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Abstract 

This work considers the problem of quality assessment of multichannel image visualization 
methods. One approach to such an assessment, the Escore quality measure, is studied. This meas-
ure, initially proposed for decolorization methods evaluation, can be generalized for the assess-
ment of hyperspectral image visualization methods. It is shown that Escore does not account for 
the loss of local contrast at the supra-pixel scale. The sensitivity to the latter in humans depends on 
the observation conditions, so we propose a modified wEscore measure which includes the param-
eters allowing for the adjustment of the local contrast scale based on the angular resolution of the 
images. We also describe the adjustment of wEscore parameters for the evaluation of known de-
colorization algorithms applied to the images from the COLOR250 and the Cadik datasets with 
given observational conditions. When ranking the results of these algorithms and comparing it to 
the ranking based on human perception, wEscore turned out to be more accurate than Escore. 
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Introduction 

We consider the multichannel image visualization 
(MIV) problem: the input multichannel image should be 
converted to a single or three-channel image which pre-
serves the maximum information while allowing the re-
sulting image to be perceived by the human eye. The 
MIV problem statement allows any number of channels to 
be input, what makes it to be a generalization of such prob-
lems as the hyperspectral image visualization, where the 
original channels are in the hundreds, multispectral image 
visualization, where the original channels are in the tens, 
and decolorization, where three RGB channels are input, 
and a single-channel grayscale image is the output. 

The MIV is relevant, for example, in remote sensing 
(RS) images processing: along with the development of 
automatic methods, the visual evaluation of multichannel 
images by humans remains necessary [1]. There is a spe-
cial software for RS images analysis, which includes 
modules for MIV [2, 3]. The MIV is important in mass 
spectrometry imaging: researchers need a tool to obtain a 
unified visual representation of the molecular and struc-
tural organization of the tissues under study based on the 
large sets of images of molecular distributions [4, 5]. An-
other important field of MIV application is medicine. For 
example, in [6], the MIV method was proposed, which helps 
a specialist to differentiate cancer lesion on human skin. 

The early MIV methods were based on an independ-
ent pixel-by-pixel transformation from the original multi-
dimensional space to the resulting space of lower dimen-
sionality [7]. Linear dimensionality reduction methods 

such as PCA [7, 8] were employed to find such transfor-
mations. The preservation of local contrast in such meth-
ods is inherently limited [9], i.e., any contrast detail can 
be completely merged with the background in the result-
ing image. To solve this problem, another class of meth-
ods has been introduced. This class preserves local con-
trasts by constructing the resulting image as a whole 
based on a gradient field [10 – 13]. 

Modern MIV methods are based on nonlinear dimen-
sionality reduction techniques that define transformations 
for all pixels in a single process of a functional optimiza-
tion. The latter allows for taking into account, among 
other things, the spatial location of the pixels. For exam-
ple, t-SNE [14], UMAP [5], and manifold alignment [15], 
etc. [16, 17] are used as such techniques.  

When developing image processing methods, includ-
ing MIV, formal criteria are required to evaluate the qual-
ity of their performance. To evaluate MIV methods, psy-
chophysiological experiments are carried out [18 – 20]. 
But this approach is labor-intensive and is not applicable 
when developing a new method: the development process 
involves many comparison iterations of its different ver-
sions. There is no single standard for automatic quality 
assessment of MIV methods [21]. The common approach 
is based on the calculation of various statistics for the re-
sulting images, such as entropy [21 – 23], standard devia-
tion, an average of the absolute value of gradient [23], 
etc. [22]. In works that employ such an approach, it is as-
sumed that the greater the value of the computed statistic, 
the more information is stored in the resulting image. 
However, the maximum values in this method can corre-
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spond to a noisy image [24]. Another approach relevant 
for hyperspectral and multispectral visualization is to 
compare the result of the visualization to a reference im-
age (full-reference image quality assessment) which con-
sists of the RGB channels of the same scene obtained in-
dependently [21, 25]. A significant disadvantage of this 
method is the penalty for preserving in the resulting im-
age the boundaries of objects which are indistinguishable 
in the RGB range but are distinguishable in hyperspectral 
range. In fact, the preservation of such objects is a useful 
feature of visualization, so it should positively affect the 
evaluation of the algorithm. 

Now let us consider separately the problem of evalu-
ating decolorization methods. Decolorization, having its 
own relevance, is also useful for studying other MIV 
evaluation problems. Unlike in MIV, both input and out-
put images of decolorization algorithms definitely can be 
perceived by the human visual system, making it much 
easier to work with such images. 

