БЕЗДИФРАКЦИОННЫЕ ПУЧКИ ЛОММЕЛЯ

Ковалёв А.А., Котляр В.В.

Институт систем обработки изображений РАН,

Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет)

Аннотация

Рассмотрено непараксиальное семейство бездифракционных лазерных пучков, комплексная амплитуда которых пропорциональна функции Ломмеля двух переменных n-го порядка. Поэтому они названы пучками Ломмеля (Л-пучки). Получены явные аналитические выражения для углового спектра плоских волн и орбитального углового момента для Л-пучков. Поперечная интенсивность Л-пучков обладает зеркальной симметрией по отношению к осям декартовых координат. Так как Л-пучки сохраняют поперечную интенсивность при распространении, то они являются модами свободного пространства (Л-моды). Чётные (n = 2p) и нечётные (n = 2p + 1) Л-моды взаимно ортогональны. При определённом параметре Л-моды переходят в обычные моды Бесселя.

<u>Ключевые слова:</u> бездифракционный лазерный пучок, мода Бесселя, мода Ломмеля двух переменных, орбитальный угловой момент.

Введение

Среди известных лазерных пучков особое место занимают бездифракционные пучки. Структура распределения их комплексной амплитуды в поперечном сечении такова, что, несмотря на дифракцию, она сохраняется при прохождении произвольного расстояния вдоль оптической оси. Известно, что в трёхмерном пространстве свободны от дифракции моды Бесселя [1], а в двумерном – пучки Эйри [2]. Также бездифракционные пучки обобщались на случай более высокой размерности пространства [3]. Известно также, что в трёхмерном пространстве бездифракционным является световой пучок, для которого угловой спектр плоских волн является бесконечно тонкой окружностью. Так, в [4] рассмотрены бездифракционные пучки, описываемые в виде линейной комбинации мод Бесселя. Комплексная амплитуда таких пучков описывается функцией Матье. В [5] рассмотрены асимметричные моды Бесселя, распределение интенсивности которых в поперечном сечении имеет вид полумесяца, а в [6] рассмотрено обобщение этого семейства путём введения дополнительного параметра, позволяющего управлять асимметрией поперечного распределения интенсивности. Бездифракционные пучки устойчивы при распространении в турбулентной атмосфере [7] и фемтосекундные Бесселевы импульсы сохраняют форму при распространении [8].

В данной работе рассматривается линейная комбинация мод Бесселя с такими коэффициентами, что комплексная амплитуда пучка описывается функцией Ломмеля двух переменных, одна из которых комплексная. Функции Ломмеля двух переменных встречаются в оптике не впервые. Так, в [9] (§ 8.8) рассмотрено трёхмерное распределение света вблизи фокуса для сферической монохроматической волны, выходящей из круглого отверстия и сходящейся в осевой фокальной точке. Для получения этого распределения в [9] используется интеграл Френеля, выраженный через функции Ломмеля двух переменных [10]. В работе [11] с помощью этих функций описана фокусировка с помощью линзы вихревого лазерного пучка Лагерра—Гаусса с нулевым радиальным индексом, ограниченного круглой диафраг-

мой. В отличие от традиционных мод Бесселя [1] распределение интенсивности моды Ломмеля (Л-моды) не обладает радиально-симметричной формой в виде набора световых колец, а в отличие от асимметричных мод из [5, 6] оно обладает симметрией относительно не одной, а обеих декартовых осей. В работе точно рассчитан орбитальный угловой момент Л-пучков. Он превышает момент Бесселевой моды, входящей в линейную комбинацию с наименьшим топологическим зарядом. Л-моды, как и все бездифракционные пучки, обладают бесконечной энергией, и поэтому на практике могут быть реализованы только приближенно. Мы называем пучки Ломмеля по аналогии с пучками Бесселя. Но так как пучки Бесселя являются модами, то мы и пучки Ломмеля иногда называем модами Ломмеля.

