
Parallel implementation of the multi-view image segmentation algorithm using the Hough transform Ye.V. Goshin, A.P. Kotov

588 Computer Optics, 2017, Vol. 41(4)

PARALLEL IMPLEMENTATION OF A MULTI-VIEW IMAGE SEGMENTATION ALGORITHM USING
THE HOUGH TRANSFORM
Ye. V. Goshin 1, 2, A.P. Kotov,2

1 Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
2 Samara National Research University, Samara, Russia

Abstract
We report on the parallel implementation of a multi-view image segmentation algorithm via

segmenting the corresponding three-dimensional scene. The algorithm includes the reconstruction
of a three-dimensional scene model in the form of a point cloud, and the segmentation of the re-
sulting point cloud in three-dimensional space using the Hough space. The developed parallel al-
gorithm was implemented on graphics processing units using CUDA technology. Experiments
were performed to evaluate the speedup and efficiency of the proposed algorithm. The developed
parallel program was tested on modelled scenes.

Keywords: segmentation; three-dimensional model; Hough transform; CUDA.
Citation: Goshin YeV, Kotov AP. Parallel implementation of a multi-view image segmentation

algorithm using the Hough transform. Computer Optics 2017; 41(4): 588-591. DOI: 10.18287/2412-
6179-2017-41-4-588-591.

Acknowledgments: We thank our research supervisor professor Vladimir Fursov who provided
insight and expertise that greatly assisted the research and for comments that greatly improved the
manuscript. The work was partially funded by the Russian Foundation for Basic Research grants
(#16-07-00729 a, #17-29-03112 ofi_m and # 16-29-09528 ofi_m).

Introduction
Image processing and analysis, as well as the task of

image segmentation is one of the most important in various
spheres of human activity. Many modern applications are
based on information processing. In many cases the infor-
mation to be processed is in the form of images obtained
from cameras. However, some images do not contain
enough information to perform a reliable segmentation.
For example, this can be the case when the texture of scene
objects consists of large regions of different colors. In this
case, if there are several images, it is better to consider the
three-dimensional structure of the scene rather than the in-
tensity characteristics of individual images.

There is a considerable number of algorithms and
methods for 3D scene model reconstruction from multi-
view images [2, 3]. However, if the images were obtained
from different views, the camera parameters are unknown,
so it is necessary to determine these parameters. A number
of papers [4, 5] were devoted to multi-view image match-
ing in case when camera parameters are unknown.

One of the approaches to the three-dimensional scene
segmentation consists in the detection of objects on this sce-
ne that have a certain similar characteristic [6, 7]. For exam-
ple, in paper [8], the plane detection in a scene represented
by point cloud is considered. It is devoted to the case when
the point cloud was obtained by LIDaR surveying.

In this paper, the three-dimensional Hough transform is
used to detect the planes. The purpose of the paper is to
speed up the technology proposed in [9] through the paral-
lel implementation of one of the stages of this technology,
namely the detection of the most suitable planes using the
Hough space. Experimental results demonstrating the
speedup of the parallel implementation of the algorithm
compared with the sequential implementation are given.

An overview of the technology
The main stages of the multi-view image segmenta-

tion technology using the three-dimensional Hough trans-
form proposed in [9] are shown in Fig. 1.

Fig. 1. The scheme of the technology

According to the scheme, first a three-dimensional scene
model is constructed from two images. In this paper, we use
the algorithm for camera parameters determination described
in [10]. Using the Lucas–Kanade method [11], we form an
optical flow which matches points between the first and sec-
ond images. The point cloud based on the matches obtained is
formed by triangulation [12]. Then, the Hough transform is
applied to all points of the resulting three-dimensional scene.
Among all the planes, the maximum in the accumulator space
is detected using the transformation, by means of which the
background plane is selected. Further, by calculating the dis-
tance from the points to the detected plane, we divide one
model into two: one model consists of the background points,
and the other contains the points of the objects. After these
steps, it is possible to segment the initial images using the ob-
tained segmented scene. The key stages of the technology will
be considered hereafter.