Turning to the techniques proposed specifically for 
assessment of decolorization methods, first let us consid-
er Color Contrast Preserving Ratio (CCPR) [19]. CCPR 
approximates human vision preferences by the cardinality 
ratio of two sets: the set of pixel pairs contrasting in the 
original color image, and its subset which includes pixels 
contrasting in the resulting image. Thus, the recall of con-
trast preservation between pixels is evaluated. 

However, the parasitic contrast which can appear as a 
result of visualization is not estimated. Hence, the maxi-
mum CCPR value can correspond to a noisy image, same 
as the maximum value for statistical methods of MIV es-
timation (entropy, etc.) as discussed previously. Later, 
taking into account this disadvantage, the Escore was 
proposed [18]. It was introduced as the harmonic mean of 
CCPR and the new CCFR (Color Content Fidelity Ratio) 
measure. The latter evaluates the precision of contrast 
preservation between the pixels. The Escore values better 
match human visual perception, and presently this meas-
ure is actively employed [26 – 28]. 

The Escore measure can be generalized to the case of 
more input and output channels, so it should be consid-
ered not only for the decolorization algorithms assess-
ment but also for the evaluation of any MIV method in 
the future. Our previous study of the Escore showed that 
the insufficient evaluation of the local contrast preservation 
in Escore results in estimations that contradict human per-
ception for some visualizations [9]. Hence, in [9], we pro-
posed a modified quality measure, which includes the as-
sessment of local contrast preservation based on the calcu-
lation of the difference between the neighboring pixels. 

In this work, we shall continue our study begun in [9]. 
We will show that while the idea of paying more atten-
tion to local contrast was correct, the way it is evaluated 
when assessing the quality of MIV methods must be cor-
rected. This is because human vision perceives local con-
trasts at different scales, depending on the angular resolu-
tion of the observed image. For example, a person ob-

serving an image displayed at a distance of 60 cm on a 
modern monitor at a one-to-one scale is able to perceive 
the contrast not only between the neighboring pixels but 
also between the pixels spatially separated from each oth-
er. Under such conditions, the estimation of MIV algo-
rithms based on the difference between only neighboring 
pixels can contradict the perceived image quality. We 
propose a new parameterized modification of the Escore 
that allows for the adjustment of the local contrast scale 
according to the angular resolution of the images in the 
considered problem. The work describes the adjustment 
of parameters for images with an angular resolution of 
115 pixels per degree. Based on the data of the psycho-
physiological VH experiment [29], a comparison of the 
new adjusted measure and the previous modifications of 
Escore was performed. The work shows that the ranking 
based on the new modification more accurately corre-
sponds to the ranking based on human perception than 
other measures. 

1. Escore state-of-the-art 

The Escore [18] decolorization quality measure is 
based on two values: Color Contrast Preserving Ratio 
(CCPR) and Color Content Fidelity Ratio (CCFR). CCPR 
is the ratio between the number of truly contrasted pixels 
(i.e. pixels contrasting both in the resulting and input im-
ages) and the number of all pixels contrasted in the result-
ing image. CCFR is the ratio between the number of truly 
contrasted pixels and the number of all pixels contrasted 
in the input image. In order to write it formally, let us de-
note the set of contrasting pixel pairs in the original im-
age I as Г = {( p, q):c

 ( p, q)  k}, where k is an adjustable 
contrast threshold, c

 ( p, q) – is the color contrast value 
calculated in CIE Lab color space [30]: 

2 2 2( , ) ( ) ( ) ( ) .c p q p q p qp q L L a a b b         (1) 

Let us denote the set of contrast pixel pairs in the re-
sulting image G as  = {( p, q):g

 ( p, q)  k}, where 
g

 ( p, q) = |Gp
 – Gq| – is a value of grayscale contrast cal-

culated as the difference between values at pixel p and at 
pixel q of the grayscale image G. Then, CCPR and ССFR 
are expressed as follows: 
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where symbol # denotes the cardinality of a set. The 
Escore measure is defined as the harmonic mean of 
CCPR and CCFR: 
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The Escore measure introduced in these terms can be 
easily modified for the quality assessment of hyperspec-
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tral image visualization. For this, when introducing the set 
of originally contrast pixels Γ, instead of color contrast 
c

 ( p, q) the hyperspectral contrast m
 ( p, q) should be used, 

e.g. Euclidean measure. This issue deserves a separate study 
and is not the subject of the current research.  

In the original work [18], the selection of contrast 
pairs ( p, q), forming the sets Γ and θ is not considered. In 
the code, provided by the authors, the calculations are 
performed as follows. For CCFR, pairs are formed from 
the neighboring pixels, and for CCPR pairs are randomly 
generated from the arbitrarily arranged pixels. 

