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Abstract 

In this paper, we propose a novel switching bilateral filter for depth map from a RGB-D sen-
sor. The switching method works as follows: the bilateral filter is applied not at all pixels of the 
depth map, but only in those where noise and holes are possible, that is, at the boundaries and 
sharp changes. With the help of computer simulation we show that the proposed algorithm can ef-
fectively and fast process a depth map. The presented results show an improvement in the accura-
cy of 3D object reconstruction using the proposed depth filtering. The performance of the pro-
posed algorithm is compared in terms of the accuracy of 3D object reconstruction and speed with 
that of common successful depth filtering algorithms. 
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Introduction 

The 3D object reconstruction is a popular task for object 
recognition, object tracking, object retrieval, scene under-
standing, human-computer interaction, virtual maintenance, 
navigation, engineering and visualization [1, 2, 3, 4]. 

In this paper, we are interested in filtering a depth 
map from a RGB-D sensor for improving the its quality 
[5]. The depth map is described by piecewise smooth re-
gions bounded by sharp object boundaries, therefore, the 
depth value varies discontinuity, and a small error around 
object boundary may lead to significant artifacts and mis-
representations. Besides, the depth map is noisy because 
of infrared light reflections, and missing pixels without 
any depth value appear as black holes in depth maps. To 
reduce noise and fill small holes, the median and binomi-
al filters are used [6, 7]. The noise and holes affect the ac-
curacy of 3D object reconstruction, therefore, the de-
noising and hole-filling algorithms are used for 3D recon-
struction systems [8, 9, 7, 10, 11]. Traditional 3D depth 
denoising methods are focused on fusing multiple con-
secutive noisy depths to get a higher quality: a method 
based on the correlation between aligned color and depth 
frames provided by such sensors [12,13]; spatial-temporal 
denoising approaches [14, 15]; a deep-learning based ap-
proach which makes use of aligned gray images to de-
noise depth data [16]. Enhancing the quality of the depth 
map obtained with a single depth frame is an increasingly 
popular research task: wavelet denoising [17]; total varia-
tion regularization [18]; median filtering based on adap-
tive weighted Gaussian [19]; bilateral filter [20]; non-
Local-Mean method [21]. 

In the last years, the following algorithms were pro-
posed: an effective divide-and-conquer method for han-
dling disocclusion of the synthesized image [22]; a depth 

filtering scheme based on exploiting the temporal infor-
mation and color information [18]; a nonlinear 
down/upsampling filtering and a depth reconstruction 
multilateral filtering using a spatial resolution, boundary 
similarity, and coding artifacts features [23]; a 3D collab-
orative filtering in graph Fourier transform domain [24]; 
a weighted mode filter and joint bilateral filter where the 
joint bilateral kernel provides an optimal solution with 
the help of the joint histogram [25]; an adaptive method 
to denoise depth using Differential Histogram of Normal 
Vectors features along with a linear SVM [26]; a three-
phase depth map correction, including eliminating anom-
alies, segmentation, amendment and finally inter-frame 
and intra-frame filtering [27]; a method based on utilizing 
a combination of Gaussian kernel filtering and aniso-
tropic filtering [28]. 

Bilateral filtering is a technique to smooth images 
while preserving edges [29]. The base idea of the bilateral 
filter is that for a pixel to influence another pixel, it 
should not only occupy a nearby location but also have a 
similar value. The bilateral filter might not be the most 
advanced denoising technique but its strength lies in its 
simplicity and flexibility. The following modifications of 
the bilateral filter were proposed: Adaptive Bilateral Fil-
ter (ABF) [26], Fast Bilateral Filter (FBF) [30], Joint Bi-
lateral Filter (JBF) [31] and Joint Bilateral Upsampling 
(JBU) [20]. 

In the paper [5], we tested and compared state-of-the-
art methods of depth filtering with respect to the recon-
struction accuracy using real data, where our presented 
results showed an improvement in the accuracy of 3D ob-
ject reconstruction using depth filtering from a RGB-D 
sensor. In this article, we propose a novel switching bilat-
eral filter (SBF) for denoising depth map. We apply the 
bilateral filter not at all pixels of the depth map, but only 
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in those where noise and holes are possible, that is, at the 
boundaries and sharp changes. For this, we find areas 
with sharp changes and boundaries in a RGB, then apply 
the bilateral filter only to these areas of depth map. 