The goal of the 3D scene model segmentation is to sepa-
rate the objects from the background of the scene. To detect
the planes (background and objects in the scene), the three-
dimensional Hough transform is performed. The Hough
transform is a way of parametric objects detection, which is

Parallel implementation of the multi-view image segmentation algorithm using the Hough transform Ye.V. Goshin, A.P. Kotov

Computer Optics, 2017, Vol. 41(4) 589

commonly used to detect lines and circles, and other shapes
in the image. For example, in paper [13] the generalized
Hough transform is used for detection of a variety of two-
dimensional objects with the reference contour.

When performing the Hough transform, for all given
points in the initial space the assumption is made whether
they belong to the desired object or not. Thus, for this
purpose the equation for each point of the scene is solved
to determine certain parameters that represent the Hough
space. At the final step the maximum values are deter-
mined in the Hough space. Thus, we obtain the parame-
ters for the equation of the desired object, whether it is a
line, a circle, or some other figure.

There are also several modifications of the Hough
transform: probabilistic, random, hierarchical, phase
space blur, the use of the image gradient, and others.

As the input values we use a set of points from three-
dimensional real space. The plane can be represented us-
ing the normal vector n to this plane and the distance ρ
from the origin to the plane. Then, for each point p on the
plane the following equation is satisfied:

x x y y z zp n p n p nρ = ⋅ = + +p n .

After substituting expressions for the angles between
the normal vector and the selected coordinate system, the
plane equation can be written as follows:

cos sin sin sin cosx y zp p p⋅ θ ⋅ ϕ + ⋅ ϕ⋅ θ + ⋅ ϕ = ρ , (1)

where θ and ϕ are the angles defining the normal vector.
The coordinates ϕ, θ and ρ form such three-dimensional
Hough space, that for each point in this space there is a cor-
responding plane in real three-dimensional space. In turn, for
each point (x0, y0, z0) of a real three-dimensional space there
is a corresponding surface in the Hough space, so that each
point of this surface (ϕ, θ, ρ) characterizes a certain plane
passing through the required point (x0, y0, z0).

In this paper, we solve the problem of determining the
background plane containing the greatest number of
points from the formed point cloud. For all the points
from the initial cloud, after determining the parameters

ˆˆ ˆ(, ,)ϕ θ ρ of the background plane, it is determined wheth-

er this point belongs to the plane or not. To find this out,
the coordinates of the point are substituted into the plane
equation. Next, we obtain some value that we compare
with a certain threshold:

ˆ ˆˆ ˆcos sin sin sin

ˆcos .
x y

z

p p

p

⋅ θ ⋅ ϕ + ⋅ ϕ ⋅ θ +

+ ⋅ ϕ − ρ < ∆
 (2)

All the points satisfying this inequality belong to the
plane, the others are considered objects of the scene.

The results of the model segmentation can be used for
the initial image segmentation, since there is a one-to-one
correspondence between the pixels of the images and the
reconstructed points of the three-dimensional model.

Sequential implementation of the three-dimensional
Hough transform algorithm

Consider the algorithm that is used for the three-
dimensional Hough transform realization in this paper. A

three-dimensional array of integer values is used as an
accumulator array. For each element in this space there is
a corresponding plane with the parameters that are speci-
fied by using the coordinates of this element.

Since the exact mapping is impossible due to the dis-
creteness of the array elements, then for each point from
the point cloud the algorithm increments the value of
those elements of the accumulator array that correspond
to the planes passing through the given point or in its
neighbourhood.

