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Abstract  
We report on the parallel implementation of a multi-view image segmentation algorithm via 

segmenting the corresponding three-dimensional scene. The algorithm includes the reconstruction 
of a three-dimensional scene model in the form of a point cloud, and the segmentation of the re-
sulting point cloud in three-dimensional space using the Hough space. The developed parallel al-
gorithm was implemented on graphics processing units using CUDA technology. Experiments 
were performed to evaluate the speedup and efficiency of the proposed algorithm. The developed 
parallel program was tested on modelled scenes. 
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Introduction 
Image processing and analysis, as well as the task of 

image segmentation is one of the most important in various 
spheres of human activity. Many modern applications are 
based on information processing. In many cases the infor-
mation to be processed is in the form of images obtained 
from cameras. However, some images do not contain 
enough information to perform a reliable segmentation. 
For example, this can be the case when the texture of scene 
objects consists of large regions of different colors. In this 
case, if there are several images, it is better to consider the 
three-dimensional structure of the scene rather than the in-
tensity characteristics of individual images. 

There is a considerable number of algorithms and 
methods for 3D scene model reconstruction from multi-
view images [2, 3]. However, if the images were obtained 
from different views, the camera parameters are unknown, 
so it is necessary to determine these parameters. A number 
of papers [4, 5] were devoted to multi-view image match-
ing in case when camera parameters are unknown. 

One of the approaches to the three-dimensional scene 
segmentation consists in the detection of objects on this sce-
ne that have a certain similar characteristic [6, 7]. For exam-
ple, in paper [8], the plane detection in a scene represented 
by point cloud is considered. It is devoted to the case when 
the point cloud was obtained by LIDaR surveying. 

In this paper, the three-dimensional Hough transform is 
used to detect the planes. The purpose of the paper is to 
speed up the technology proposed in [9] through the paral-
lel implementation of one of the stages of this technology, 
namely the detection of the most suitable planes using the 
Hough space. Experimental results demonstrating the 
speedup of the parallel implementation of the algorithm 
compared with the sequential implementation are given. 

An overview of the technology 
The main stages of the multi-view image segmenta-

tion technology using the three-dimensional Hough trans-
form proposed in [9] are shown in Fig. 1. 

 
Fig. 1. The scheme of the technology 

According to the scheme, first a three-dimensional scene 
model is constructed from two images. In this paper, we use 
the algorithm for camera parameters determination described 
in [10]. Using the Lucas–Kanade method [11], we form an 
optical flow which matches points between the first and sec-
ond images. The point cloud based on the matches obtained is 
formed by triangulation [12]. Then, the Hough transform is 
applied to all points of the resulting three-dimensional scene. 
Among all the planes, the maximum in the accumulator space 
is detected using the transformation, by means of which the 
background plane is selected. Further, by calculating the dis-
tance from the points to the detected plane, we divide one 
model into two: one model consists of the background points, 
and the other contains the points of the objects. After these 
steps, it is possible to segment the initial images using the ob-
tained segmented scene. The key stages of the technology will 
be considered hereafter. 

The goal of the 3D scene model segmentation is to sepa-
rate the objects from the background of the scene. To detect 
the planes (background and objects in the scene), the three-
dimensional Hough transform is performed. The Hough 
transform is a way of parametric objects detection, which is 
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commonly used to detect lines and circles, and other shapes 
in the image. For example, in paper [13] the generalized 
Hough transform is used for detection of a variety of two-
dimensional objects with the reference contour. 

When performing the Hough transform, for all given 
points in the initial space the assumption is made whether 
they belong to the desired object or not. Thus, for this 
purpose the equation for each point of the scene is solved 
to determine certain parameters that represent the Hough 
space. At the final step the maximum values are deter-
mined in the Hough space. Thus, we obtain the parame-
ters for the equation of the desired object, whether it is a 
line, a circle, or some other figure. 

There are also several modifications of the Hough 
transform: probabilistic, random, hierarchical, phase 
space blur, the use of the image gradient, and others. 

As the input values we use a set of points from three-
dimensional real space. The plane can be represented us-
ing the normal vector n to this plane and the distance ρ 
from the origin to the plane. Then, for each point p on the 
plane the following equation is satisfied: 

x x y y z zp n p n p nρ = ⋅ = + +p n . 

After substituting expressions for the angles between 
the normal vector and the selected coordinate system, the 
plane equation can be written as follows: 

cos sin sin sin cosx y zp p p⋅ θ ⋅ ϕ + ⋅ ϕ⋅ θ + ⋅ ϕ = ρ , (1) 

where θ and ϕ are the angles defining the normal vector. 
The coordinates ϕ, θ and ρ form such three-dimensional 
Hough space, that for each point in this space there is a cor-
responding plane in real three-dimensional space. In turn, for 
each point (x0, y0, z0) of a real three-dimensional space there 
is a corresponding surface in the Hough space, so that each 
point of this surface (ϕ, θ, ρ) characterizes a certain plane 
passing through the required point (x0, y0, z0). 