We consider denoising depth algorithms for 3D object 
reconstruction [32, 33, 34], therefore, we use the raw 
depth map as noisy data and we evaluate the performance 
of the denoising methods based on the enhancement 
achieved in the accuracy of 3D object reconstruction. In 
contrast to this approach, a common approach of noise 
reduction is that the raw depth map represented the 
ground truth, added an artificial noise such as additive or 
impulse, and then proposed a method to remove the noise 
[26]. Although this common approach can be used for 
quantitative comparison, wherein proposed methods re-
duce only the artificial noise but not the original noise 
contained in the raw depth. Therefore, our main goal is to 
evaluate the denoising methods to enhance reconstruction 
accuracy which depends on the quality of the captured 
raw depth map. We use the metric of evaluation as the 
root mean square error (RMSE) of measurements in the 
iterative closest point (ICP) algorithm. 

The performance of the proposed algorithm is com-
pared in terms of the accuracy of 3D object reconstruc-
tion and speed with the following depth denoising algo-
rithms: ABF [26], FBF [30], JBF [31], JBU [20], Noise-
aware Filter (NF) [35], Weight Mode Filter (WMF) [36], 
Anisotropic Diffusion (AD) [37], Markov Random Field 
(MRF) [38], Markov Random Field(Second Order 
Smoothness) (MRFS) [39], Markov Random 
Field(Kernel Data Term) (MRFK) [39], Markov Random 
Field(Tensor) (MRFT) [39], Layered Bilateral Filter 
(LBF) [40], Kinect depth normalization (KDN) [41], 
Roifill filter (RF) [42], Median filter (MF), Bilateral Fil-
ter (BF), Okada filter (OF) [43]. 

The paper is organized as follows. In Section 2, we 
describe the proposed depth denoising algorithm based on 
switching bilateral filter. Computer simulation results are 
provided in Section 3. Finally, Section 4 summarizes our 
conclusions. 

1. Proposed algorithm 

In this section, we describe the proposed depth 
denoising algorithm based on switching bilateral filter. 

First, we describe the original bilateral filter. We 
denote a depth map as the image D and the graylevel 
image I converted from RGB image, and use the notation 
Dp for the image value at pixel position p. Pixel size is 
assumed to be 1. F [I ] designates the output of a filter F 
applied to the image I. We will consider the set S of all 
possible image locations that we name the spatial domain. 
For instance, the notation qS denotes a sum over all 
image pixels indexed by q. We use  for the absolute 
value and  for the Euclidean distance. 

The bilateral filter is defined by:  
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1
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where normalization factor Wp ensures pixel weights sum 
to 1.0:  
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Here s is the spatial parameter and r is the range 
parameter for the 2D Gaussian kernel G(x):  
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This equation is a normalized weighted average where 

Gs is a spatial Gaussian weighting that decreases the 

influence of distant pixels, Gr is a range Gaussian that 
decreases the influence of pixels q when their intensity 
values differ from D. 

The joint bilateral filter is defined by:  
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In the case impulse noise, the bilateral filter may need 
to mollify the input image before use [30]. This practice 
is commonplace in robust statistics: users apply a very 
robust estimator such as the median filter first to obtain a 
suitable initial estimate, then apply a more precise 
estimator (the bilateral filter) to find the final result. 
Compute the range Gaussian weights on a median-filtered 
version of the image. Let M be median filtering, than the 
modified bilateral filter (MBF) is defined by:  
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The proposed switching bilateral filter (SBF) is 
defined by  
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with  
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where the R of all possible image locations at the 
boundaries and edges of graylevel image I. Fig. 1 shows 
the RGB image from RGB-D datasets [44] and edges 
finding in graylevel image by Canny filter. 

Also we propose a modification of the switching 
bilateral filter (MSBF) with median filtering is defined as 
follows  
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Extensive experiments revealed that very good 
denoising results can’t be achieved using the following 
filters: ABF, FBF, WMF, AD, MRFT, LBF, KDN, RF, 
and OF. The main reason of this is uncorrected point 
cloud after filtering, therefore, we don’t use these filters 
for our next experiments and comparisons. 