Using the pseudocode, the above algorithm can be
written as follows:

Sequential implementation
Input data: Point cloud
Output data: Accumulator array

For each point (x0, y0, z0) in point cloud
 For each angle θ from 0 to π with step π/180
 For each angle ϕ from 0 to π with step π/360
 Calculate ρ according to (1)
 Cast to integer type ρ
 If ρ < ∆
 Increment operation: A (θ, φ, ρ) = A (θ, φ, ρ) + 1
 End loop ϕ
 End loop θ
End loop (x0, y0, z0)
Find maximum A (θ, φ, ρ)

As a result of this algorithm implementation, each el-
ement of the resulting array is assigned a number defined
as the number of points from the initial point cloud,
where the points are located in the neighbourhood of the
plane specified by this element. The element of the array
with the maximum value is the required point specifying
the background plane.

Parallel implementation of the proposed algorithm

The Hough transform is computationally complex due to
the irregular access to the memory during the increment op-
eration of the accumulator array. The use of CUDA (Com-
pute Unified Device Architecture) technology enables us to
decompose this operation. However, due to the aforemen-
tioned irregular and unpredictable memory access, the effec-
tive implementation of the Hough transform algorithm on a
graphics processing unit is nontrivial [14].

The architecture of NVIDIA GPU (Graphical Pro-
cessing Unit) is based on streaming multiprocessors
(SMs), scalable by the number of threads. Each GPU
multiprocessor executes a thousand threads at a time.
When the CUDA program on the host CPU calls the GPU
kernel grid, the thread blocks that form the grid are dis-
tributed among the streaming multiprocessors (SMs). The
GPU kernel grid is the part of the CUDA program code
running on the GPU. The threads do not necessarily exe-
cute the same program (the GPU kernel) simultaneously.
At the same time, threads combined in one block of
threads are executed. The threads inside the block of
threads are located in warps, and each warp contains 32
threads. Each thread in a warp performs the same instruc-
tion per one clock period [15].

Parallel implementation of the multi-view image segmentation algorithm using the Hough transform Ye.V. Goshin, A.P. Kotov

590 Computer Optics, 2017, Vol. 41(4)

The proposed three-dimensional Hough transform al-
gorithm is implemented as a CUDA program. In CUDA
program, a part of the code is executed either on the CPU
(host) or on the GPU (device). The algorithm of the im-
plemented program consists of five successive steps
which are given below. The device performing the proce-
dures at this step is indicated parentheses (host or device).

The main steps of the CUDA program:
1. allocation of memory for input and output data in

the global memory of GPU (host);
2. copying the input data from RAM into the global

memory of the GPU (host);
3. performing GPU kernel grid and saving the calcu-

lated values of the accumulator array in the global
memory of the GPU (device);

4. copying the results from the GPU global memory
to the RAM (host);

5. release the global memory (host).
After the accumulator array formation, the task of de-

termining the parameters of the required plane becomes
trivial.

For the above-mentioned scheme of the CUDA pro-
gram, two implementations differing in the third step
were considered. These implementations differ in the
number of parallel processes (threads) and the computa-
tional complexity of each of these processes.

In the case of the first parallel implementation, each
thread calculates values ρ for all angles θ, ϕ for a certain
point in the three-dimensional space. In the case of the
second implementation each thread calculates values ρ
for all points for a certain pair of angles θ, ϕ. The draw-
back of the second implementation consists in multiple
calls to the global memory of the GPU to read the coor-
dinates of the three-dimensional point. However, for both
implementations it is difficult to estimate the collisions
that arise when the content of the same memory cell
needs to be changed for the execution of a transaction of
different threads.

As it can be seen from the pseudocodes of the parallel
implementations, each thread executes loops with differ-
ent parameters and different number of operations. The
size of the grid also varies.

The speedup of parallel implementations in compari-
son with the sequential one was calculated by the follow-
ing formula:

kernel

CPU

HtoD DtoH

t
s

t t t
=

+ +
, (3)

where tCPU – execution time of the sequential algorithm;
tHtoD – transfer time of the input data from RAM of CPU
to global memory of GPU (host-to-device); tkernel – time
of CUDA kernel execution; tDtoH – transfer time of the re-
sulting data from global memory of GPU to CPU RAM
(device-to-host).