1. Комплексная амплитуда пучков Ломмеля

Рассмотрим световой пучок, угловой спектр плоских волн которого имеет следующий вид:

$$A(\rho,\theta) = \frac{(-i)^n}{\lambda \alpha} \delta \left(\rho - \frac{\alpha}{k}\right) \times$$

$$\times \sum_{p=0}^{\infty} c^{2p} \exp\left[i(n+2p)\theta\right] =$$

$$= \frac{(-i)^n \exp(in\theta)}{\lambda \alpha \left[1 - c^2 \exp(2i\theta)\right]} \delta \left(\rho - \frac{\alpha}{k}\right),$$
(1)

где (ρ, θ) — полярные координаты в спектральной плоскости, $\delta(x)$ — дельта-функция Дирака, $k=2\pi/\lambda$ — волновое число света с длиной волны λ , а параметры α , c и n, как будет показано ниже, характеризуют соответственно масштаб пучка, асимметрию его формы и орбитальный угловой момент. Заметим, что в отличие от асимметричных мод Бесселя из [5, 6] параметр асимметрии c у Л-пучков не может быть произвольным, а должен быть по модулю меньше единицы, иначе ряд (2) будет расходящимся. Из (1) видно, что модуль амплитуды спектра меняется вдоль кольца с радиусом $\rho = \alpha/k$: при вещественных значениях c максимальное значение имеет место при $\theta = 0, \pi$, а

минимальное — при $\theta=\pm\pi/2$. Комплексная амплитуда Л-пучка находится как преобразование Фурье от углового спектра (1) и равна

$$E_{n}(r, \varphi, z) = \exp(iz\sqrt{k^{2} - \alpha^{2}}) \times$$

$$\times \sum_{p=0}^{\infty} (-1)^{p} c^{2p} \exp[i(n+2p)\varphi] J_{n+2p}(\alpha r) =$$

$$= c^{-n} \exp(iz\sqrt{k^{2} - \alpha^{2}}) U_{n} [car \exp(i\varphi), \alpha r],$$
(2)

где $U_n(w, z)$ – функция Ломмеля двух переменных [10]:

$$U_n(w,z) = \sum_{p=0}^{\infty} (-1)^p (w/z)^{n+2p} J_{n+2p}(z).$$
 (3)

В (2) параметр α входит в аргумент функций Бесселя, поэтому он характеризует масштаб (ширину светового кольца) пучка Ломмеля.

С помощью (2) нетрудно показать, что

$$\begin{aligned} & \left| E_n \left(r, \varphi, z \right) \right| = \left| E_n \left(r, -\varphi, z \right) \right| = \left| E_n \left(r, \pi - \varphi, z \right) \right| = \\ & = \left| \sum_{p=0}^{\infty} \left(-1 \right)^p c^{2p} \exp \left[i \left(n + 2p \right) \varphi \right] J_{n+2p} \left(\alpha r \right) \right|. \end{aligned} \tag{4}$$

Из (4) следует, что, в отличие от асимметричных пучков Бесселя из [5, 6], распределение интенсивности в поперечном сечении Л-пучков (2) симметрично не только относительно горизонтальной плоскости Oxz, но и относительно вертикальной плоскости Oyz.

При c = 0 в (2) остаётся только одно слагаемое и Л-пучок преобразуется в традиционный пучок Бесселя:

$$E_n(r, \varphi, z) = \exp\left(iz\sqrt{k^2 - \alpha^2} + in\varphi\right)J_n(\alpha r).$$

На рис. 1 показаны распределения интенсивности и фазы (при z=0) в поперечной плоскости для Л-пучков со следующими параметрами: длина волны $\lambda=532$ нм, топологический заряд n=4, масштабирующий множитель $\alpha=k/3$, параметр асимметрии c=0.5i (рис. $1a,\delta$) и c=0.9i (рис. $1e,\varepsilon$). На рис. 1 интенсивность показана в области $-20\lambda \le x$, $y \le 20\lambda$. Рис. 1 был получен путём расчёта по формуле (2).

