sufficiently small quantity R<0). In this spe-
cific case the physical basis of the concept itedai
This paper expands on the previous study [9, 1B¢ T
possibility of the diffractive focusing of the dingent
wave is considered. Special attention is giverheodif-
fraction at the square diaphragm.

1. A converging spherical incident light wave
Let us consider the modulus of the amplitude of the
diffracted field |E(O, z)| at the axis of a spherical inci-

dent wave with the curvature radit®gs We center the
origin of co-ordinates on the aperture. Analyzing
Kirchhoff integral in the parabolic approximatiowe
will use the effective Fresnel numbéxsand N, de-

fined through the radiug, of the circumscribing circle:

2 2
Nz:&’ N :i, 2)
AZ AR
the difference
2
a(l1 1
=N,-N=—|——— 3
(o= (1) .

will be the main dimensionless variable.
With this specific notation the modulus of the diel

amplitude| E(O, z)| can be written as

[E(0.2)| = (1+ N/7) £(2).

t(¢)=¢|[exp(ing %) ar|. (4)

Here r is the radius vector at the aperture plane,
normalised ona,. The co-ordinate is measured from

the centre of the aperture. The integral is evatliaver
the surface of the aperture, using conventionamadis

sation the geometrical optics quantityig =1.

It can be seen the functiofiE(0,z)| explicitly de-

pends on two parameterdN-and{, and implicitly -- on
the aperture form, which defines the domain ofgrae

., [C(\/Z)cos(n{m /2)+S(\/K) sifT , /Z)J

tion. Substantially, the functioff¢) depends only o4
and the form of the aperture, and explicitly it slot
depend on the radius of curvaturefor the incident
wave front. In this sensi€() is universal, it equally de-
scribes the diffraction of plane, converging andedj-
ing waves. The quantitR begins to influenc&?) only
after the transition fronj to variablez by formulae (2)
and (3). With variablel, { the field amplitude depends
on R only over the factod+ N/C. The phenomenon of
the diffraction shift for image is connected justhwthe
factor 1+ N/C.

The variable is also convenient in the problem of
calculation accuracy of the diffraction shift. UHyat is
not the absolute value of the image position uadety
0z that is important but its ratio to the diffractifocal
toleranceAz (length of the beam waist):

2
Azz)\—i:i,
a N,
E:Nzé—zz—éz. (5)
Az z

For a square aperture the functidr(() in formula
(4) is expressed in terms of Fresnel integrals:
()= 2+ (42)]

4

C(\/Z)=Jjjco{gtz) d,
S(\/Z) =fsin[gt2)d :

A plot of the function f (¢) is shownin Fig.1 (curve 1).

In case of plane incident waw=<0), the principal ampli-
tude maximum is caused by maximum of the function

f (Z) , which appears first a& increases upto the value

(6)

{ =, =1.4628. 7)
At this point
f (,)=1.801, f?(Z,)=3.244. (8)

A plot of the function f (¢) for the circular aperture
is shown in Fig.1 (curve 2). Here at the point
1=0,=1, |[E(0,2)|= 2, i. e. it is twice the value ob-
tained from the geometrical optics, and the intgnisi
four times, and the transversal distribution hasrexi-
mately half the width determined under the georoatri
optics. Therefore, the diffraction focal effectaquare
aperture is less (19%) than that of circular apertu

The point of maximum intensity is given by the root

of the equationE(0,z)| =0 from which the explicit

form of the inverse functiomN(,,) follows:

N(¢n)=
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(9)



2009

KomMmbrorepHas onruka, Tom 33,Ne3

The functionZ,,(N) of interest is found by linear
interpolation from calculated values N(Zm) .

S ‘
1.6 -

1.21 7

.80

0.4 2

{ 1 2 4 ) &

10
Fig. 1. Thefunction f (Z) for square and circular

Oy

diaphragms (curve 1 and 2, respectively)
The behaviour ofN(Zm) in the limiting cases of

small and large diffraction shifts is derived framqua-
tion (9) using the corresponding power expansioins o
trigonometric integrands:

_ 45
N_—anzm, g, <<1, (10)
N=vy(3,-2n)s o~ Cn<<1, (11)
where the coefficient
G| WG (V) #5422 -1
= [ \/ ( ) ( ) } =2.1157.

o] (@]

For the analytical description of the dependetge
on N, we propose the approximating formula, which is
based on the asymptotic values (10), (11), andnichy
instead of the trigonometric functions and Fresnts-
grals, included in the ratio (9), the power serie
used:

N = -0, +G, +% . (12)
Three coefficientdy, ¢, dk are defined according to
the limiting values (10), (11):
b, =45 2% =2.279% d, =y-h /{2 =1.0500;

6, =dZ, -b /T, =—0.023C. (13)

Equation (12) allows one to get the analytical ex-
pression for the functio,(N):

_ 20,
(= = :

N-c, +\/(N -¢.) +4bd,

If we turn into the dimensional variables we will
write (14) as (1).

The differences of the accurate and approximate
values were numerically calculated from (9) and)(14
The maximal error in equation (14) takes place for
N=2.3 and is equal to 0.0015.

