НЕПАРАКСИАЛЬНОЕ РАСПРОСТРАНЕНИЕ ГАУССОВЫХ ПУЧКОВ ПОД УГЛОМ К ОСИ АНИЗОТРОПНОГО КРИСТАЛЛА

Хонина С.Н.^{1,2}, Зотеева О.В.², Харитонов С.И.^{1,2}

¹ Институт систем обработки изображений РАН,

² Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет)

Аннотация

В работе аналитически и численно исследуется распространение лазерных пучков в анизотропных кристаллах как вдоль, так и под углом к оси кристалла. Для одноосного кристалла с использованием метода стационарной фазы получены аналитические выражения, показывающие зависимость астигматического искажения от поляризации падающего пучка. Также показано, что при распространении лазерного пучка под углом к оси кристалла проявляется эффект двулучепреломления, который может исчезать при соответствии плоскости наклона пучка и плоскости линейной поляризации. Для гауссовых пучков получено выражение, связывающее параметры пучка и кристалла, при котором обеспечивается визуальное разделение обыкновенного и необыкновенного лучей.

Ключевые слова: анизотропная среда, гауссов пучок, эффект двулучепреломления.

Введение

Всё больший интерес и практическое применение приобретают оптические устройства, позволяющие преобразовывать одни свойства электромагнитного излучения в другие. Среди наиболее востребованных можно назвать поляризационные и модовые преобразования. В частности, теоретически и экспериментально показаны преимущества радиальной и азимутальной поляризации лазерного излучения по сравнению с линейной поляризацией в приложениях, использующих острую фокусировку [1–3]. Однако большинство современных лазеров генерируют излучение с линейной поляризацией, что приводит к необходимости выполнять поляризационные преобразования [4, 5], в том числе с использованием анизотропных кристаллов [6, 7].

Распространение лазерных мод высокого порядка в среде с сильной анизотропией приводит к сложным поляризационно-модовым преобразованиям [8–11], связанным с наличием орбитального углового момента у таких пучков. Причём для анализа таких явлений часто используется параксиальная модель распространения [12, 13].

Заметим, что взаимодействие поляризации и пространственного распределения электромагнитного поля происходит также в изотропной среде в непараксиальном режиме, в частности, при острой фокусировке [14–16].

Непараксиальный режим в анизотропной среде позволяет обнаружить более тонкие эффекты [17 – 20].

В данной работе рассматривается распространение лазерных пучков, в том числе гауссовых, как вдоль, так и под углом к оси анизотропного кристалла. Для одноосного кристалла с использованием метода стационарной фазы получены аналитические выражения, показывающие зависимость астигматического искажения от поляризации падающего пучка. Также показано, что при распространении лазерного пучка под углом к оси кристалла проявляется эффект двулучепреломления, который может исчезать при соответствии плоскости наклона пучка и плоскости линейной поляризации. Для гауссовых пучков получено выражение, связывающее параметры пучка и кристалла, при котором обеспечивается визуальное разделение обыкновенного и необыкновенного лучей.

1. Непараксиальный расчёт распространения электромагнитных волн в анизотропном кристалле

В работах [21, 22] был получен в компактной форме интегральный оператор распространения электромагнитных полей в кристаллах, описываемых следующими тензорами диэлектрической и магнитной проницаемости:

$$\vec{\epsilon} = \begin{pmatrix} \epsilon_{xx} & \epsilon_{xy} & 0\\ \epsilon_{yx} & \epsilon_{yy} & 0\\ 0 & 0 & \epsilon_{zz} \end{pmatrix},$$
(1a)
$$\vec{\mu} = \begin{pmatrix} \mu_{xx} & \mu_{xy} & 0\\ \mu_{yx} & \mu_{yy} & 0\\ 0 & 0 & \mu_{zz} \end{pmatrix}.$$
(16)

Векторный интегральный оператор распространения, основанный на разложении по плоским волнам, имеет следующий вид:

$$\mathbf{E}(u, v, z) = \begin{pmatrix} E_x(u, v, z) \\ E_y(u, v, z) \\ E_z(u, v, z) \end{pmatrix} =$$

$$= \iint_{\alpha^2 + \beta^2 \le \sigma^2} \left\{ c_o(\alpha, \beta) \begin{pmatrix} e_{ox}(\alpha, \beta) \\ e_{oy}(\alpha, \beta) \\ e_{oz}(\alpha, \beta) \end{pmatrix} \exp[ik\gamma_o(\alpha, \beta)z] + (2) + c_e(\alpha, \beta) \begin{pmatrix} e_{ex}(\alpha, \beta) \\ e_{ey}(\alpha, \beta) \\ e_{ez}(\alpha, \beta) \end{pmatrix} \exp[ik\gamma_e(\alpha, \beta)z] \right\} \times$$

$$\times \exp\{ik[\alpha u + \beta v]\} d\alpha d\beta,$$

где векторы в пространственно-частотной плоскости $\mathbf{e}_{o}(\alpha,\beta)$ и $\mathbf{e}_{e}(\alpha,\beta)$, соответствующие обыкновенному и необыкновенному лучам, распространяющимся в кристалле, определяются значениями матрицы следующего вида [21, 22]:

$$\mathbf{M}(\alpha, \beta) = = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} = \\ = \begin{pmatrix} -\frac{\alpha\beta}{\varepsilon_{zz}} - \mu_{yx} & \frac{\alpha^2}{\varepsilon_{zz}} - \mu_{yy} \\ -\frac{\beta^2}{\varepsilon_{zz}} + \mu_{xx} & \frac{\alpha\beta}{\varepsilon_{zz}} + \mu_{xy} \end{pmatrix} \times$$

$$\times \begin{pmatrix} \frac{\alpha\beta}{\mu_{zz}} + \varepsilon_{yx} & -\frac{\alpha^2}{\mu_{zz}} + \varepsilon_{yy} \\ \frac{\beta^2}{\mu_{zz}} - \varepsilon_{xx} & -\frac{\alpha\beta}{\mu_{zz}} - \varepsilon_{xy} \end{pmatrix},$$
(3)

а именно:

$$\begin{aligned} e_{ox}(\alpha,\beta) &= M_{12}, \\ e_{oy}(\alpha,\beta) &= \\ &= \frac{1}{2} \bigg[M_{22} - M_{11} + \sqrt{(M_{11} - M_{22})^2 + 4M_{12}M_{21}} \bigg], \\ e_{ex}(\alpha,\beta) &= M_{12}, \\ e_{ey}(\alpha,\beta) &= \\ &= \frac{1}{2} \bigg[M_{22} - M_{11} - \sqrt{(M_{11} - M_{22})^2 + 4M_{12}M_{21}} \bigg], \\ e_{oz}(\alpha,\beta) &= -\frac{1}{\epsilon_{zz}\gamma_o(\alpha,\beta)} \times \\ &\times \bigg[(\alpha\epsilon_{xx} + \beta\epsilon_{yx}) e_{ox}(\alpha,\beta) + \\ &+ (\alpha\epsilon_{xy} + \beta\epsilon_{yy}) e_{oy}(\alpha,\beta) \bigg], \\ e_{ez}(\alpha,\beta) &= -\frac{1}{\epsilon_{zz}\gamma_e(\alpha,\beta)} \times \\ &\times \bigg[(\alpha\epsilon_{xx} + \beta\epsilon_{yx}) e_{ex}(\alpha,\beta) + \\ &+ (\alpha\epsilon_{xy} + \beta\epsilon_{yy}) e_{ey}(\alpha,\beta) \bigg], \end{aligned}$$
(4)