Как видно из рис. 1, при небольших по модулю значениях параметра c дифракционная картина похожа на картину моды Бесселя, но вытянутую вдоль одной декартовой координаты (оси x). При двумерной реализации таких пучков (т.е. распространяющихся в плоскости Oxz) их форма будет похожа на форму ускоряющихся эллиптических мод, рассмотренных в [12].

Далее с ростом параметра c возрастает асимметрия Л-пучка, и он в поперечном сечении имеет вид двух полумесяцев с нулевой интенсивностью в центре. В оптическом микроманипулировании такое распределение удобно для задачи удерживания на месте микрообъекта по одной координате [13].

Без ограничения общности параметр c можно считать вещественным положительным. В противном случае дифракционная картина поворачивается на угол, соответствующий аргументу параметра c. Так,

для рис. 1 параметр c чисто мнимый, поэтому полумесяцы разнесены по оси x.

С ростом параметра c не только возрастает асимметрия поперечного распределения интенсивности, но и меняется характер распределения интенсивности в боковых лепестках. Это хорошо заметно из рис. 2, рассчитанного также по формуле (2) для тех же параметров, что и рис. 1.

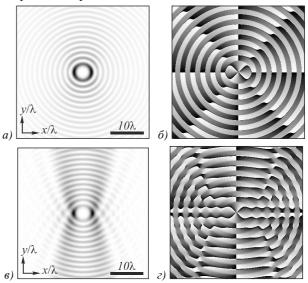


Рис. 1. Распределения интенсивности (негатив) (a, b) и фазы (б, c) в поперечной плоскости для пучков Ломмеля: $c = 0.5i \ (a, b); \ c = 0.9i \ (b, c)$

Из рис. 2 видно, что если при c=0.5i максимальная интенсивность в горизонтальной плоскости превышает максимальную интенсивность в вертикальной плоскости примерно в полтора раза, то при c=0.9i это соотношение составляет уже 3,5. Причём в вертикальной плоскости боковые лепестки превышают главные центральные максимумы.

2. Орбитальный угловой момент пучков Ломмеля

Орбитальный угловой момент (ОУМ) J_z (проекция ОУМ на оптическую ось) и суммарная интенсивность I светового пучка в плоскости, поперечной оптической оси, определяются по следующим формулам [14]:

$$J_{z} = \operatorname{Im} \left\{ \iint_{\mathbb{D}^{2}} E^{*} \frac{\partial E}{\partial \varphi} r \, dr \, d\varphi \right\} =$$

$$= \operatorname{Im} \left\{ \lim_{R \to \infty} \int_{0}^{R} \int_{0}^{2\pi} E^{*} \frac{\partial E}{\partial \varphi} r \, dr \, d\varphi \right\}, \tag{5}$$

$$I = \iint_{\mathbb{Q}^2} E^* E \, r \, dr \, d\varphi = \lim_{R \to \infty} \int_{0}^{R} \int_{0}^{2\pi} E^* E \, r \, dr \, d\varphi \,. \tag{6}$$

Подставив в (5), (6) комплексную амплитуду (2), получим ОУМ и суммарную интенсивность пучка Ломмеля:

$$J_{z} = 2\pi \lim_{R \to \infty} \sum_{p=0}^{\infty} (n+2p) (cc^{*})^{2p} \int_{0}^{R} J_{n+2p}^{2} (\alpha r) r dr. (7)$$

$$I = 2\pi \lim_{R \to \infty} \sum_{p=0}^{\infty} (cc^*)^{2p} \int_{0}^{R} J_{n+2p}^{2} (\alpha r) r dr.$$
 (8)

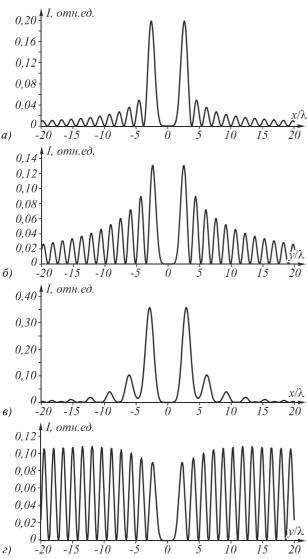


Рис. 2. Сечения интенсивности при y=0 (a, в) и x=0 (б, г) для пучков Ломмеля: c=0.5i (a, 6); c=0.9i (s, г). По горизонтальной оси отложены длины волн, а по вертикальной – интенсивность в произвольных единицах