Parallel implementation 1
Input data: Point cloud
Output data: Values of the accumulator array for each pair
of angles θ and ϕ for a single point

Calculate the thread index id
id = blockIdx.x * blockDim.x + threadIdx.x
Read the 3D coordinates from global memory
For each angle θ from 0 to π with increment π/180
 For each angle ϕ from 0 to π with increment π/360
 Compute ρ
 Cast ρ to integer
 If ρ < ∆
 Atomic increment: A (θ, φ, ρ)
 End loop ϕ
End loop θ

Parallel implementation 2
Input data: Point cloud
Output data: Values of the accumulator array for all points
for a single pair of angles θ and ϕ

Calculate the thread index id
id = blockIdx.x * blockDim.x + threadIdx.x
Calculate θ, ϕ: θ = id / 360 and ϕ = id / 360
For each point (x0, y0, z0)
 Read the 3D coordinates from global memory
 Compute ρ:
 Cast ρ to integer
 If ρ < ∆
 Atomic increment: A (θ, φ, ρ)
End loop (x0, y0, z0)

5. Experimental results

To test the efficiency of CUDA implementations of
the parallel algorithm, the following experiments were
carried out. A point cloud of 158877 points was used as
input data. The experiments were carried out using the
following equipment: CPU: Intel Core i7-6700K, 4 GHz,
GPU: GeForce GTX 750 Ti. The results of comparative
studies of the execution time of the algorithm are shown
in Fig. 2, Fig. 3 and Table 1.

Fig. 2. Dependence of the execution time (ms)

for each implementation on the number of points

Fig. 3. Dependence of the speed-up of each implementation

on the number of points

Parallel implementation of the multi-view image segmentation algorithm using the Hough transform Ye.V. Goshin, A.P. Kotov

Computer Optics, 2017, Vol. 41(4) 591

Table 1. Execution time and speedup for 158877 points

Execution time
(milliseconds)

Speedup

Sequential implementation 13098 –
Parallel implementation 1 1353 9.7
Parallel implementation 2 2139 6.1

Fig. 2 illustrates the dependency of the implementa-
tion time of sequential and parallel implementations on
the number of points. Fig. 3 shows the dependence of the
speed-up of the parallel implementations on the number
of points. Both parallel implementations demonstrate the
same time of 2500 points. However, when the number of
points is greater, the first implementation is executed 1.5
times faster than the second one.

The sequential implementation of the Hough algo-
rithm was carried out in 13 seconds. For parallel imple-
mentations 1 and 2, the execution time was 1353 and
2139 milliseconds, respectively. A feature of the parallel
implementations is the occurrence of situations when dif-
ferent threads simultaneously perform an increment oper-
ation on the same variable. For atomic access of each
thread to a specific area of memory, a special operation
atomicAdd() was used to ensure atomicity. The smallest
execution time was registered for parallel implementation
1, for which parallelism was implemented at the level of
decomposition by cloud point data.

Conclusion

The proposed algorithm was implemented as a C++
program using CUDA technology. Experimental studies
of achievable values of accuracy and reliability were car-
ried out. During the experimental studies of the technolo-
gy, its operability was demonstrated and a comparative
study of the efficiency of various parallel program im-
plementations of the proposed algorithm was carried out.
The greatest speedup (by a factor of 9.7) was obtained for
the parallel realization 1.

References
[1] Pollefeys M, Nistér D, Frahm J-M, Akbarzadeh A, Mordohai

P, Clipp B, Engels C, Gallup D, Kim S-J, Merrell P, Salmi C,
Sinha S, Talton B, Wang L, Yang Q, Stewénius H, Yang R,
Welch G, Towles H. Detailed real-time urban 3D reconstruc-
tion from video. International Journal of Computer Vision
2008; 78(2-3): 143-167. DOI: 10.1007/s11263-007-0086-4.