Распространение обыкновенного и необыкновенного лучей связано с различными направлениями:

$$\gamma_{o}(\alpha, \beta) = = \sqrt{\frac{1}{2} \left[(M_{22} + M_{11}) + \sqrt{(M_{22} - M_{11})^{2} + 4M_{12}M_{21}} \right]},$$
(5)
$$\gamma_{e}(\alpha, \beta) = = \sqrt{\frac{1}{2} \left[(M_{22} + M_{11}) - \sqrt{(M_{22} - M_{11})^{2} + 4M_{12}M_{21}} \right]}.$$

Коэффициенты в выражении (2) определяются пространственно-частотным спектром для входных

поперечных компонент электрического поля (*k*=2 π/λ – волновое число в вакууме):

$$\begin{pmatrix} S_{x}(\alpha,\beta) \\ S_{y}(\alpha,\beta) \end{pmatrix} = \frac{1}{\lambda^{2}} \times \\ \times \iint_{\Omega} \begin{pmatrix} E_{x}(x,y,0) \\ E_{y}(x,y,0) \end{pmatrix} \exp\{-ik[\alpha x + \beta y]\} dx dy,$$
(6)

где $E_x(x, y, 0)$, $E_y(x, y, 0)$ – поперечные электрические компоненты электромагнитного поля во входной плоскости (при z = 0).

Коэффициенты имеют следующий вид:

$$c_{o}(\alpha,\beta) = \frac{S_{x}(\alpha,\beta)e_{ey}(\alpha,\beta) - S_{y}(\alpha,\beta)e_{ex}(\alpha,\beta)}{e_{ox}(\alpha,\beta)e_{ey}(\alpha,\beta) - e_{oy}(\alpha,\beta)e_{ex}(\alpha,\beta)},$$

$$c_{e}(\alpha,\beta) = \frac{S_{y}(\alpha,\beta)e_{ox}(\alpha,\beta) - S_{x}(\alpha,\beta)e_{oy}(\alpha,\beta)}{e_{ox}(\alpha,\beta)e_{ey}(\alpha,\beta) - e_{oy}(\alpha,\beta)e_{ex}(\alpha,\beta)}.$$
(7)

Выражения (2)–(7) позволяют моделировать распространение произвольных электромагнитных полей в кристалле в непараксиальном режиме с учётом происходящих при этом поляризационных преобразований.

В полярных координатах:

$$x = r \cos \varphi, \quad \alpha = \sigma \cos \phi, \quad u = \rho \cos \theta, y = r \sin \varphi, \quad \beta = \sigma \sin \phi, \quad v = \rho \sin \theta$$
(8)

выражения (2)-(7) принимают следующий вид:

$$\mathbf{E}(\boldsymbol{\rho},\boldsymbol{\theta},z) = \begin{pmatrix} E_{x}(\boldsymbol{\rho},\boldsymbol{\theta},z) \\ E_{y}(\boldsymbol{\rho},\boldsymbol{\theta},z) \\ E_{z}(\boldsymbol{\rho},\boldsymbol{\theta},z) \end{pmatrix} = \\ = \iint_{\boldsymbol{\sigma} \leq \boldsymbol{\sigma}_{0}} \left\{ c_{o}\left(\boldsymbol{\sigma},\boldsymbol{\phi}\right) \begin{pmatrix} e_{ox}\left(\boldsymbol{\sigma},\boldsymbol{\phi}\right) \\ e_{oy}\left(\boldsymbol{\sigma},\boldsymbol{\phi}\right) \\ e_{oz}\left(\boldsymbol{\sigma},\boldsymbol{\phi}\right) \end{pmatrix} \exp\left[ik\gamma_{o}\left(\boldsymbol{\sigma},\boldsymbol{\phi}\right)z\right] + \\ + c_{e}\left(\boldsymbol{\sigma},\boldsymbol{\phi}\right) \begin{pmatrix} e_{ex}\left(\boldsymbol{\sigma},\boldsymbol{\phi}\right) \\ e_{ey}\left(\boldsymbol{\sigma},\boldsymbol{\phi}\right) \\ e_{ey}\left(\boldsymbol{\sigma},\boldsymbol{\phi}\right) \\ e_{ez}\left(\boldsymbol{\sigma},\boldsymbol{\phi}\right) \end{pmatrix} \exp\left[ik\gamma_{e}\left(\boldsymbol{\sigma},\boldsymbol{\phi}\right)z\right] \right\} \times$$
(9)

 $\times \exp\{ik\rho\sigma\cos(\phi-\theta)\}\sigma d\sigma d\phi,$

где

$$\mathbf{M}(\sigma, \phi) = \begin{cases} -\frac{\sigma^{2} \cos \phi \sin \phi}{\varepsilon_{zz}} - \mu_{yx} & \frac{\sigma^{2} \cos^{2} \phi}{\varepsilon_{zz}} - \mu_{yy} \\ -\frac{\sigma^{2} \sin^{2} \phi}{\varepsilon_{zz}} + \mu_{xx} & \frac{\sigma^{2} \cos \phi \sin \phi}{\varepsilon_{zz}} + \mu_{xy} \end{cases} \times$$
(10)
$$\times \begin{pmatrix} \frac{\sigma^{2} \cos \phi \sin \phi}{\mu_{zz}} + \varepsilon_{yx} & -\frac{\sigma^{2} \cos^{2} \phi}{\mu_{zz}} + \varepsilon_{yy} \\ \frac{\sigma^{2} \sin^{2} \phi}{\mu_{zz}} - \varepsilon_{xx} & -\frac{\sigma^{2} \cos \phi \sin \phi}{\mu_{zz}} - \varepsilon_{xy} \end{pmatrix},$$

Компьютерная оптика, 2012, том 36, №3

$$e_{oz}(\sigma,\phi) = -\frac{\sigma}{\varepsilon_{zz}\gamma_{o}(\sigma,\phi)} \times \\ \times \left[\left(\varepsilon_{xx} \cos\phi + \varepsilon_{yx} \sin\phi \right) e_{ox}(\sigma,\phi) + \right. \\ \left. + \left(\varepsilon_{xy} \cos\phi + \varepsilon_{yy} \sin\phi \right) e_{oy}(\sigma,\phi) \right],$$
(11)
$$e_{ez}(\sigma,\phi) = -\frac{\sigma}{\varepsilon_{zz}\gamma_{e}(\sigma,\phi)} \times \\ \times \left[\left(\varepsilon_{xx} \cos\phi + \varepsilon_{yx} \sin\phi \right) e_{ex}(\sigma,\phi) + \right. \\ \left. + \left(\varepsilon_{xy} \cos\phi + \varepsilon_{yy} \sin\phi \right) e_{ey}(\sigma,\phi) \right],$$
(12)
$$\left(\begin{array}{c} S_{x}(\sigma,\phi) \\ S_{y}(\sigma,\phi) \end{array} \right) = \frac{1}{\lambda^{2}} \times \\ \times \prod_{\Omega} \left(\begin{array}{c} E_{x}(r,\phi,0) \\ E_{y}(r,\phi,0) \end{array} \right) \exp\left\{ -ikr\sigma\cos(\phi-\phi) \right\} r \, dr \, d\phi. \end{array} \right)$$

