ЧИСЛЕННЫЙ АНАЛИЗ СУБВОЛНОВОЙ ФОКУСИРОВКИ С ПОМОЩЬЮ КРЕМНИЕВОГО ЦИЛИНДРА

Савельев Д.А., Хонина С.Н.

Институт систем обработки изображений РАН, Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет) (СГАУ)

Аннотация

Произведён анализ влияния изменения размера кремниевого цилиндра с субволновым радиусом на картину дифракции Гауссовых пучков с круговой поляризацией на основе применения метода конечных разностей во временной области. Численно показано, что Гауссов пучок можно сфокусировать вблизи поверхности элемента в световое пятно, размер которого по полуспаду интенсивности равен 0,25λ. В работе демонстрируется, что кремниевый цилиндр, освещённый лазерным пучком с вихревой фазовой сингулярностью первого порядка, формирует световое пятно, центральная часть которого в основном сформирована продольной компонентой электрического поля (размер по полуспаду интенсивности равен 0,29λ).

<u>Ключевые слова</u>: дифракционная оптика, оптические вихри, бинарная оптика, FDTDметод, микроцилиндр с субволновым радиусом, острая фокусировка света, круговая поляризация, ПО Меер.

Введение

Одним из эффективных применений дифракционных микроэлементов является фокусировка лазерного излучения в ближней зоне дифракции. Известно применение для острой фокусировки массивов из простых микроэлементов (микроцилиндры, микроотверстия) [1-3], с помощью которых удалось добиться размера фокального пятна по полуспаду интенсивности (FWHM) вплоть до 0,38 λ [2]. Исследование дифракции Гауссова пучка на отдельном цилиндре с субволновым радиусом (показатель преломления n=2,0) показывает, что можно добиться уменьшения размера пятна по FWHM до 0,36 λ [4]. В [5] было продемонстрировано, что микровыступ обладает лучшими фокусирующими свойствами, чем микроотверстие.

Как было показано в [6], радиальная поляризация обеспечивает максимальное отношение интенсивности продольной компоненты к интенсивности поперечных компонент при острой фокусировке. Однако учитывая определённые проблемы генерации радиальной поляризации - необходимость использования сложных или дорогостоящих устройств, в работах [7-8] была рассмотрена возможность возбуждения продольной компоненты при фокусировке однородно-поляризованного излучения за счёт внесение фазовой сингулярности в падающий пучок. Такая возможность была экспериментально подтверждена в [9]. В упомянутых работах рассматривались фокусирующие элементы с показателем преломления n = 1,46. Увеличение показателя преломления позволит [8] добиться увеличения вклада продольной компоненты в картину общей интенсивности на оптической оси.

В качестве элемента с высоким показателем преломления в работе рассматривается кремний (Si), который является вторым по распространённости элементом (после кислорода) в земной коре. В настоящее время кремний и его соединения имеют разнообразные области применения, в частности, используются для изготовления полупроводниковых приборов (интегральных схем, диодов, транзисторов) [10–11], солнечных батарей [12], в биологии и медицине [13]. В работе [14] для 2D микролинзы Микаэляна, изготовленной из кремния с показателем преломления 3,47, вблизи поверхности линзы было получено фокальное пятно 0,12λ по полуспаду интенсивности (FWHM).

В данной работе проведены исследования по влиянию изменения радиуса (в диапазоне от 0,25λ до 2λ) кремниевого цилиндра на картину дифракции Гауссова пучка и лазерного пучка с вихревой фазовой сингулярностью первого порядка. Численные расчёты выполнены на основе конечно-разностного временного метода (FDTD), реализованного в программном продукте MEEP [15]. Рассмотрена круговая поляризация лазерного излучения, направление которой противоположно направлению вихревой фазовой сингулярности.

Дифракция Гауссовых пучков

Численное моделирование производилось с использованием вычислительного кластера мощностью 775 GFlops. Характеристики кластера: количество ядер – 116, вычислительные узлы – 7 сдвоенных серверов HP ProLiant 2×BL220с, объём RAM – 112 Гб.

Параметры моделирования: длина волны излучения $\lambda = 1,55$ мкм, размер расчётной области *x*, *y*, *z* $\in [-9\lambda; 9\lambda]$. Толщина поглощающего слоя PML – 0,66 λ , шаг дискретизации по пространству – $\lambda/31$, шаг дискретизации по времени – $\lambda/(62c)$, где *c* – скорость света. Источник находится внутри подложки, на расстоянии 0,1 мкм перед началом рельефа. Подложка занимает всё пространство до PML (погружена в PML на 0,5 мкм). Показатель преломления *n* равен 3,47. Высота выступа равнялась 1,55 λ .