[2] Baillard C, Maître H. 3-D reconstruction of urban scenes
from aerial stereo imagery: A focusing strategy. Computer

Vision and Image Understanding 1999; 76(3): 244-258.
DOI: 10.1006/cviu.1999.0793.

[3] Pollefeys M, Koch R, Van Gool L. Self-calibration and metric
reconstruction in spite of varying and unknown intrinsic cam-
era parameters. International Journal of Computer Vision
1999; 32(1): 7-25. DOI: 10.1023/A:1008109111715.

[4] Eisert P, Steinbach E, Girod B. Automatic reconstruction
of stationary 3-D objects from multiple uncalibrated cam-
era views. IEEE Transactions on Circuits and Systems for
Video Technology 2000; 10(2): 261-277. DOI:
10.1109/76.825726.

[5] Reitberger J, Schnörr C, Krzystek P, Stilla U. 3D segmenta-
tion of single trees exploiting full waveform LIDAR data. IS-
PRS Journal of Photogrammetry and Remote Sensing 2009;
64(6): 561-574. DOI: 10.1016/j.isprsjprs.2009.04.002.

[6] Tarsha-Kurdi F, Landes T, Grussenmeyer P. Hough-
transform and extended RANSAC algorithms for automat-
ic detection of 3D building roof planes from lidar data.
Proceedings of the ISPRS Workshop on Laser Scanning
2007; 36(3): 407-412.

[7] Zhang J, Lin X, Ning X. SVM-based classification of seg-
mented airborne LiDAR point clouds in urban areas. Re-
mote Sensing 2013; 5(8): 3749-3775. DOI:
10.3390/rs5083749.

[8] Borrmann D, Elseberg J, Lingemann K, Nüchter A. The
3D Hough Transform for plane detection in point clouds:
A review and a new accumulator design. 3D Research
2011; 2(2): 02003. DOI: 10.1007/3DRes.02(2011)3.

[9] Goshin YeV, Loshkareva GE. Segmentation of stereo im-
ages with the use of the 3D Hough transform. CEUR
Workshop Proceedings 2016; 1638: 340-347. DOI:
10.18287/1613-0073-2016-1638-340-347.

[10] Goshin, YeV, Fursov VA. 3D scene reconstruction from
stereo images with unknown extrinsic parameters. Com-
puter Optics 2015; 39(5): 770-776. DOI: 10.18287/0134-
2452-2015-39-5-770-776.

[11] Lucas BD, Kanade T. An iterative image registration tech-
nique with an application to stereo vision. IJCAI 1981; 81:
674-679.

[12] Hartley RI, Sturm P. Triangulation. Computer Vision and
Image Understanding 1997; 68(2): 146-157.

[13] Fursov VA, Bibikov SA, Yakimov PYu. Localization of
objects contours with different scales in images using
Hough transform. Computer Optics 2013, 37(4): 496-502.

[14] Van Den Braak G-J, Nugteren C, Mesman B, Corporaal H.
GPU-vote: A framework for accelerating voting algorithms
on GPU. Euro-Par 2012 Parallel Processing 2012; 945-
956. DOI: 10.1007/978-3-642-32820-6_92.

[15] NVIDIA Corporation. NVIDIA CUDA C Programming
Guide: Version 8.0; January 2017. Source:
〈http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_
Guide.pdf〉.

Authors’ information
The information about author Yegor Vyacheslavovich Goshin you can find on page 563 of this issue.

Anton Petrovich Kotov, Master of Applied Mathematics and Computer Science. Currently studies at Samara Uni-
versity. Research interests are image processing, recognition algorithms, 3D-scene reconstruction, parallel computa-
tions. E-mail: antonykotov@gmail.com .

Code of State Categories Scientific and Technical Information (in Russian – GRNTI)): 28.23.15, 50.41.25.
Received June 30, 2017. The final version – August 19, 2017.