Если входные поперечные компоненты электрического поля имеют фазовую вихревую зависимость:

$$E_{x}(r, \varphi, 0) = E_{0x}(r) \exp(im\varphi),$$

$$E_{y}(r, \varphi, 0) = E_{0y}(r) \exp(im\varphi),$$
(13)

тогда выражение (12) упрощается:

$$\begin{pmatrix} S_x(\sigma,\phi) \\ S_y(\sigma,\phi) \end{pmatrix} = \frac{k}{\lambda} i^m \exp(im\phi) \times$$

$$\times \int_0^R \begin{pmatrix} E_{0x}(r) \\ E_{0y}(r) \end{pmatrix} J_m(kr\sigma) r dr.$$
(14)

Для многих оптических полей, описываемых через ортогональные полиномы, такие как полиномы Цернике, функции Лагерра–Гаусса, Эрмита–Гаусса, функции Бесселя, выражения (6) и (14) в бесконечных пределах имеют аналитический вид. В конечных пределах также можно получить приближённую аналитическую оценку.

2. Анализ распространения лазерных пучков вдоль оси кристалла

Рассмотрим одноосный кристалл, обладающий только анизотропной диэлектрической проницаемостью (магнитная проницаемость изотропна), ось которого ориентирована вдоль оптической оси. Тогда тензоры (1) примут следующий вид:

$$\vec{\varepsilon} = \begin{pmatrix} \varepsilon_o & 0 & 0 \\ 0 & \varepsilon_o & 0 \\ 0 & 0 & \varepsilon_e \end{pmatrix},
\vec{\mu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
(15)

а выражения для векторов (4) и функций пространственного направления (5) значительно упростятся [22]:

$$e_{ax} (\alpha, \beta) = \beta,$$

$$e_{oy} (\alpha, \beta) = -\alpha,$$

$$e_{ex} (\alpha, \beta) = \alpha,$$

$$e_{ey} (\alpha, \beta) = \beta,$$

$$e_{oz} (\alpha, \beta) = 0,$$

$$e_{ez} (\alpha, \beta) = -\frac{\varepsilon_0 (\alpha^2 + \beta^2)}{\varepsilon_1 \gamma_2 (\alpha, \beta)}.$$

$$\gamma_o (\alpha, \beta) = \sqrt{\varepsilon_o - \alpha^2 - \beta^2},$$

$$\gamma_e (\alpha, \beta) = \sqrt{\varepsilon_o - (\alpha^2 + \beta^2) \frac{\varepsilon_o}{\varepsilon_e}}.$$
(17)

Также упростятся коэффициенты (7):

$$c_{o}(\alpha,\beta) = \frac{\beta S_{x}(\alpha,\beta) - \alpha S_{y}(\alpha,\beta)}{\alpha^{2} + \beta^{2}},$$

$$c_{e}(\alpha,\beta) = \frac{\alpha S_{x}(\alpha,\beta) + \beta S_{y}(\alpha,\beta)}{\alpha^{2} + \beta^{2}}.$$
(18)

Таким образом, выражение (2) записывается в следующем виде:

$$\mathbf{E}(u, v, z) = \\ = \iint_{\alpha^{2} + \beta^{2} \le \sigma^{2}} \left\{ \frac{\beta S_{x}(\alpha, \beta) - \alpha S_{y}(\alpha, \beta)}{\alpha^{2} + \beta^{2}} \begin{pmatrix} \beta \\ -\alpha \\ 0 \end{pmatrix} \times \\ \times \exp\left[ik\gamma_{o}(\alpha, \beta)z\right] + \frac{\alpha S_{x}(\alpha, \beta) + \beta S_{y}(\alpha, \beta)}{\alpha^{2} + \beta^{2}} \times$$
(19)
$$\times \begin{pmatrix} \alpha \\ \beta \\ -\frac{\varepsilon_{o}(\alpha^{2} + \beta^{2})}{\varepsilon_{e}\gamma_{e}(\alpha, \beta)} \end{pmatrix} \exp\left[ik\gamma_{e}(\alpha, \beta)z\right] \right\} \times \\ \times \exp\left\{ik\left[\alpha u + \beta v\right]\right\} d\alpha d\beta.$$

В изотропной среде, т.е. при $\varepsilon_e = \varepsilon_o$, из выражений (17) следует, что $\gamma_e(\alpha,\beta) = \gamma_o(\alpha,\beta)$. Тогда оператор распространения (19) примет следующий вид:

n/

$$\mathbf{E}(u, v, z) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -\frac{\alpha}{\gamma_o(\alpha, \beta)} & -\frac{\beta}{\gamma_o(\alpha, \beta)} \end{bmatrix} \begin{pmatrix} S_x(\alpha, \beta) \\ S_y(\alpha, \beta) \end{pmatrix} \times (20)$$
$$\times \exp\{ik[\alpha u + \beta v + \gamma_o(\alpha, \beta) z]\} d\alpha d\beta,$$

что соответствует хорошо известному выражению [23].

12

Применим к (19) метод стационарной фазы. Используя результаты работы [22], для быстроосциллирующих членов в (19) можно записать выражения для соответствующих стационарных точек:

$$\begin{cases} \alpha_{oc} = \sqrt{\frac{u^{2} \varepsilon_{o}}{\left(u^{2} + v^{2} + z^{2}\right)}}, \\ \beta_{oc} = \sqrt{\frac{v^{2} \varepsilon_{o}}{\left(u^{2} + v^{2} + z^{2}\right)}}. \end{cases}$$
(21a)
$$\begin{cases} \alpha_{ec} = \sqrt{\frac{u^{2} \varepsilon_{e}}{\left(u^{2} + v^{2} + \varepsilon_{o} z^{2} / \varepsilon_{e}\right)}}, \\ \beta_{ec} = \sqrt{\frac{v^{2} \varepsilon_{e}}{\left(u^{2} + v^{2} + \varepsilon_{o} z^{2} / \varepsilon_{e}\right)}}. \end{cases}$$

Тогда интеграл (19) можно приближённо заменить подынтегральным выражением в стационарных точках:

$$\begin{split} \mathbf{E}(u, v, z) &\approx \\ &\approx \frac{2\pi}{\sqrt{H_o(\alpha_{oc}, \beta_{oc})}} \frac{\beta_{oc} S_x(\alpha_{oc}, \beta_{oc}) - \alpha_{oc} S_y(\alpha_{oc}, \beta_{oc})}{\alpha_{oc}^2 + \beta_{oc}^2} \times \\ &\times \begin{pmatrix} \beta_{oc} \\ -\alpha_{oc} \\ 0 \end{pmatrix} G_o(\alpha_{oc}, \beta_{oc}) + \\ &+ \frac{2\pi}{\sqrt{H_e(\alpha_{ec}, \beta_{ec})}} \frac{\alpha_{ec} S_x(\alpha_{ec}, \beta_{ec}) + \beta_{ec} S_y(\alpha_{ec}, \beta_{ec})}{\alpha_{ec}^2 + \beta_{ec}^2} \times \end{split}$$
(22)

$$\times \begin{pmatrix} \alpha_{ec} \\ \beta_{ec} \\ -\frac{\varepsilon_o(\alpha_{ec}^2 + \beta_{ec}^2)}{\varepsilon_e \gamma_e(\alpha_{ec}, \beta_{ec})} \end{pmatrix} G_e(\alpha_{ec}, \beta_{ec}), \qquad (22)\\ H_o(\alpha_{oc}, \beta_{oc}) = \frac{(u^2 + v^2 + z^2)^2}{\varepsilon_o z^2}, \end{split}$$