Исследования проводились для двух типов лазерных пучков, которые могут быть сгенерированы в лазерных резонаторах и сохраняют свою структуру при распространении в свободном пространстве при круговой поляризации лазерного излучения: Гауссова пучка и моды Гаусса–Лагерра (0,1). Внешний вид рассматриваемых пучков приведён на рис. 1. Радиус пучка σ = 1,5λ.

Рис. 1. Входные пучки: интенсивность Гауссова пучка (а), интенсивность моды Гаусса–Лагерра (0,1) (б), фаза моды Гаусса–Лагерра (0,1) (в)

В табл. 1 приводится распространение рассматриваемых лазерных пучков при прохождении через цилиндр с разным показателем преломления: 1,5 и 3,47. Радиус цилиндра максимален, по краям он частично вписан в поглощающий слой РМL.

Изменение размера цилиндра

В дальнейших исследованиях будем рассматривать показатель преломления n = 3,47, соответствующий кремнию. Проведём исследование влияния изменения размера цилиндра на размер фокального пят-

на для рассматриваемых Гауссовых пучков. Дифракция Гауссова пучка показана в табл. 2, где, кроме общей интенсивности, также отдельно приводится продольная компонента (*z*-компонента) электрического поля. Для фундаментальной Гауссовой моды *z*компонента формируется вне оптической оси, и распределение имеет вид световой трубки. Также в табл. 2 приведены размеры фокальных пятен по полуспаду интенсивности в максимумах вне элемента.

Наилучший результат был получен при размере цилиндра 1,25λ. В этом случае в непосредственной близости от элемента формируется узкое фокальное пятно, размер которого по FWHM равен 0,25λ.

Следует отметить, что для ряда случаев ($r=0,25\lambda$, $r=\lambda$, $r=1,5\lambda$) фокусировка происходит на некотором расстоянии от элемента, даже для случая $r=1,25\lambda$ после фокусировки рядом с элементом наблюдается значительное ослабление интенсивности на оптической оси.

Табл. 1. Дифракция на цилиндре с разным показателем преломления Гауссовых пучков, общая интенсивность (размер области – 10,321×10,321)

Табл. 2. Дифракция Гауссова пучка на цилиндре с субволновым радиусом при изменении радиуса цилиндра (размер области – 5,14λ×5,84λ)

		$r = 0,25\lambda$	$r = 0,5\lambda$	$r = 0,75\lambda$	$r = \lambda$	$r = 1,25\lambda$	$r = 1,5\lambda$	$r=2\lambda$
		$\lambda 2\lambda 3\lambda 4\lambda 5\lambda$	$\lambda 2\lambda 3\lambda 4\lambda 5\lambda$	λ 2 λ 3 λ 4 λ 5 λ	$\lambda 2\lambda 3\lambda 4\lambda 5\lambda$	$\lambda 2\lambda 3\lambda 4\lambda 5\lambda$	λ 2λ 3λ 4λ 5λ	<u></u> 22 32 42 52
Общая интенсивность	$ + \lambda $ $ + 2\lambda $ $ + 3\lambda $ $ + 4\lambda $ $ + 5\lambda $							
	I	FWHM = 0,69λ		FWHM = 0,66λ	FWHM = $0,82\lambda$	FWHM = 0,25λ		
Продольная компонента	$-\lambda$ -2λ -3λ -4λ -5λ	Ŧ						

Для случаев $r=0,25\lambda$ и $r=\lambda$ максимум формируется на расстоянии 0,19 λ и 0,49 λ соответственно. Для случая $r=0,75\lambda$ – непосредственно рядом с элементом. Отметим, что для всех рассматриваемых случаев глобальный максимум формируется внутри элемента. Для случая $r=1,25\lambda$ – на границе элемента и внешней среды.

Также следует отметить, что рост радиуса цилиндра приводит к формированию максимума продоль-

Табл.

ной компоненты электрического поля внутри оптического элемента, кроме случая $r = 0,25\lambda$.

Для перераспределения продольной компоненты электрического поля с периферии на оптическую ось внесём вихревую сингулярность первого порядка противоположного поляризации знака. В табл. 3 приведены аналогичные исследования по изменению радиуса цилиндра для моды Гаусса–Лагерра (0,1).