A common algorithm for counting RMSE by using 
the ICP algorithm between two closest point clouds 
consists of the following steps:  
1. Registration a RGB and depth data.  
2. Use a depth denoising algorithm: JBF, JBU, BF, SBF, 

MSBF, NF, MRF, MRFS, MRFK, MF, MBF.  
3. Make point clouds using denoising depth data.  
4. Detection and matching of keypoints in PCi and PCi –

 1 with the keypoint detection algorithm SIFT [45].  
5. Remove outliers with correspondence rejectors 

RANSAC [45].  
6. Count transformation matrix and RMSE with ICP 

using the associate 3D points of the inliers.  

2. Computer simulation 

 In this section, computer simulation results of the 
accuracy of 3D object reconstruction based on the 
proposed depth denoising algorithm using real data are 
presented and discussed. 

As previously stated, we evaluate the performance of 
our proposed denoising filter against other state-of-the-art 
filters based on the enhancement of reconstruction 
accuracy achieved by each filter. We have experimental 
results for evaluation of the performance of the ICP 
algorithm for object 3D reconstruction. The metric of 
evaluation is the root mean square error (RMSE) of 
measurements. We choose the special RGB-D datasets 
[44]. 

In our experiments, we select 11 different depth 
denoising algorithms which are widely cited and used in 
comparison: JBF, JBU, BF, SBF, MSBF, NF, MRF, 
MRFS, MRFK, MF, MBF. The experiments are carried 
out on a PC with Intel(R) Core(TM) i7-4790CPU @ 3.60 
GHz and 8 GB memory. 

To evaluate the performance of 3D object 
reconstruction based on the proposed depth denoising 
algorithm with cascade mechanism in our experiments, 
we carried out the point cloud fusion and 3D 
reconstruction of a lion from dataset [44]. Fig. 2 shows 
RGB images and depth maps of a lion taken with a step 
of 1. 

Corresponding RMSE values calculated for each pair 
with a step of 1 in the ICP algorithm with JBF, JBU, BF, 
SBF, MSBF, NF, MRF, MRFS, MRFK, MF, MBF depth 
denoising algorithms are shown in Table 1. 

The quality of depth denoising we can also evaluate 
visually looking at the restored point cloud. Figs. 3 and 4 
shows the depth maps and the 3D point clouds of a lion 
after denoising JBF, JBU, BF, SBF, MSBF, NF, MRF, 
MRFS, MRFK, MF, MBF filters. The proposed MSBF 
yield the best result in terms of RMSE, speed and visual 
evaluation among all depth denoising algorithms. 

Conclusion 

In this paper, we presented the novel switching 
bilateral filter (MSBF) of depth map based on the 
bilateral filter and the median filter. The switching 
method is that we apply the filter not at all pixels of the 
depth map, but only at the edges. We evaluated the 
performance of the ICP algorithm with the proposed 
depth denoising algorithm for object 3D reconstruction 
using real data. Also, the performance of the proposed 
algorithm is compared in terms of the accuracy of 3D 
object reconstruction and speed with that of common 
successful depth filtering algorithms. The experiment has 
shown that the proposed MSBF filter yield the best result 
in terms of RMSE, speed and visual evaluation among all 
depth denoising algorithms. 

   
Fig. 1. The RGB image and edges finding in graylevel image 
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Fig. 2. The RGB images and depth maps of a lion are taken by a Kinect sensor with a step of 1 

 

           

          
Fig. 3. The restored depth maps of a lion without filtering and after denoising JBF, JBU, BF, SBF, MSBF, NF, MRF, 

MRFS, MRFK, MF, MBF filters (from left to right from top to bottom) 
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Table 1. Results of measurements using a common ICP algorithm with JBF, JBU, BF, SBF, MSBF, NF, MRF, MRFS, 
MRFK, MF, MBF depth denoising algorithms (DDA) for each pair closest point clouds with numbers 1–2, 2–3, 3–4, 4–5, 

5–6. This table presents RMSE and an average time of processing in sec. (Time) 
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Fig. 4. The restored point clouds of a lion without filtering and after denoising JBF, JBU, BF, SBF, MSBF, NF, MRF, 

MRFS, MRFK, MF, MBF filters (from left to right from top to bottom) 
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