где

$$H_{e}(\alpha_{c},\beta_{c}) = \frac{\varepsilon_{e}\left(u^{2}+v^{2}+\varepsilon_{o}z^{2}/\varepsilon_{e}\right)^{2}}{\varepsilon_{o}^{2}z^{2}},$$

$$G_{o}(\alpha_{oc},\beta_{oc}) =$$

$$= \exp\left\{ik\sqrt{\varepsilon_{o}}\sqrt{u^{2}+v^{2}+z^{2}}\right\},$$

$$G_{e}(\alpha_{ec},\beta_{ec}) =$$

$$= \exp\left\{ik\sqrt{\varepsilon_{e}}\sqrt{u^{2}+v^{2}+\varepsilon_{o}z^{2}}/\varepsilon_{e}\right\}.$$
(23)

Так как $(\beta_{oc}\alpha_{ec} - \alpha_{oc}\beta_{ec}) = 0$, то векторы в (22) ортогональны, следовательно, в общей интенсивности не будет перекрёстных членов.

Выражения интенсивности для поперечных и продольных компонент имеют следующий вид:

$$\begin{aligned} \left| E_{ax}(u,v,z) \right|^{2} + \left| E_{ay}(u,v,z) \right|^{2} &= \\ &= \frac{(2\pi)^{2} z^{2} \varepsilon_{o}}{(u^{2} + v^{2})(u^{2} + v^{2} + z^{2})^{2}} \times \\ &\times \left\{ v^{2} \left| S_{x} \left(\alpha_{oc}, \beta_{oc} \right) \right|^{2} + u^{2} \left| S_{y} \left(\alpha_{oc}, \beta_{oc} \right) \right|^{2} - \qquad (25) \\ &- uv \left[S_{y} \left(\alpha_{oc}, \beta_{oc} \right) S_{x}^{*} \left(\alpha_{oc}, \beta_{oc} \right) + \\ &+ S_{x} \left(\alpha_{oc}, \beta_{oc} \right) S_{y}^{*} \left(\alpha_{oc}, \beta_{oc} \right) \right] \right\}, \\ \left| E_{az}(u,v,z) \right|^{2} &= 0, \\ \left| E_{ex}(u,v,z) \right|^{2} + \left| E_{ey}(u,v,z) \right|^{2} = \\ &= \frac{(2\pi)^{2} z^{2} \varepsilon_{o}}{(u^{2} + v^{2})(u^{2} + v^{2} + \varepsilon_{o} z^{2} / \varepsilon_{e})^{2}} \frac{\varepsilon_{o}}{\varepsilon_{e}} \times \\ &\times \left\{ u^{2} \left| S_{x} \left(\alpha_{ec}, \beta_{ec} \right) \right|^{2} + v^{2} \left| S_{y} \left(\alpha_{ec}, \beta_{ec} \right) \right|^{2} - \\ &- uv \left[S_{y} \left(\alpha_{ec}, \beta_{ec} \right) S_{x}^{*} \left(\alpha_{ec}, \beta_{ec} \right) + \\ &+ S_{x} \left(\alpha_{ec}, \beta_{ec} \right) S_{y}^{*} \left(\alpha_{ec}, \beta_{ec} \right) \right] \right\}, \\ \left| E_{ez}(u,v,z) \right|^{2} &= \frac{(2\pi)^{2} \varepsilon_{o}}{(u^{2} + v^{2} + \varepsilon_{o} z^{2} / \varepsilon_{e})^{2}} \frac{\varepsilon_{o}}{\varepsilon_{e}} \times \\ &\times \left\{ u^{2} \left| S_{x} \left(\alpha_{ec}, \beta_{ec} \right) S_{x}^{*} \left(\alpha_{ec}, \beta_{ec} \right) \right| \right\}, \\ \left| E_{ez}(u,v,z) \right|^{2} &= \frac{(2\pi)^{2} \varepsilon_{o}}{(u^{2} + v^{2} + \varepsilon_{o} z^{2} / \varepsilon_{e})^{2}} \frac{\varepsilon_{o}}{\varepsilon_{e}} \times \\ &\times \left\{ u^{2} \left| S_{x} \left(\alpha_{ec}, \beta_{ec} \right) \right|^{2} + v^{2} \left| S_{y} \left(\alpha_{ec}, \beta_{ec} \right) \right|^{2} - \\ &- uv \left[S_{y} \left(\alpha_{ec}, \beta_{ec} \right) S_{x}^{*} \left(\alpha_{ec}, \beta_{ec} \right) + \\ &+ S_{x} \left(\alpha_{ec}, \beta_{ec} \right) S_{y}^{*} \left(\alpha_{ec}, \beta_{ec} \right) \right] \right\}. \end{aligned}$$

Для многих типов поляризации (линейной, эллиптической) справедливо соотношение: $S(\alpha B)$ $G(\alpha, \beta)$

$$S_{x}(\alpha,\beta) = p_{x}S(\alpha,\beta),$$

$$S_{y}(\alpha,\beta) = p_{y}S(\alpha,\beta),$$
(26)

где $|p_x|^2 + |p_y|^2 = 1$. Тогда общая интенсивность:

$$\begin{split} \left| E_{x}(u,v,z) \right|^{2} + \left| E_{y}(u,v,z) \right|^{2} &= \frac{(2\pi)^{2} z^{2} \varepsilon_{o}}{(u^{2}+v^{2})} \times \\ \times \left[\frac{\left| p_{x}v - p_{y}u \right|^{2}}{(u^{2}+v^{2}+z^{2})^{2}} \left| S\left(\alpha_{oc}, \beta_{oc} \right) \right|^{2} + \\ &+ \frac{\left| p_{x}u - p_{y}v \right|^{2}}{(u^{2}+v^{2}+\varepsilon_{o}z^{2}/\varepsilon_{e})^{2}} \frac{\varepsilon_{o}}{\varepsilon_{e}} \left| S\left(\alpha_{ec}, \beta_{ec} \right) \right|^{2} \right], \end{split}$$
(27)
$$\begin{split} \left| E_{z}(u,v,z) \right|^{2} &= \\ &= \frac{(2\pi)^{2} \left| p_{x}u - p_{y}v \right|^{2}}{(u^{2}+v^{2}+\varepsilon_{o}z^{2}/\varepsilon_{e})^{2} \varepsilon_{e}} \left| S\left(\alpha_{ec}, \beta_{ec} \right) \right|^{2}. \end{split}$$

Из выражений (27) следует, что картина интенсивности зависит как от пройденного расстояния z, так и от поляризации. Однако в параксиальном слу-

Компьютерная оптика, 2012, том 36, №3

чае, когда $z^2 >> u^2 + v^2$, зависимость от пройденного расстояния будет незначительной, в то время как зависимость от поляризации останется заметной. Причём различие будет тем существенней, чем сильнее отличаются обыкновенная и необыкновенная диэлектрические проницаемости.