Интегралы в этих выражениях описаны в [15] (выражение 5.54.2):

$$\int J_p^2(\alpha r) r dr =$$

$$= \frac{r^2}{2} \Big[J_p^2(\alpha r) - J_{p-1}(\alpha r) J_{p+1}(\alpha r) \Big].$$
(9)

Используя асимптотику функции Бесселя при больших значениях аргумента (выражение 9.2.1 в [16]), получим, что все интегралы в (7) и (8) не зависят от порядка функции Бесселя и равны $R/(\pi\alpha)$. Тогда, используя числовые ряды 0.246.1 и 0.246.2 из [15] и разделив (7) на (8), получим выражение для ОУМ, нормированного на интенсивность:

$$\frac{J_z}{I} = \frac{\sum_{p=0}^{\infty} \left(cc^*\right)^{2p} \left(n+2p\right)}{\sum_{p=0}^{\infty} \left(cc^*\right)^{2p}} = n + \frac{2|c|^4}{1-|c|^4} . \tag{10}$$

Из (10) следует, что при возрастании параметра асимметрии c<1 ОУМ возрастает. На рис. 1a (n = 4) для c = 0,5i нормированный ОУМ равен $J_z/I \approx$ 4,1, а на рис. 1e для c = 0,9i он равен $J_z/I \approx$ 7,8.

3. Ортогональность комплексных амплитуд пучков Ломмеля

Подобно тому, как в предыдущем разделе был вычислен орбитальный угловой момент, можно вычислить скалярное произведение двух пучков Ломмеля, имеющих соответственно топологические заряды n и m, масштабирующие множители α и β , параметры асимметрии c и d:

$$\begin{split} \left(E_{n\alpha c}, E_{m\beta d}\right) &= \iint_{\mathbb{D}^{2}} E_{n\alpha c} E_{m\beta d}^{*} r \, \mathrm{d}r \, \mathrm{d}\varphi = \\ &= \begin{cases} 2\pi \left(-1\right)^{(n-m)/2} \frac{\delta(\alpha-\beta)}{\alpha} \frac{(d^{*})^{n-m}}{1-\left(cd^{*}\right)^{2}}, \\ &= \exp\left((m+n)\right) \text{ чётно } \mathbf{u} \ n \geq m, \end{cases} \\ &= \begin{cases} 2\pi \left(-1\right)^{(n-m)/2} \frac{\delta(\alpha-\beta)}{\alpha} \frac{c^{m-n}}{1-\left(cd^{*}\right)^{2}}, \\ &= \exp\left((m+n)\right) \text{ чётно } \mathbf{u} \ n \leq m, \end{cases} \\ &= 0, \\ &= \exp\left((m+n)\right) \text{ нечётно}. \end{split}$$

Из (11) видно, что комплексные амплитуды Л-пучков, подобно традиционным и асимметричным пучкам Бесселя, ортогональны по масштабирующему множителю. Из (11) также видно, что в отличие от асимметричных пучков Бесселя из [5, 6] Л-пучки распадаются на два класса с чётным и нечётным топологическим зарядом. Комплексные амплитуды пучков из двух разных классов ортогональны между собой.

Заключение

В работе получены следующие результаты:

- получено новое решение уравнения Гельмгольца, описывающее трёхпараметрическое семейство бездифракционных непараксиальных пучков Ломмеля; комплексная амплитуда этих пучков описывается функциями Ломмеля двух переменных, первая из которых комплексная (уравнение (2));
- с ростом параметра асимметрии у пучков Ломмеля интенсивность боковых лепестков возрастает вдоль одной декартовой координаты и спадает вдоль другой координаты;
- пучки Ломмеля, как и любые другие бездифракционные трёхмерные пучки, имеют кольцевой угловой спектр плоских волн, зависящий только от угловой полярной координаты (уравнение (1));
- пучки Ломмеля имеют ОУМ, который растёт линейно с ростом номера моды *п* и нелинейно с ростом параметра асимметрии *c* (уравнение (10));
- функции, описывающие комплексные амплитуды пучков Ломмеля, ортогональны по масштабирующему множителю α и не ортогональны по па-

раметру асимметрии c; по номеру моды n пучки ортогональны в случае разной чётности.