However, the accuracy of the grayscale visualization 
method in terms of preserving the contrast of distant pix-
els is of less importance than the local contrast preserva-
tion. This is inferred from the fact that the ability of the 
human visual system to differentiate between various lev-
els of an achromatic stimulus is reduced when the bound-
ary between areas of different levels is blurred [31]. On 
the other hand, the accuracy of the visualization methods 
in terms of the preservation of any spectrally close pixels 
(consistency) in the original image is not compatible with 
the property of local contrast preservation [9]. This means 
that for any consistent method, even sharp boundaries can 
be lost in the resulting visualization. Thus, any visualiza-
tion method which is accurate in terms of consistency is 
potentially inaccurate in terms of the local contrast 
preservation. 

Hence, the CCPR measure of contrast preservation 
calculated based on the pairs of arbitrarily located pixels 
is irrelevant to the perceived visualization quality. To ad-
dress this, a modified measure of quality, hereinafter re-
ferred to as dEscore, was proposed in [9]. This measure 
differs from Escore as follows: the former applies the rule 
of pixel pairing based on neighboring pixels not only to 
CCFR but also to CCPR. According to this rule, the first 
pixel p with coordinates (x, y) within the pair is selected 
among all pixels sequentially, and the second pixel within 
the pair is the neighboring pixel either to the right 
q = (x + 1, y), or to the bottom q = (x, y + 1). Thus, each 
pixel of the image, with the exception of the boundary 
pixels, generates two pairs of ( p, q). It has been shown 
that the proposed modification improves the estimation of 
the local contrast preservation for some visualizations. 

Continuing the study begun in [9], it was found that 
the evaluation based on pairs of neighboring pixels does 
not always agree with the perceived quality of visualiza-
tion. For example, consider fragments of the visualization 
of a color image in fig. 1. In fig. 1b, only the contrast be-
tween neighboring pixels is preserved, and in fig. 1c the 
contrast at a larger scale is preserved. 

The dEscore values for the images illustrated in 
fig. 1b and 1c are 0.7902 and 0.7817 respectively, which 
means that the visualization in fig. 1b is better than in 
fig. 1c. This result contradicts human perception and in-
dicates a significant drawback of dEscore.  

2. wEscore: window Escore modification 

In the previous section, both extremes of the visuali-
zation estimation approach were criticized: the estimation 
based on the difference between the arbitrarily placed 
pixels and the estimation based on the difference between 
the neighboring pixels. Note that in the implementation 
provided in [18], the Escore combines both approaches. 
This may lead to some smoothing of the disadvantages 
inherent in both extremes. However, we assume that this 
is not enough and suggest modifying Escore so that both 
constituent parts, CCPR and CCFR, are focused on 
measuring local contrast at different scales. 

(a)  (b)  (c)  
Fig. 1. Examples of differences between the preservation and 

loss of local contrast: (a) a fragment of the original color 
image; (b) a decolorized fragment with preservation of contrast 
between the neighboring pixels; (c) a decolorized fragment with 

the preservation of local contrast at the supra-pixel scale  

To do this, we introduce the modified visualization 
quality measures as follows: 
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where wP, wF – are window sizes within which CCPR and 
CCFR are calculated correspondingly, dist ( p, q) – is Eu-
clidean distance between two points on a plane. A new 
modified measure wEscore differs from Escore only by 
introducing the wP, wF constraints for ( p, q) pair genera-
tion. The advantage of the proposed wEscore measure is 
that by adjusting the window sizes, wEscore can estimate 
the error of visualization exactly at a scale compliant with 
that perceived by the human visual system at a given an-
gular resolution of the observed images. 

3. Window size adjustment 

To adjust the window sizes, let us define an adjustment 
dataset and image markup. The adjustment dataset is a set 
of color images, each accompanied by a set of grayscale 
visualizations (decolorizations). The markup is performed 
as follows: for each visualization, the perceived contrast 
compared to the original image is either preserved or lost. 
Hence, our main criterion for the selection of color images 
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and their visualizations is the possibility of unambiguous 
organoleptic evaluation of preservation or loss of local 
contrasts for each visualization of each color image. Since 
the contrast sensitivity of the human visual system depends 
on the angular resolution, the conditions for image obser-
vation must be defined according to the current task and 
fixed at the adjustment stage.  

For a given window size, wEscore can be calculated 
for each visualization and original image. This value de-
pends, among other things, on the contrast threshold k. 
This dependence is not considered in this study: all 
wEscore values used further are calculated for k = 5. This 
value is commonly suggested as a threshold for imper-
ceivable contrast [18]. 