При линейной поляризации изменение соотношения параметров p_x и p_y соответствует повороту вокруг оси кристалла на угол $\tau = \tan^{-1}(p_y / p_x)$. Т.к. в этом случае значения p_x , p_y действительные и неотрицательные, то будет происходить соответствующее астигматическое искажение входного пучка.

При круговой поляризации выражения (27) примут следующий вид:

$$\begin{aligned} \left|E_{x}(u,v,z)\right|^{2} + \left|E_{y}(u,v,z)\right|^{2} &= \left(2\pi\right)^{2} z^{2} \varepsilon_{o} \times \\ \times \left[\frac{\left|S\left(\alpha_{oc},\beta_{oc}\right)\right|^{2}}{\left(u^{2}+v^{2}+z^{2}\right)^{2}} + \frac{\varepsilon_{o}}{\varepsilon_{e}} \frac{\left|S\left(\alpha_{ec},\beta_{ec}\right)\right|^{2}}{\left(u^{2}+v^{2}+\varepsilon_{o}z^{2}/\varepsilon_{e}\right)^{2}}\right], \\ \left|E_{z}(u,v,z)\right|^{2} &= \\ &= \frac{\left(2\pi\right)^{2} \left(u^{2}+v^{2}\right)}{\left(u^{2}+v^{2}+\varepsilon_{o}z^{2}/\varepsilon_{e}\right)^{2}} \frac{\varepsilon_{o}^{2}}{\varepsilon_{e}} \left|S\left(\alpha_{ec},\beta_{ec}\right)\right|^{2}, \end{aligned}$$
(28)

который говорит об отсутствии астигматических искажений.

Вклад в общую интенсивность продольной компоненты с ростом расстояния *z* будет уменьшаться.

3. Анализ распространения гауссовых пучков

Как правило, при анализе распространения лазерных мод в анизотропных средах исследуются орбитально-спиновые преобразования [8–11, 14, 15] и астигматические изменения [20, 24]. Причём данные явления наблюдаются либо при фокусировке лазерного излучения, либо при распространении под углом к оси кристалла. В работе [25] было показано, что наличие вихревой фазовой сингулярности в лазерном пучке приводит к визуальному астигматизму при распространении как вдоль, так и перпендикулярно оси кристалла.

Для гауссовых пучков пространственный спектр имеет аналитическое выражение. В частности, для эллиптического пучка Эрмита–Гаусса (ЭГ):

$$E_{HG}(x, y, 0) = A_{nm} \exp\left(-\frac{x^2}{2w_x^2}\right) \times \\ \times H_n\left(\frac{x}{w_x}\right) \exp\left(-\frac{y^2}{2w_y^2}\right) H_m\left(\frac{x}{w_y}\right),$$
(29)

где $H_n(x)$ – полином Эрмита *n*-го порядка, w_x , w_y – радиусы перетяжки гауссова пучка вдоль соответствующих осей, A_{nm} – нормировочная константа, спектр (6) в бесконечных пределах будет иметь следующий вид:

$$S_{HG}(\alpha,\beta) = \frac{A_{nm}}{w_{sx}} \exp\left(-\frac{\alpha^2}{2w_{sx}^2}\right) \times \\ \times H_n\left(\frac{\alpha}{w_{sx}}\right) \exp\left(-\frac{\beta^2}{2w_{sy}^2}\right) H_n\left(\frac{\beta}{w_{sy}}\right),$$
(30)

где $w_{sx} = (kw_x)^{-1}, w_{sy} = (kw_y)^{-1}.$

При распространении вдоль оси кристалла даже если изначально пучок был не эллиптичный ($w_y = w_x$), то при линейной поляризации, учитывая (27), постепенно он будет претерпевать астигматические изменения.

Для пучков Лагерра-Гаусса (ЛГ):

 $E_{LG}(r, \phi, 0) =$

$$= A_{nm} \exp\left(-\frac{r^2}{2w_0^2}\right) \left(\frac{r}{w_0}\right)^{|m|} L_n^{|m|} \left(\frac{r^2}{w_0^2}\right) \exp(im\varphi)$$
(31)

пространственный спектр (14) имеет также радиально-вихревой вид:

$$S_{LG}(\sigma,\phi) =$$

$$= \frac{A_{nm}}{w_s^2} (-i)^m (-1)^n \exp\left(-\frac{\sigma^2}{2w_s^2}\right) \left(\frac{\sigma}{w_s}\right)^{|m|} \times$$

$$\times L_n^{|m|} \left(\frac{\sigma^2}{w_s^2}\right) \exp(im\phi) =$$

$$= S_{LG}^{nm}(\sigma) \exp(im\phi),$$
(32)

где $w_s = (kw_0)^{-1}$.

В общем случае при наличии в лазерном пучке несущей пространственной частоты:

$$cr(x, y, 0) = \exp(ikq_x x + ikq_y y)$$
(33)

можно считать, что пучок распространяется под углом к оси кристалла:

$$\Psi = \frac{\pi}{2} \sqrt{q_x^2 + q_y^2} \tag{34}$$

и спектр в (6) будет смещён пропорционально несущим пространственным частотам:

$$S_{q}(\alpha,\beta) =$$

$$= \frac{1}{\lambda^{2}} \iint_{\Omega} E(x, y) \exp(ikq_{x}x + ikq_{y}y) \times$$

$$\times \exp\{-ik[\alpha x + \beta y]\} dx dy =$$

$$= S(\alpha - q_{x}, \beta - q_{y}).$$
(35)

Таким образом, в выражениях (27) спектр будет использоваться в смещённых стационарных точках.

Заметим, что при внесении в пучок (31) пространственной несущей частоты:

 $cr(r, \varphi, 0) =$

$$=\exp(ikr\sigma_{0}\cos(\varphi-\varphi_{0})),$$
(36)

где $\sigma_0 = \sqrt{q_x^2 + q_y^2}$, $\phi_0 = \tan^{-1}(q_y / q_x)$, пространственный спектр уже не будет иметь радиально-вихревой зависимости.

Рассмотрим распространение фундаментальной гауссовой моды под углом (36) к оси кристалла. Тогда спектр в формулах (27) будет иметь следующий вид (положим $w_{sy}=w_{sx}=w_s$):

$$S_{G}(\alpha_{oc},\beta_{oc}) = = \frac{A_{nm}}{w_{s}^{2}} \exp\left(-\frac{(n_{o}u - q_{x}R_{o})^{2} + (n_{o}v - q_{y}R_{o})^{2}}{2w_{s}^{2}R_{o}^{2}}\right), \quad (37a)$$

$$S_{G}(\alpha_{ec},\beta_{ec}) = \frac{A_{mm}}{w_{s}^{2}} \exp\left(-\frac{(n_{e}u - q_{x}R_{e})^{2} + (n_{e}v - q_{y}R_{e})^{2}}{2w_{s}^{2}R_{e}^{2}}\right), \quad (376)$$

где $R_o = \sqrt{u^2 + v^2 + z^2}$, $R_e = \sqrt{u^2 + v^2 + n_o^2 z^2 / n_e^2}$, $n_o = \sqrt{\varepsilon_o}$, $n_e = \sqrt{\varepsilon_e}$.