The attractive attempt to reduce the shift with a
square aperture to the shift with an effectiveudac ap-

(14)

erture to be rather rough in fact. The form of puls-
plays, in particular, in the difference of signstbé pa-
rameterc. We tried to apply Eq.(1) with numerical val-
ues of coefficients for circular aperture (from Tapto
determine the focal shift in the case of a squpegtare

by substitutingN by aN , where the coefficientr was
found by the least square method. The optimalnftti
yields the estimation errof, equal to- 0.083 if
N>2.68, and equal to 0.4 Nl - 0 (a¢=0.3758). In other
words, diffraction shift with a square aperture affec-
tive circular aperture are equivalent only with suac-
curacy. At the same time, approximation formula en-
sures much higher accuracy (~0.0015) with the prope
choice (13) for coefficients.

2. A divergent spherical incident light wave

Now consider the divergent spherical wave diffrac-
tion at the square diaphragm. Ray tracing through t
diaphragm is shown at Fig. 2. Hdfes the point light

source. The co-ordinate plar(e<, y) is placed at the

diaphragm plane. The observation plane is parédiel
the diaphragm and isdistant. The typical plot of Fres-

nel intensity distribution|(x,,0) at the observation

plane (x,, y,) is given at Fig. 2.

X Xn
X
g2 >%/V
f z
| R
(. 0)

Fig. 2. Ray tracing through the diaphragm
Let find the maximum valugN| (R<0) for the inci-

dent wave for which diffractive forming of the pbim-
age is possible in the sense, that the first Iggtipe of
Fresnel diffraction pattern comes onto the axithefdif-
fracted beam. For the divergent wave the firsttlghipe
maximum isx, distant (Fig. 2) from the shade boundary.
According to [11] the distanceis expressed by

x, =viy[(L1+ Z|R)A 2/2, v =1.2172C,

At the plane(x,z) the first light stripe maximum

describe the curve under the variationzofThe curve
equation is

x(z):%(1+z/|R|)—vlJ(l+ Z|R)A z/2.  (16)

Under the condition|R — « (the plane incident

wave) the pointz, in which the first light stripe comes
onto the axis(x = 0), can be find from (16):

(15)

z. =a/\ vV, ¥ =1.4816. (17)

According to (1) the exact value farco-ordinate of

the intensity maximum at the axis is equal to
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z,=a,/(1.4626\). Thus the qualitative relations,
based on Fresnel diffraction pattern charactesstic
bring to the result differed from the exact caltioia
only by 1.3%. Formula (17) evaluate the diffractive
back focal length for the diaphragm #id,, .

Let introduce the dimensionless variabie= x/a,
n=2z/|R and rewrite the equation (16) as

&(n) =1+n-viyn(1+n)/IN| =
=1+n (\/1+n —vl\/n/|N|) .

The geometric loci for the first diffraction stripe
maximum under the various N are given as curves at
Fig. 3. Curves under the small cross the optical axis
and, therefore, the diffraction focusing is carrgad for
weakly divergent waves.

xXda T T T T T 7]

e
~

(18)

geom. shade s

0.5

1.0 2.0 R

Fig. 3. Thegeometric locus for the first diffraction stripe
maximum under the various N

) .5

The point n,, for the validity of the equa-
tiong(n) =0 can be find from (18):

N =3/(V/(N(-1). (19)
Hence, the focusing is actualised if

IN EV. (20)
Or in absolute values

|R|2a§/()\vf) -R> aj/()\vf) (21)

The equality in the expression (20) and (21) evealua
the front diffractive focal lengtR of the diaphragm. This
length coincides with the back diffractive focahdgh
(17) up to a sign. That is, the well-known ratio foe
perfect optical systems is satisfied in this instan

If R<a?/(Av?) than the diffractive optical power
EYAUA

of the diaphragm is low to focus the real point gma
and it would be the virtual imagfn, <0) .
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All of it becomes explicitly clear if to rewrite ¢h
equation (19) by the absolute value:

Yz, +YIR=1f, . ¥ =2 v/a;.

Then fulfil the analysis for the Fresnel diffraction-
tegral. The intensity distributions along thaxis under
X =0, N <O and along thex, axis undeMN<O (di-

vergent waves) are of interest, that is the casthef
one-dimensional problem is of interest. Let wrhe in-

tensity at the pointx,, 0,z (Fig. 2) as

t

J‘exp(jntz/a d
b

L,=% ¢ _XoNz/ak\/Z'

At Fig. 4 the plots show the intensity distributsoait
the optical axis in relation t@/|R at givenN.