3. Дифракция моды Гаусса–Лагерра (0,1) на цилиндре с субволновым	радиус
при изменении радиуса цилиндра (размер области – 5,14λ×7,66λ ,)

Наилучший результат был получен при размере цилиндра λ . В этом случае рядом с элементом формируется узкое фокальное пятно, размер которого по FWHM равен 0,29 λ .

Фокусировка вне элемента происходит также при размере цилиндра $r = 0,25\lambda$, максимум находится рядом с элементом. В остальных случаях глобальный максимум формируется внутри элемента. Отметим, в первый локальный максимум вне элемента попадает до 50% интенсивности от глобального максимума.

Максимум продольной компоненты электрического поля также находится внутри оптического элемента, кроме случаев $r=0,25\lambda$ и $r=\lambda$. Таким образом, по достижении некоторого критического радиуса (в данном случае $r=\lambda$) происходит фокусировка моды Гаусса–Лагерра (0,1) в узкое фокальное пятно, в основном состоящее из продольной компоненты электрического поля.

Следует отметить, что для малого размера цилиндра ($r = 0,25\lambda$) как для Гауссова пучка, так и для моды Гаусса–Лагерра (0,1) происходит фокусировка вне элемента, хотя и в более широкое фокальное пятно.

Графики поперечных сечений интенсивности для моды Гаусса–Лагерра (0,1) (для случаев $r=0,25\lambda$ и $r=\lambda$) приведены на рис. 2, для Гауссова пучка – на рис. 3 (для случая $r=1,25\lambda$).

Как видно из графиков на рис. 2, для случая $r=0,25\lambda$ (рис. 2a) в картине общей интенсивности присутствуют значительные боковые лепестки, формируемые в основном поперечными компонентами электрического поля (>60% от максимальной интенсивности). Для случая $r=\lambda$ (рис. 26) центральное фокальное пятно содержит в основном продольную компоненту электрического поля, амплитуда формируемых поперечными компонентами боковых лепестков составила ~20% от величины основного пика.

Рис. 3. График поперечного сечения общей интенсивности в максимуме вне элемента для моды Гаусса–Лагерра (0,1), радиус цилиндра равен 1,25λ

Заключение

Численно с помощью метода FDTD показано, что для острой фокусировки лазерных пучков с круговой поляризацией, в том числе пучков с фазовой сингулярностью, возможно использование отдельного кремниевого цилиндра с субволновым радиусом.

Наименьший размер фокального пятна Гауссова пучка с круговой поляризацией достигается при радиусе цилиндра 1,25 λ . В этом случае обеспечивается фокусировка в круглое световое пятно, состоящее из поперечных компонент электрического поля. Минимальный размер светового пятна по уровню полуспада интенсивности FWHM = 0,25 λ , что лучше, чем цилиндр, демонстрируемый в [4] (0,36 λ).

Наименьший размер фокального пятна для моды Гаусса–Лагерра (0,1) вне элемента достигается при радиусе цилиндра λ . Численно показано, что рассматриваемый кремниевый цилиндр, освещённый лазерным пучком с вихревой фазовой сингулярностью первого порядка, формирует световое пятно, центральная часть которого содержит продольную компоненту электрического поля (минимальный размер FWHMz=0,26 λ). Общая интенсивность светового пятна содержит поперечно-поляризованные боковые лепестки, что уширяет размер пятна до FWHM=0,29 λ .

Благодарности

Работа выполнена при финансовой поддержке Российского научного фонда (грант 14-19-00114).