Как видно из (37), обыкновенный и необыкновенный лучи будут визуально разделяться только при достаточно больших значениях пространственных несущих частот (33):

$$q_{x,y} > \frac{3w(z)n_o n_e^2}{kz(n_e^2 - n_o^2)},$$
(38)

где

$$w(z) = w_0 \sqrt{\left(1 + \frac{4z^2}{k^2 w_0^4}\right)}$$

- радиус гауссова пучка на расстоянии z.

4. Моделирование распространения гауссовых пучков под углом к оси кристалла

Рассмотрим распространение пучков ЛГ в кристалле рутила [20]: ε_0 =6,84, ε_e =8,43. Данный кристалл был выбран для наглядной демонстрации эффектов двойного лучепреломления, т.к. имеет существенное различие в значениях диэлектрической проницаемости.

Параметры моделирования: длина волны $\lambda = 1$ мкм, радиус пучка R = 15 мкм, радиус перетяжки $W_0 = 3$ мкм.

4.1. Распространение вдоль оси кристалла

В данном разделе приведены результаты моделирования распространения мод ЛГ вдоль оси кристалла при различных поляризациях входного пучка. В качестве входного распределения использовалась мода ЛГ (n, m) = (3,0) (см. рис. 1).

Результаты моделирования (см. табл. 1) показывают полное соответствие теоретическим выкладкам, а именно: наличие астигматических искажений при линейной поляризации и их отсутствие при круговой поляризации.

4.2. Распространение под углом к оси кристалла

В данном разделе приведены результаты моделирования распространения мод ЛГ под углом к оси кристалла при различных поляризациях входного пучка. Наклон к оси кристалла был выбран вдоль оси *x*, и пространственная несущая частота определялась с учётом выражения (38): $q_x = 0.5$ ($\Psi = 45^\circ$).

Рис. 1. Мода ЛГ (n, m) = (3, 0) во входной плоскости (при z = 0): распределение интенсивности (a) и фазы (б)

Моделирование распространения под углом к оптической оси выполнялось за счёт умножения исходного распределения на фазовый множитель вида (33). В этом случае фаза входного распределения изменится, как показано на рис. 2.

Рис. 2. Фаза моды ЛГ (n, m) = (3,0) с пространственной несущей во входной плоскости

Как видно из табл. 2 и 3, при наличии во входном пучке обеих поперечных компонент (при различных типах поляризации) наблюдается эффект двойного лучепреломления. Таким образом, если линейно-поляризованный лазерный пучок распространяется под углом к оси кристалла, то вращение кристалла вокруг его оси будет приводить к появлению или исчезновению второго луча.

Заметим, что двулучепреломление возникает за счёт различия в направлениях распространения двух поперечных компонент электрического поля. При этом направление распространения продольной компоненты совпадает с направлением *x*-компоненты (рис. 3).

При использовании мод ЛГ с менее выраженным центральным пятном (рис. 4) визуального разделения на обыкновенный и необыкновенный лучи не происходит даже при очень больших углах наклона – в результате формируется сложная интерференционная картина, зависящая от поляризации (табл. 4).

Заключение

В работе получены следующие основные результаты. Для одноосного кристалла с использованием метода стационарной фазы получены аналитические выражения, показывающие зависимость астигматического искажения от поляризации падающего пучка. При линейной поляризации вращение вокруг оси кристалла будет приводить к соответствующему астигматическому искажению входного пучка. При круговой поляризации астигматические искажения отсутствуют.

	Линейная Линейная поляризация <i>х</i> -поляризация под углом 45° к оси <i>х</i>		Круговая поляризация	
Z=5 мкм				
Z=200 мкм	\odot			
Z=450 мкм				
Z=600 мкм				

Таблица 1. Распространение моды ЛГ (n, m) = (3, 0) вдоль оси кристалла при различных поляризациях (картина полной интенсивности в поперечных плоскостях)

Таблица 2. Распространение моды ЛГ (n, m) = (3, 0) под углом к оси кристалла при различных поляризациях – картины интенсивности в продольной плоскости XZ

	Линейная <i>х</i> -поляризация	Линейная поляризация под углом 45° к оси <i>х</i>	Круговая поляризация
$\left \mathbf{E}\right ^{2}$			
$\left E_{x}\right ^{2}$			
$\left E_{y}\right ^{2}$			
$\left E_{z}\right ^{2}$			

	$\left \mathbf{E}\right ^{2}$	$\left E_{x}\right ^{2}$	$\left E_{y}\right ^{2}$	$\left E_{z}\right ^{2}$
Линейная <i>х</i> -поляри- зация				
Линейная поляризация под углом 45° к оси <i>х</i>			٢	
Круговая поляризация				
90 70 50 30 10		40 30 20 10		

Таблица 3. Распространение моды ЛГ (n, m) = (3, 0) под углом к оси кристалла при различных поляризациях – картины интенсивности в поперечной плоскости при Z = 450 мкм

110 120

б)

Рис. 4. Мода ЛГ (n, m) = (3, 3) с пространственной несущей во входной плоскости: распределение интенсивности (а) и фазы (б)

a)

	Линейная <i>х</i> -поляризация	Линейная поляризация под углом 45° к оси <i>х</i>	Круговая поляризация
$\left \mathbf{E}\right ^{2}$			
$\left E_{x}\right ^{2}$			
$\left E_{y}\right ^{2}$			
$\left E_{z}\right ^{2}$			

Таблица 4. Распространение моды ЛГ (n, m) = (3, 3) под углом к оси кристалла при различных поляризациях – картины интенсивности в продольной плоскости XZ

Также показано, что при распространении лазерного пучка под углом к оси кристалла проявляется эффект двулучепреломления, который может исчезать при соответствии плоскости наклона пучка и плоскости линейной поляризации. Для гауссовых пучков получено выражение, связывающее параметры пучка и кристалла, при котором обеспечивается визуальное разделение обыкновенного и необыкновенного лучей.

Благодарности

Работа выполнена при поддержке грантов РФФИ 10-07-00109-а, 10-07-00438-а, гранта Президента РФ поддержки ведущих научных школ НШ-4128.2012.9.

Литература

- 1. **Zhan, Q.** Cylindrical vector beams: from mathematical concepts to applications // Advances in Optics and Photonics. 2009. Vol. 1. P. 1-57.
- Niziev, V.G. Influence of Beam Polarization on Laser Cutting Efficiency / V.G. Niziev, A.V. Nesterov // Journal of Physics D. – 1999. – V. 32. – P. 1455-1461.
- Хонина, С.Н. Минимизация светового и теневого фокального пятна с контролируемым ростом боковых лепестков в фокусирующих системах с высокой числовой апертурой / С.Н. Хонина, С.Г. Волотовский // Компьютерная оптика. – 2011. – Т. 35, № 4. – С. 438-451.
- Tidwell, S.C. Generating radially polarized beams interferometrically / S.C. Tidwell, D.H. Ford, W.D. Kimura // Applied Optics. – 1990. – V. 29. – P. 2234-2239.
- Khonina, S.N. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter / S.N. Khonina, S.V. Karpeev, S.V. Alferov // Opt. Lett. – 2012. – Vol. 37, N 12. – P. 2385-2387.
- Yonezawa, K. Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal / K. Yonezawa, Y. Kozawa and S. Sato // Opt. Lett. - 2006. – V. 31(14). – P. 2151-2153.