Благодарности

Работа выполнена при поддержке грантов Президента РФ поддержки ведущих научных школ (НШ-3970.2014.9) и молодого доктора наук (МД-1929.2013.2), а также грантов РФФИ 13-07-97008 и 14-07-31092.

Литература

- Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory // Journal of the Optical Society of America A. – 1987. – V. 4(4). – P. 651-654.
- Berry, M.V. Nonspreading wave packets / M.V. Berry, N.L. Balazs // American Journal of Physics. – 1979. – V. 47(3). – P. 264-267.
- 3. **Lu, J.** Diffraction-limited beams and their applications for ultrasonic imaging and tissue characterization / J. Lu, J. Greenleaf // Proc. SPIE 1992. V. 1733. P. 92-119.
- Dennis, M.R. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beambeams / M.R. Dennis, J.D. Ring // Optics Letters. – 2013. – V. 38(17). – P. 3325-3328.
- Котляр, В.В. Бездифракционные асимметричные элегантные пучки Бесселя с дробным орбитальным угловым моментом / В.В. Котляр, А.А. Ковалёв, В.А. Сойфер // Компьютерная оптика – 2014. – Т. 38, № 1. – С. 4-10.
- Kotlyar, V.V. Asymmetric Bessel modes / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Optics Letters. – 2014. – V. 39(8). – P. 2395-2398.
- 7. **Nelson, W.** Propagation of Bessel and Airy beams through atmospheric turbulence / W. Nelson, J.P. Palastro, C.C. Davis, P. Sprangle // Journal of the Optical Society of America A. 2014. V. 31(3). P. 603-609.
- Froehly, L. Spatiotemporal structure of femtosecond bessel beams from spatial light modulators / L. Froehly, M. Jacquot, P.A. Lacourt, J.M. Dudley, F. Courvoisier // Journal of the Optical Society of America A. – 2014. – V. 31(4). – P. 790-793.
- 9. **Борн, М.** Основы оптики / М. Борн, Э. Вольф. 2-е изд. М.: Наука, 1973.
- 10. **Watson, G.N.** A Treatise on the Theory of Bessel Functions / G.N. Watson. 2nd ed. Cambridge, England: Cambridge University Press, 1966. P. 537-550. (§16.5-16.59).
- 11. **Sheppard, C.J.R.** Focusing of vortex beams: Lommel treatment // Journal of the Optical Society of America A. 2014. V. 31(3). P. 644-651.
- Aleahmad, P. Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams / P. Aleahmad, M.-A. Miri, M.S. Mills, I. Kaminer, M. Segev, D.N. Christodoulides // Physical Review Letters. – 2012. – V. 109. – P. 203902.
- 13. Скиданов, Р.В. Дифракционные оптические элементы для формирования комбинаций вихревых пучков в задаче манипулирования микрообъектами / Р.В. Скиданов, С.В. Ганчевская // Компьютерная оптика – 2014. – Т. 38, № 1. – С. 65-71.
- 14. **Kotlyar, V.V.** Hermite-Gaussian modal laser beams with orbital angular momentum / V.V. Kotlyar, A.A. Kovalev // Journal of the Optical Society of America A. 2014. V. 31(2). P. 274-282.

- Gradshteyn, I.S. Table of Integrals, Series, and Products / I.S. Gradshteyn, I.M. Ryzhik. New York: Academic, 1965.
- Abramovitz, M. Handbook of mathematical functions / M. Abramovitz, I.A. Stegun. – Dover Publications, 1965.