Литература

- Chang, W.L. Fabricating subwavelength array structures using a near-field photolithographic method / W.L. Chang, Y.J. Chang, P.H. Tsao and P.K. Wei // Applied Physics Letters. – 2006. – Vol. 88. – P. 101109.
- Wei, P.-K. Focusing subwavelength light by using nanoholes in a transparent thin film / P.-K. Wei, W.-L. Chang, K.L. Lee, E.-H. Lin // Optics Letters. 2009. Vol. 34(12). P. 1867-1869.
- Котляр, В.В. Фотонные струи, сформированные квадратными микроступеньками / В.В. Котляр, С.С. Стафеев, А.Ю. Фельдман // Компьютерная оптика. – 2014. – Т. 38, № 1. – С. 72-80.
- Хонина, С.Н. Острая фокусировка лазерного излучения с помощью двухзонного аксиального микроэлемента / С.Н. Хонина, Д.А. Савельев, А.В. Устинов // Компьютерная оптика. – 2013. – Т. 37, № 2. – С. 160-169.
- Савельев, Д.А. Влияние субволновых деталей микрорельефа на картину дифракции Гауссовых пучков / Д.А. Савельев, С.Н. Хонина // Вестник СГАУ. – 2014. – Т. 43, № 1. – С. 275-286.
- Dorn, R. Sharper focus for a radially polarized light beam / R. Dorn, S. Quabis, G. Leuchs // Physical Review Letters. – 2003. – Vol. 91. – P. 233901.
- Khonina, S.N. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures / S.N. Khonina, S.G. Volotovsky // Journal of the Optical Society of America A. – 2010. – Vol. 27(10). – P. 2188-2197.
- Хонина, С.Н. Высокоапертурные бинарные аксиконы для формирования продольной компоненты электрического поля на оптической оси при линейной и круговой поляризации освещающего пучка / С.Н. Хонина, Д.А. Савельев // Журнал экспериментальной и теоретической физики. – 2013. – Т. 144, № 4. – С. 718-726.
- Khonina, S.N. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams / S.N. Khonina, S.V. Karpeev, S.V. Alferov, D.A. Savelyev, J. Laukkanen, J. Turunen // Journal of Optics. 2013. Vol. 15. P. 085704.
- Лебедев, А. SiC электроника. Прошлое, настоящее, будущее / А. Лебедев, С. Сбруев // Электроника: наука. технология. Бизнес. – 2006. – № 5. – С. 23-41.
- Герасименко, Н.Н. Кремний материал наноэлектроники / Н.Н. Герасименко, Ю.Н. Пархоменко. – М.: Техносфера, 2006. – 352 с.
- Емельянов, В.М. Исследование световой деградации тандемных α-Si: H/µс-Si: Н солнечных фотопреобразователей / В.М. Емельянов, А.С. Абрамов, А.В. Бобыль, А.С. Гудовских, Д.Л. Орехов, Е.И. Теруков, Н.Х. Тимошина, О.И. Честна, М.З. Шварц // Физика и техника полупроводников. – 2013. – Т. 47, № 5. – С. 667-674.
- Ксенофонтова, О.И. Пористый кремний и его применение в биологии и медицине / О.И. Ксенофонтова, А.В. Васин, В.В. Егоров, А.В. Бобыль, Ф.Ю. Солдатенков, Е.И. Теруков, В.П. Улин, О.И. Кисилев // Журнал технической физики. 2014. Т. 84, № 1. С. 67-78.
- 14. Котляр, В.В. Градиентные элементы микрооптики для достижения сверхразрешения / В.В. Котляр, А.А. Ковалёв, А.Г. Налимов // Компьютерная оптика. – 2009. – Т. 33, № 4. – С. 369-378.
- Oskooi, A.F. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method / A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson // Computer Physics Communications. 2010. Vol. 181. P. 687-702.

References

- 1. **Chang, W.L.** Fabricating subwavelength array structures using a near-field photolithographic method / W.L. Chang, Y.J. Chang, P.H. Tsao and P.K. Wei // Applied Physics Letters. 2006. Vol. 88. P. 101109.
- Wei, P.-K. Focusing subwavelength light by using nanoholes in a transparent thin film / P.-K. Wei, W.-L. Chang, K.L. Lee, E. H. Lin // Optics Letters. – 2009. – Vol. 34(12). – P. 1867-1869.
- Kotlyar, V.V. Photonic nanojets formed by square microsteps / V.V. Kotlyar, S.S. Stafeev, A.Y. Feldman // Computer Optics. - 2014. - Vol. 38(1). - P. 72-80. - (In Russian).
- Khonina, S.N. Diffraction of laser beam on a two-zone cylindrical microelement / S.N. Khonina, D.A. Savelyev, A.V. Ustinov // Computer Optics. – 2013. – Vol. 37(2). – P. 160-169. – (In Russian).
- Savelyev, D.A. Influence of subwave details of a microrelief on a diffraction picture of Gaussian beams / D.A. Savelyev, S.N. Khonina // Vestnik SSAU. – 2014. – Vol. 43(1). – P. 275-286. – (In Russian).
- Dorn, R. Sharper focus for a radially polarized light beam / R. Dorn, S. Quabis, G. Leuchs // Physical Review Letters. – 2003. – Vol. 91. – P. 233901.
- Khonina, S.N. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures / S.N. Khonina, S.G. Volotovsky // Journal of the Optical Society of America A. – 2010. – Vol. 27(10). – P. 2188-2197.
- Khonina, S.N. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam / S.N. Khonina, D.A. Savelyev // Journal of Experimental and Theoretical Physics. – 2013. – Vol. 117(4). – P. 623-630.