- Kawauchi, H. Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate / H. Kawauchi, Y. Kozawa, S. Sato, T. Sato and S. Kawakami // Opt. Lett. – 2008. – V. 33(4). – P. 399-401.
- Ciattoni, A. Circularly polarized beams and vortex generation in uniaxial media / A. Ciattoni, G. Cincotti, C. Palma // J. Opt. Soc. Am. A. – 2003. – Vol. 20(1). – P. 163-171.
- Marrucci, L. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media / L. Marrucci, C. Manzo and D. Paparo // Phys. Rev. Lett. –2006. – Vol. 96. – P. 163905-163909.
- Fadeyeva, T.A. Spatially engineered polarization states and optical vortices in uniaxial crystals / T.A. Fadeyeva, V.G. Shvedov, Y.V. Izdebskaya, A.V. Volyar, E. Brasselet, D.N. Neshev, A.S. Desyatnikov, W. Krolikowski and Y.S. Kivshar // Opt. Expr. 2010. Vol. 18(10). P. 10848-10863.
- Picon, A. Spin and orbital angular momentum propagation in anisotropic media: theory / A. Picon, A. Benseny, J. Mompart and G.F Calvo // J. Opt. – 2011. – Vol. 13. – P. 064019-064026.
- Fleck, J.A. Jr. Beam propagation in uniaxial anisotropic media / J.A. Fleck, Jr. and M.D. Feit // J. Opt. Soc. Am. – 1983. – Vol. 73(7). – P. 920-926.
- Ciattoni, A. Vectorial theory of propagation in uniaxially anisotropic media / A. Ciattoni, B. Crosignani and P.Di Porto // J. Opt. Soc. Am. A. – 2001. – Vol. 18(7). – P. 1656-1661.
- Zhao, Y. Spin-to-orbital angular momentum conversion in a strongly focused optical beam Phys / Y. Zhao, J.S. Edgar, G.D.M. Jeffries, D. McGloin and D.T. Chiu // Rev. Lett. – 2007. – Vol. 99. – P. 073901.
- Chen, L. Electro-optically forbidden or enhanced spin-toorbital angular momentum conversion in a focused light beam / L. Chen and W. She // Opt. Lett. – 2008. – Vol. 33. – P. 696-698.
- Khonina, S.N. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures, / S.N. Khonina, S.G. Volotovsky // J. Opt. Soc. Am. A. – 2010. – Vol. 27, N 10. – P. 2188-2197.
- 17. **Stallinga, S.** Axial birefringence in high-numerical-aperture optical systems and the light distribution close to focus

/ S. Stallinga // J. Opt. Soc. Am. A. – 2001. – Vol. 18(11). – P. 2846-2859.

- Seshadri, S.R. Beam dynamics of two modes propagating along the optic axis in a uniaxial crystal / S.R. Seshadri // J. Opt. Soc. Am. A. – 2005. – Vol. 22(2). – P. 361-369.
- Liu, D. Various dark hollow beams propagating in uniaxial crystals orthogonal to the optical axis / D. Liu and Z. Zhou // J. Opt. A: Pure Appl. Opt. – 2008. – Vol. 10. – P. 095005-095014.
- Zusin, D.H. Bessel beam transformation by anisotropic crystals / D.H. Zusin, R. Maksimenka, V.V. Filippov, R.V. Chulkov, M. Perdrix, O. Gobert and A.S. Grabtchikov // J. Opt. Soc. Am. A. 2010. Vol. 27(8). P. 1828-1833.
- Досколович, Л.Л. Интегральные представления решений системы уравнений Максвелла для анизотропных сред / Л.Л. Досколович, Н.Л. Казанский, С.И. Харитонов // Компьютерная оптика. 2010. Т. 34, № 1. С. 52-57.
- 22. Хонина, С.Н. Аналог интеграла Рэлея-Зоммерфельда для анизотропной и гиротропной среды / С.Н. Хонина, С.И. Харитонов, // Компьютерная оптика. 2012. Т. 36, № 2. С. 172-182.
- Luneburg, R.K. Mathematical Theory of Optics / R.K. Luneburg. – University of California Press, Berkeley, California, 1966.
- 24. Seshadri, S.R. Basic elliptical Gaussian wave and beam in a uniaxial crystal / S.R. Seshadri // J. Opt. Soc. Am. A. - 2003. – Vol. 20, N 9. – P. 1818-1826.
- 25. Хонина, С.Н. Периодическое изменение интенсивности модовых лазерных пучков при распространении в анизотропных одноосных кристаллах / С.Н. Хонина, С.Г. Волотовский, С.И. Харитонов // Известия СНЦ РАН. – 2012. – Т. 14, № 4 (принято к публикации).

References

- Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications // Advances in Optics and Photonics. – 2009. – Vol. 1. – P. 1-57.
- Niziev, V.G. Influence of Beam Polarization on Laser Cutting Efficiency / V.G. Niziev, A.V. Nesterov // Journal of Physics D. – 1999. – V. 32. – P. 1455-1461.
- Khonina, S.N. Minimization of light or dark focal spot size with controllable growth of side lobes in focusing systems with the high numerical aperture / S.N. Khonina, S.G. Volotovsky, // Computer Optics – 2011. – Vol. 35, N 4. – P. 438-451. – (In Russian).
- Tidwell, S.C. Generating radially polarized beams interferometrically / S.C. Tidwell, D.H. Ford, W.D. Kimura // Applied Optics. – 1990. – V. 29. – P. 2234-2239.
- Khonina, S.N. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter / S.N. Khonina, S.V. Karpeev, S.V. Alferov // Opt. Lett. – 2012. – Vol. 37, N 12. – P. 2385-2387.
- Yonezawa, K. Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal / K. Yonezawa, Y. Kozawa and S. Sato // Opt. Lett. - 2006. – V. 31(14). – P. 2151-2153.
- Kawauchi, H. Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate / H. Kawauchi, Y. Kozawa, S. Sato, T. Sato and S. Kawakami // Opt. Lett. – 2008. – V. 33(4). – P. 399-401.
- Ciattoni, A. Circularly polarized beams and vortex generation in uniaxial media / A. Ciattoni, G. Cincotti, C. Palma // J. Opt. Soc. Am. A. – 2003. – Vol. 20(1). – P. 163-171.
- 9. Marrucci, L. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media / L. Mar-

rucci, C. Manzo and D. Paparo // Phys. Rev. Lett. -2006. - Vol. 96. - P. 163905-163909.