In this paper, we solve the problem of determining the 
background plane containing the greatest number of 
points from the formed point cloud. For all the points 
from the initial cloud, after determining the parameters 

ˆˆ ˆ( , , )ϕ θ ρ  of the background plane, it is determined wheth-

er this point belongs to the plane or not. To find this out, 
the coordinates of the point are substituted into the plane 
equation. Next, we obtain some value that we compare 
with a certain threshold: 

ˆ ˆˆ ˆcos sin sin sin

ˆcos .
x y

z

p p

p

⋅ θ ⋅ ϕ + ⋅ ϕ ⋅ θ +

+ ⋅ ϕ − ρ < ∆
  (2) 

All the points satisfying this inequality belong to the 
plane, the others are considered objects of the scene. 

The results of the model segmentation can be used for 
the initial image segmentation, since there is a one-to-one 
correspondence between the pixels of the images and the 
reconstructed points of the three-dimensional model. 

Sequential implementation of the three-dimensional 
Hough transform algorithm 

Consider the algorithm that is used for the three-
dimensional Hough transform realization in this paper. A 

three-dimensional array of integer values is used as an 
accumulator array. For each element in this space there is 
a corresponding plane with the parameters that are speci-
fied by using the coordinates of this element. 

Since the exact mapping is impossible due to the dis-
creteness of the array elements, then for each point from 
the point cloud the algorithm increments the value of 
those elements of the accumulator array that correspond 
to the planes passing through the given point or in its 
neighbourhood. 

Using the pseudocode, the above algorithm can be 
written as follows: 

Sequential implementation 
Input data: Point cloud 
Output data: Accumulator array 
 

For each point (x0, y0, z0) in point cloud 
 For each angle θ from 0 to π with step π/180 
  For each angle ϕ from 0 to π with step π/360 
   Calculate ρ according to (1)  
   Cast to integer type ρ 
   If ρ < ∆ 
    Increment operation: A (θ, φ, ρ) = A (θ, φ, ρ) + 1 
  End loop ϕ 
 End loop θ 
End loop (x0, y0, z0) 
Find maximum A (θ, φ, ρ) 

As a result of this algorithm implementation, each el-
ement of the resulting array is assigned a number defined 
as the number of points from the initial point cloud, 
where the points are located in the neighbourhood of the 
plane specified by this element. The element of the array 
with the maximum value is the required point specifying 
the background plane. 

Parallel implementation of the proposed algorithm 

The Hough transform is computationally complex due to 
the irregular access to the memory during the increment op-
eration of the accumulator array. The use of CUDA (Com-
pute Unified Device Architecture) technology enables us to 
decompose this operation. However, due to the aforemen-
tioned irregular and unpredictable memory access, the effec-
tive implementation of the Hough transform algorithm on a 
graphics processing unit is nontrivial [14]. 

The architecture of NVIDIA GPU (Graphical Pro-
cessing Unit) is based on streaming multiprocessors 
(SMs), scalable by the number of threads. Each GPU 
multiprocessor executes a thousand threads at a time. 
When the CUDA program on the host CPU calls the GPU 
kernel grid, the thread blocks that form the grid are dis-
tributed among the streaming multiprocessors (SMs). The 
GPU kernel grid is the part of the CUDA program code 
running on the GPU. The threads do not necessarily exe-
cute the same program (the GPU kernel) simultaneously. 
At the same time, threads combined in one block of 
threads are executed. The threads inside the block of 
threads are located in warps, and each warp contains 32 
threads. Each thread in a warp performs the same instruc-
tion per one clock period [15]. 
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The proposed three-dimensional Hough transform al-
gorithm is implemented as a CUDA program. In CUDA 
program, a part of the code is executed either on the CPU 
(host) or on the GPU (device). The algorithm of the im-
plemented program consists of five successive steps 
which are given below. The device performing the proce-
dures at this step is indicated parentheses (host or device). 

The main steps of the CUDA program: 
1.  allocation of memory for input and output data in 

the global memory of GPU (host); 
2.  copying the input data from RAM into the global 

memory of the GPU (host); 
3.  performing GPU kernel grid and saving the calcu-

lated values of the accumulator array in the global 
memory of the GPU (device); 

4.  copying the results from the GPU global memory 
to the RAM (host); 

5.  release the global memory (host). 
After the accumulator array formation, the task of de-

termining the parameters of the required plane becomes 
trivial. 