References

- Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory // Journal of the Optical Society of America A. – 1987. – V. 4(4). – P. 651-654.
- Berry, M.V. Nonspreading wave packets / M.V. Berry, N.L. Balazs // American Journal of Physics. – 1979. – V. 47(3). – P. 264-267.
- 3. **Lu, J.** Diffraction-limited beams and their applications for ultrasonic imaging and tissue characterization / J. Lu, J. Greenleaf // Proc. SPIE 1992. V. 1733. P. 92-119.
- Dennis, M.R. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beambeams / M.R. Dennis, J.D. Ring // Optics Letters. – 2013. – V. 38(17). – P. 3325-3328.
- Kotlyar, V.V. Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Computer Optics. – 2014. – V. 38(1). – P. 4-10.
- Kotlyar, V.V. Asymmetric Bessel modes / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Opt. Lett. – 2014. – Vol. 39. – No. 8. – P. 2395–2398.
- Nelson, W. Propagation of Bessel and Airy beams through atmospheric turbulence / W. Nelson, J.P. Palastro, C.C. Davis, P. Sprangle // Journal of the Optical Society of America A. – 2014. – V. 31(3). – P. 603-609.
- Froehly, L. Spatiotemporal structure of femtosecond bessel beams from spatial light modulators / L. Froehly, M. Jacquot, P.A. Lacourt, J.M. Dudley, F. Courvoisier // Journal of the Optical Society of America A. – 2014. – V. 31(4). – P. 790-793.
- Born, M. Principles of Optics / M. Born, E. Wolf. 6-th ed. – Pergamon, 1986.
- Watson, G.N. A Treatise on the Theory of Bessel Functions / G.N. Watson. – 2nd ed. – Cambridge, England: Cambridge University Press, 1966. – P. 537-550. – (§16.5-16.59).
- 11. **Sheppard, C.J.R.** Focusing of vortex beams: Lommel treatment // Journal of the Optical Society of America A. 2014. V. 31(3). P. 644-651.
- Aleahmad, P. Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams / P. Aleahmad, M.-A. Miri, M.S. Mills, I. Kaminer, M. Segev, D.N. Christodoulides // Physical Review Letters. – 2012. – V. 109. – P. 203902.
- 13. **Skidanov, R.V.** Diffractive optical elements for the formation of combinations of vortex beams in the problem manipulation of microobjects / R.V. Skidanov, S.V. Ganchevskaya // Computer Optics. 2014. V. 38(1). P. 65-71.
- 14. **Kotlyar, V.V.** Hermite-Gaussian modal laser beams with orbital angular momentum / V.V. Kotlyar, A.A. Kovalev // Journal of the Optical Society of America A. 2014. V. 31(2). P. 274-282.
- Gradshteyn, I.S. Table of Integrals, Series, and Products / I.S. Gradshteyn, I.M. Ryzhik. – New York: Academic, 1965
- Abramovitz, M. Handbook of mathematical functions / M. Abramovitz, I.A. Stegun. – Dover Publications, 1965.

DIFFRACTION-FREE LOMMEL BEAMS

A.A. Kovalev, V.V. Kotlyar Image Processing Systems Institute, Russian Academy of Sciences, Samara State Aerospace University

Abstract

We consider a new family of nonparaxial diffraction-free laser beams with their complex amplitude being proportional to the n-th order Lommel function of two variables. Therefore, these beams are called Lommel beams (L-beams). We obtained explicit analytical expressions for the angular spectrum of plane waves and for the orbital angular momentum of the L-beams. Transverse intensity of the L-beams has a reflective symmetry with respect to both Cartesian coordinate axes. Since transverse intensity distribution of L-beams does not change upon propagation, L-beams are modes of free space (L-modes). Functions of complex amplitudes of even (n = 2p) and odd (n = 2p + 1) L-modes are mutually orthogonal. For certain parameter, L-modes become traditional Bessel modes.

<u>Key words:</u> diffraction-free laser beam, Bessel mode, Lommel mode of two variables, orbital angular momentum.

Сведения об авторах

Сведения об авторах Котляр Виктор Викторович и Ковалёв Алексей Андреевич см. стр. 169 этого номера.

Поступила в редакцию 21 марта 2014 г.