- Khonina, S.N. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams / S.N. Khonina, S.V. Karpeev, S.V. Alferov, D.A. Savelyev, J. Laukkanen, J. Turunen // Journal of Optics. – 2013. – Vol. 15. – P. 085704.
- Lebedev, A. SiC electronics. Past, present, future / A. Lebedev, S. Sbruev // Electronics: science. Technology. Business. 2006. Vol. 5. P. 23-41. (In Russian).
- Gerasimenko, N.N. Silicon the material nanoelectronics / N.N. Gerasimenko, Y.N. Parkhomenko – Moscow: "Technosphere" Publisher, 2006. – 352 p. – (In Russian).
- Emelyanov, V.M. Investigation of light-induced degradation of tandem α-Si: H/μc-Si: H photoconverters / V.M. Emelyanov, A.S. Abramov, A.V. Bobyl, A.S. Gudovskikh, D.L. Orekhov, E.I. Terukov, N.Kh. Timoshina, O.I. Chosta, M.Z. Shvarts // Semiconductor Physics and Technology. – 2013. – Vol. 47(5). – P. 667-674. – (In Russian).
- Ksenofontova, O.I. Porous silicon and its application in biology and medicine / O.I. Ksenofontova, A.V. Vasin, V.V. Egorov, A.V. Bobyl, F.U. Soldatenkov, E.I. Terukov, V.P. Ulin, O.I. Kiselev // Journal of Technical Physics. – 2014. – Vol. 84(1). – P. 67-78. – (In Russian).
- Kotlyar, V.V. Gradient-index element of microoptics for superresolution / V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov // Computer Optics. – 2009. – Vol. 33(4). – P. 369-378. – (In Russian).
- Oskooi, A.F. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method / A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson // Computer Physics Communications. 2010. Vol. 181. P. 687-702.

NUMERICAL ANALYSIS OF SUBWAVELENGTH FOCUSING USING A SILICON CYLINDER

D.A. Savelyev, S.N. Khonina

Image Processing Systems Institute, Russian Academy of Sciences, Samara State Aerospace University

Abstract

The analysis of the impact of variations in the size of a silicon micro-cylinder with a subwavelength radius on the diffraction of circularly polarized Gaussian beams was performed using a finite-difference time-domain (FDTD) method. It is numerically shown that a Gaussian beam can be focused near the surface of the element in a light spot, whose size at full-width at half-maximum of the intensity is 0.25λ . It is demonstrated that the silicon cylinder illuminated by a laser beam with a vortex phase singularity of the first order forms a light spot, with its central part mainly formed by the longitudinal component of the electric field. (FWHM = 0.29λ).

<u>Key words</u>: diffractive optics, optical vortices, binary optics, FDTD-method, micro-cylinder with subwavelength radius, sharp focusing of light, circular polarization, Meep software.

Сведения об авторах

Савельев Дмитрий Андреевич, 1988 года рождения, магистр прикладной математики и информатики, в 2011 году окончил Самарский государственный аэрокосмический университет имени академика С.П. Королёва – СГАУ по специальности «Прикладная математика и информатика». Инженер НИЛ-35 СГАУ, стажёр-исследователь лаборатории лазерных измерений Института систем обработки изображений РАН (ИСОИ РАН). Область научных интересов: оптическая и цифровая обработка изображений, дифракционная оптика, сингулярная оптика, оптика ближнего поля.

E-mail: <u>dmitrey.savelyev@yandex.ru</u>.

Dmitry Andreevich Savelyev, (b. 1985) Master of Applied Mathematics and Computer Science, received master's degree in Samara State Aerospace University (2011). Engineer of scientific research laboratory (SRL-35) of SSAU, trainee researcher of Laser Measurements laboratory at the Image Processing Systems Institute of the Russian Academy of Sciences (IPSI

RAS). Research interests: optical and digital image processing, diffractive optics, singular optics, near-field optics. Сведения об авторе Хонина Светлана Николаевна – см. стр. 605 этого номера.

Поступила в редакцию 10 ноября 2014 г.