For the above-mentioned scheme of the CUDA pro-
gram, two implementations differing in the third step 
were considered. These implementations differ in the 
number of parallel processes (threads) and the computa-
tional complexity of each of these processes. 

In the case of the first parallel implementation, each 
thread calculates values ρ for all angles θ, ϕ for a certain 
point in the three-dimensional space. In the case of the 
second implementation each thread calculates values ρ 
for all points for a certain pair of angles θ, ϕ. The draw-
back of the second implementation consists in multiple 
calls to the global memory of the GPU to read the coor-
dinates of the three-dimensional point. However, for both 
implementations it is difficult to estimate the collisions 
that arise when the content of the same memory cell 
needs to be changed for the execution of a transaction of 
different threads. 

As it can be seen from the pseudocodes of the parallel 
implementations, each thread executes loops with differ-
ent parameters and different number of operations. The 
size of the grid also varies. 

The speedup of parallel implementations in compari-
son with the sequential one was calculated by the follow-
ing formula: 

kernel

CPU

HtoD DtoH

t
s

t t t
=

+ +
, (3) 

where tCPU – execution time of the sequential algorithm; 
tHtoD – transfer time of the input data from RAM of CPU 
to global memory of GPU (host-to-device); tkernel – time 
of CUDA kernel execution; tDtoH – transfer time of the re-
sulting data from global memory of GPU to CPU RAM 
(device-to-host). 

Parallel implementation 1 
Input data: Point cloud 
Output data: Values of the accumulator array for each pair 
of angles θ and ϕ for a single point 
 

Calculate the thread index id 
id = blockIdx.x * blockDim.x + threadIdx.x  
Read the 3D coordinates from global memory 
For each angle θ from 0 to π with increment π/180 
 For each angle ϕ from 0 to π with increment π/360 
  Compute ρ 
  Cast ρ to integer 
  If ρ < ∆ 
   Atomic increment: A (θ, φ, ρ) 
  End loop ϕ 
End loop θ 

 
Parallel implementation 2 
Input data: Point cloud 
Output data: Values of the accumulator array for all points 
for a single pair of angles θ and ϕ 
 

Calculate the thread index id 
id = blockIdx.x * blockDim.x + threadIdx.x 
Calculate θ, ϕ: θ = id / 360 and ϕ = id / 360 
For each point (x0, y0, z0) 
 Read the 3D coordinates from global memory 
  Compute ρ: 
  Cast ρ to integer 
  If ρ < ∆ 
   Atomic increment: A (θ, φ, ρ) 
End loop (x0, y0, z0) 

5. Experimental results 

To test the efficiency of CUDA implementations of 
the parallel algorithm, the following experiments were 
carried out. A point cloud of 158877 points was used as 
input data. The experiments were carried out using the 
following equipment: CPU: Intel Core i7-6700K, 4 GHz, 
GPU: GeForce GTX 750 Ti. The results of comparative 
studies of the execution time of the algorithm are shown 
in Fig. 2, Fig. 3 and Table 1. 

 
Fig. 2. Dependence of the execution time (ms)  

for each implementation on the number of points 

 
Fig. 3. Dependence of the speed-up of each implementation  

on the number of points 
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Table 1. Execution time and speedup for 158877 points 

 
Execution time 
(milliseconds) 

Speedup 

Sequential implementation 13098 – 
Parallel implementation 1 1353 9.7 
Parallel implementation 2 2139 6.1 

Fig. 2 illustrates the dependency of the implementa-
tion time of sequential and parallel implementations on 
the number of points. Fig. 3 shows the dependence of the 
speed-up of the parallel implementations on the number 
of points. Both parallel implementations demonstrate the 
same time of 2500 points. However, when the number of 
points is greater, the first implementation is executed 1.5 
times faster than the second one.  

The sequential implementation of the Hough algo-
rithm was carried out in 13 seconds. For parallel imple-
mentations 1 and 2, the execution time was 1353 and 
2139 milliseconds, respectively. A feature of the parallel 
implementations is the occurrence of situations when dif-
ferent threads simultaneously perform an increment oper-
ation on the same variable. For atomic access of each 
thread to a specific area of memory, a special operation 
atomicAdd() was used to ensure atomicity. The smallest 
execution time was registered for parallel implementation 
1, for which parallelism was implemented at the level of 
decomposition by cloud point data.  

Conclusion 

The proposed algorithm was implemented as a C++ 
program using CUDA technology. Experimental studies 
of achievable values of accuracy and reliability were car-
ried out. During the experimental studies of the technolo-
gy, its operability was demonstrated and a comparative 
study of the efficiency of various parallel program im-
plementations of the proposed algorithm was carried out. 
The greatest speedup (by a factor of 9.7) was obtained for 
the parallel realization 1. 
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