- Fadeyeva, T.A. Spatially engineered polarization states and optical vortices in uniaxial crystals / T.A. Fadeyeva, V.G. Shvedov, Y.V. Izdebskaya, A.V. Volyar, E. Brasselet, D.N. Neshev, A.S. Desyatnikov, W. Krolikowski and Y.S. Kivshar // Opt. Expr. 2010. Vol. 18(10). P. 10848-10863.
- Picon, A. Spin and orbital angular momentum propagation in anisotropic media: theory / A. Picon, A. Benseny, J. Mompart and G.F Calvo // J. Opt. – 2011. – Vol. 13. – P. 064019-064026.
- Fleck, J.A. Jr. Beam propagation in uniaxial anisotropic media / J.A. Fleck, Jr. and M.D. Feit // J. Opt. Soc. Am. – 1983. – Vol. 73(7). – P. 920-926.
- Ciattoni, A. Vectorial theory of propagation in uniaxially anisotropic media / A. Ciattoni, B. Crosignani and P.Di Porto // J. Opt. Soc. Am. A. – 2001. – Vol. 18(7). – P. 1656-1661.
- Zhao, Y. Spin-to-orbital angular momentum conversion in a strongly focused optical beam Phys / Y. Zhao, J.S. Edgar, G.D.M. Jeffries, D. McGloin and D.T. Chiu // Rev. Lett. – 2007. – Vol. 99. – P. 073901.
- Chen, L. Electro-optically forbidden or enhanced spin-toorbital angular momentum conversion in a focused light beam / L. Chen and W. She // Opt. Lett. – 2008. – Vol. 33. – P. 696-698.
- Khonina, S.N. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures, / S.N. Khonina, S.G. Volotovsky // J. Opt. Soc. Am. A. – 2010. – Vol. 27, N 10. – P. 2188-2197.
- Stallinga, S. Axial birefringence in high-numerical-aperture optical systems and the light distribution close to focus / S. Stallinga // J. Opt. Soc. Am. A. – 2001. – Vol. 18(11). – P. 2846-2859.
- Seshadri, S.R. Beam dynamics of two modes propagating along the optic axis in a uniaxial crystal / S.R. Seshadri // J. Opt. Soc. Am. A. – 2005. – Vol. 22(2). – P. 361-369.
- Liu, D. Various dark hollow beams propagating in uniaxial crystals orthogonal to the optical axis / D. Liu and Z. Zhou // J. Opt. A: Pure Appl. Opt. – 2008. – Vol. 10. – P. 095005-095014.
- Zusin, D.H. Bessel beam transformation by anisotropic crystals / D.H. Zusin, R. Maksimenka, V.V. Filippov, R.V. Chulkov, M. Perdrix, O. Gobert and A.S. Grabtchikov // J. Opt. Soc. Am. A. 2010. Vol. 27(8). P. 1828-1833.
- Doskolovich, L.L. Integral representations for solutions of Maxwell's equations for anisotropic media / L.L. Doskolovich, N.L. Kazanskiy, S.I. Kharitonov // Computer Optics. – 2010. – Vol. 34, N 1. – P. 52-57. – (In Russian).
- Khonina, S.N. Analogue of Rayleigh–Sommerfeld integral for anisotropic and gyrotropic media / S.N. Khonina, S.I. Kharitonov // Computer Optics. 2012. Vol. 36, N 2. P. 172-182. (In Russian).
- Luneburg, R.K. Mathematical Theory of Optics / R.K. Luneburg. – University of California Press, Berkeley, California, 1966.
- 24. Seshadri, S.R. Basic elliptical Gaussian wave and beam in a uniaxial crystal / S.R. Seshadri // J. Opt. Soc. Am. A. - 2003. – Vol. 20, N 9. – P. 1818-1826.
- 25. Khonina, S.N. Periodic intensity change for laser mode beams propagating in anisotropic uniaxial crystals / S.N. Khonina, S.G. Volotovsky, S.I. Kharitonov // Izv. SNC RAS – 2012. – Vol. 14, N 4 (accepted for publication). – (In Russian).

NONPARAXIAL PROPAGATION OF GAUSSIAN BEAMS ON THE ANGLE TO THE AXIS OF THE ANISOTROPIC CRYSTAL

S.N. Khonina^{1,2}, O.V. Zoteeva², S.I. Kharitonov^{1,2} ¹ Image Processing Systems Institute of the RAS, ² S.P. Korolyov Samara State Aerospace University (National Research University)

Abstract

In this article propagation of laser beams in anisotropic crystals at an angle to a crystal axis also is analytically and numerically investigated. For an uniaxial crystal with use of a method of a stationary phase the analytical expressions showing dependence of astigmatic distortion from polarisation of the falling bunch are received. Also it is shown that a laser beam propagating at an angle to a crystal axis undergoes the birefringence effect which can disappear in accordance with of a plane of an inclination of a beam and a plane of linear polarisation. For Gaussian beams the expression connecting parametres of a beam and a crystal at which there is visual division of ordinary and extraordinary beams is received.

Key words: anisotropic media, Gaussian beam, birefringence effect.

Сведения об авторах

Хонина Светлана Николаевна, доктор физико-математических наук, профессор Самарского государственного аэрокосмического университета имени академика С.П. Королёва; ведущий научный сотрудник Федерального государственного бюджетного учреждения науки Институт систем обработки изображений РАН. Область научных интересов: дифракционная оптика, сингулярная оптика, модовые и поляризационные преобразования, оптическое манипулирование, оптическая и цифровая обработка изображений.

E-mail: khonina@smr.ru.

Svetlana Nikolaevna Khonina, Doctor of Physical and Mathematical Sciences; Professor of the Samara State Aerospace University named after S.P. Korolyov. Leading researcher of the Image Processing Systems Institute of the RAS. Research interests: diffractive optics, singular optics,

mode and polarization transformations, optical manipulating, optical and digital image processing.

Зотеева Ольга Владимировна, аспирант Самарского государственного аэрокосмического университета имени академика С.П. Королёва. Область научных интересов: оптическая и цифровая обработка изображений, дифракционная оптика, математическое моделирование, лазерное манипулирование.

E-mail: *zoteeva_o@mail.ru*.

Olga Vladimirovna Zoteeva, post-graduate student of the Samara State Aerospace University named after S.P. Korolyov. Research interests: optical and digital image processing, diffractive optics, mathematical modeling, laser manipulation.

Харитонов Сергей Иванович, доктор физико-математических наук, доцент кафедры «технической кибернетики», старший науч-

ный сотрудник лаборатории дифракционной оптики Учреждения Российской академии наук Института систем обработки изображений РАН. 1984 г. – окончил физический факультет Самарского государственного университета. 1993 г. – защитил кандидатскую диссертацию на тему «Асимптотические методы дифракционного расчёта фокусаторов лазерного излучения». 2010 г. – защитил докторскую диссертацию на тему «Асимптотические методы расчёта дифракции когерентного электромагнитного излучения на дифракционных оптических элементах». Область научных интересов: дифракционная, квантовая оптика, физика плазмы. В списке науч-

ных работ С.И. Харитонова 87 статей, 5 авторских свидетельств и патентов.

E-mail: prognoz2007@gmail.com.

Sergey Ivanovich Kharitonov, Senior Researcher of Laboratory of Diffractive Optics of Image Processing Systems Institute of RAS, Doctor of Physical and Mathematical Sciences. 1984 - graduated from the Physics Department of the Samara State University. 1993 - defended his dissertation "Asymptotic methods of calculation of the diffraction of laser radiation Focuser" 2010 r. - defended his doctoral thesis on "Asymptotic methods for calculating the diffraction of coherent electromagnetic radiation in diffractive optical elements" Research interests: diffraction, quantum optics, plasma physics. The list of scientific papers SI Kharitonov's 87 articles, 5 patents.

Поступила в редакцию 16 июня 2012 г.