(22)

2
]

1 (%,2) :%(1+ N/2) 23)

T T T

1{0,2)
Per 1
unil |

N——1.0

0.2+
L —2.00 |

0

1.4 3.0 z/ R

Fig. 4. The plots show the intensity distribution at the optical
axisin relation to z/|R distance under variousN

N5 2.0

The units of measure for the intenditgre choose so
that the quantity is equal to 1.8014 und&=0. The dis-
tinct maximum is observed in the curves for theokite

value of IN| satisfied the inequalityN| <1.481€. As IN|is

growing the maximum location is displaced toward th
biggerz values This fact agrees with the “lens formula”

(22). Maxima exist undefN|>1.481€, but they are
marked feebly. Transverse intensity distributiorfs,, z)

in relation tox,/a in the planes of thé (0,z) maxima are

shown at Fig. 5. Valul is indicated as bracketed number
above the curve. The corners mark the geometrjutat<o
boundary of the shade for every curve at the Fi§sShe
figure indicates the constriction of the lighteeldi has re-
sulted from the diffraction at any case. The irtgns
maximum at the axis has the less height than fib fAdry
disk undeMN=0 and the intensity do not decrease down to
zero. The lighted field is enlarged and the intgnsiaxi-
mum height is decreased as far Misi§ growing. In the
curve 3 (Fig. 5) the peak at the axis/a=0 is not de-
lineated and the second peak is placed almoseimpdmt

X =4a, . This fact conforms to the analogy among the dif-

fractive and the geometrical optics focusing: thlei@N =
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—1.48 answers the light source position at thet faous of
the diffractive lens when the half width of the imeaould
be equal t@y according to the geometrical optics.

In the curve 4 and 5 (Fig. 5) the maximum at the
axis %/a=0 is not observed, the focusing is absent in the
case oN =-1.48.

I T T T
Per
unit

05

0.1

0 |

T T T

1
0.5 1.0

3.0 x/a

Fig. 5. Transverse intensity distributions | in relation to X,/a in the plane of | (O, z) maxima under variousN

The root of the equationlE (0,z)/dz= 0 gives the
maximum intensity locatior{,, at the axis. The explicit
form (9) for the functionN (Zm) is correct for the nega-

tive N, too. The inverse interpolation functidfy, (N)

coincides with (1).
The accuracy of approximate expression (1) is ealcu
lated with help of (9). The 100-fold magnified diff

ence (Zf;m —Zm) of the results of the direct determina-

tion of the location of the intensity maximum arct
calculation of¢,, from approximating formula subject to
N is illustrated by curve 1, figure 6. The errortbé cal-
culation of the image location from formula (1) domt
exceed 0.15% of the diffraction depth of focustia te-
gion —0.37<N <. In the region-1.48<N < -0.37
the error grow and the accuracy of the approxireate
pression (1) decrease down to 2.86% o= —1.48.

In the case of negativé, the next more accurate in-
terpolation formula for the maximum location had®
applied:

N=B /¢, +0-8&,,

- 2B

= = ,
N-o +\/(N—0) +453

where the coefficientsd =2.4330, o=-0.232€ and

(24)

m

0=0.9782 are determined from the values in the point

of interpolation:
N, =0, {, =1.462€ dN/d{|_, =-2.1157;

N, =-1, {,=2.017Z
The curve 2 (Fig.6) gives the difference
(Z;’f‘“ —Zm)XIOO obtained with a help of (24) subject

to N. The error of the calculation of the image location
from formula (24) does not exceed 0.07% of theraff
tion depth of focus in the regionl.015< N < C, then it
increase as far ad decrease and it become equal to
1.0% underN = -1.481E.

(™ = ) < 100

T T T T T T

1 1

-14

1 1 1 1 1

—l.6 -2 0 N

—1.4

Fig. 6. The 100-fold magnified difference (zf;m —zm)
of the results of the direct determination of the intensity
maxinmum location and the calculation of {,, from

approximated formula (1) (curve 1)
and formula (24) (curve 2)

3. Conclusion

As a result of the consideration of diffractivefsbf
an image we have extended the concept of the dptica
power of a diaphragm over the case of square dia-
phragm and the negative Fresnel number. The high ap
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proximation precision (0.07%) is the conclusive-evi
dence for the correctness of our physical modettier
focusing action of the diaphragms.
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AHHomayusn

Konuennust an¢pakimoHHOM ONTHYECKON CHIIBI pacIMpeHa Ha Cllydail KBaapaTHOH nuadpar-
MBI ¥ OTpUIATENbHBIX yncen Ppenernst nagatonieil BoaHbl. Halinena naTeprnonsiuonHas ¢popmyia
JUI OTIPEZIEIICHUSI MECTOIIOJIOKEHUSI N300paKeHUsI, KOTOpas COJACPXKUT JOTOJIHUTEIbHBIA YJIeH,
YUUTBHIBAIOIIMN 3aBUCHMOCTb ONTUYECKON CHJIBI OT pajnyca KPUBU3HBI MAJAIOLIETO BOJHOBOTO
¢poHTa. BRICOKAs TOUHOCTH 3TOrO NMPUOIMKEHNUS SBISIECTCS YOSIUTEIHHBIM J10Ka3aTeIbCTBOM HC-
TUHHOCTH TIPE/IJIOKEHHOH (PU3HMUECKOI TPaKTOBKH (POKYCHPYIOIIETro AeHCTBUS AradparM.

Kurouesgwie cnosa: popmyna mian3sl, casur ¢pokyca, yucino Opernens, qudpakius OpeHens.
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