We propose an adjustment procedure to select the 
CCPR and CCFR window sizes so that the wEscore rank-
ings closely match the reference ranking which corre-
sponds to the markup. We will use the Kendall rank cor-
relation [32] to estimate the match. Kendall’s correlation 
is a rank correlation: the correlation value is calculated 
based on ranks, and not the numerical values. The values 
of the Kendall's correlation coefficient τ belong to the in-
terval [– 1; 1]. The value  = 1 corresponds to a monotonic 
increasing relationship between rankings, the value  = –1 
corresponds to a decreasing one. 

Let us denote the set of wEscore values as follows: 

  ,, , ,
P FP F

ji
w w iw w i

wEscore wEscore I G  (10) 

where i = 1,, N is the index of a color image in the ad-
justment dataset, N is the number of color images within 
the adjustment dataset, i = 1,, Ni – is the grayscale visu-
alization index, where Ni  – is the number of annotated 
visualizations of a color image Ii. Let us denote the 
benchmark ranks as follows: 

    , 0,1 .
jji

i iMarkup Markup I G   (11) 

Now the window sizes adjustment can be formulated 
as the problem of the average Kendall’s coefficient max-
imization over the window sizes:  
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P F P F
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i i
w w w w

i

wEscore Markup
N 
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4. Window size adjustment implementation 

To test the proposed window size adjustment proce-
dure, we collected an adjustment dataset consisted in elev-
en color images from the COLOR250 (250 color images) 
[18] and the Cadik (24 color images) datasets [29]. These 
datasets were chosen because they are employed in many 
decolorization works, and also because to each color image 
in these datasets, a set of pre-calculated grayscale images is 
attached. Examples of color images with corresponding 
sets of annotated visualizations are shown in fig. 2 – 7. 
markup is specified as red and green circles on grayscale 
images: red circles correspond to visualizations with per-

ceived lost contrasts, and green circles correspond to visu-
alizations with perceived preserved contrasts.  

The conditions for image observation during the 
markup process were as follows: the distance between the 
monitor and the observer is 60 cm, the display resolution 
is 2560 by 1140 pixels, the diagonal is 27 inches. These 
values correspond to the angular resolution of 115 pixels 
per degree. The brightness of the monitor was set to 
100 cd m–2. Note that the viewing conditions of the imag-
es illustrated in this work can be different for a reader 
from those described above, which may lead to a discrep-
ancy between the reader's perception and the markup. 

(a)  (b)  (c)  
Fig. 2. Fragment of the image “217.png” from the COLOR250 
set; possible contrast loss near the lake above the letter "P":  

(a) color image; (b) visualization with perceived contrast loss; 
obtained by Lu2014 algorithm [18]; (c) visualization  

with perceived contrast preservation; obtained  
by Sokolov algorithm [10] 

(a)  (b)  (c)  
Fig. 3. Image “8.png” from the Cadik set; possible contrast loss 

around green ring segments: a) color image; b) visualization 
with perceived contrast loss; obtained by Lu2012 algorithm 
[19]; c) visualization with perceived contrast preservation; 

obtained by Sokolov algorithm [10] 

In the previous section, we have formulated window 
sizes adjustment as optimization problem (12). To solve 
the latter, the brute-force search of wP, wF was performed 
in areas where we expect an optimum for the selected im-
ages and a given angular resolution. Given this, the loss of 
contrast between neighboring pixels (fig. 2b, fig. 3b) and 
pixels located at medium distance relative to the image size 
(fig. 6c) is distinguishable. The loss of contrast between 
pixels located at the opposite ends of the image under giv-
en conditions is indistinguishable. The average width of 
images in the adjustment set is 300 pixels. Let us consider 
two areas: W1 area of medium wP values and small wF val-
ues: W1

 = {(wP, wF) : wP
 = 1:10:101, wF

 = 1:3:7} and W2 area 
of small wP values and medium wF values: 
W2

 = {(wP, wF) : wP
 = 1:3:7, wF

 = 1:10:101}. 
As a result of the brute-force search in W1and W2, the 

maximum was found at wP
 = 61, wF

 = 7. At this point, the 
value of the average Kendall’s coefficient, given by (12), 
was 0.7668. These window sizes are the result of the 
wEscore adjustment. 

Fig. 8 shows the dependence of the averaged Kendall 
coefficient on wP at wF

 = 1 and wF
 = 7. The range of wP 

values is chosen to cover the values corresponding to 
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dEscore at wP
 = 1, wF

 = 1 and Escore at wP
 = 600, wF

 = 1. 
The value wP

 = 600 was chosen because, as described 
above, in Escore, for calculating the CCPR, pairs are to 
be generated from pixels located randomly throughout the 

image. The radius of the window wP
 = 600 was chosen so 

that in any pixel CCPR window completely covers any 
image of the adjustment dataset, the largest among which 
is 321 by 481 pixels. 

(a)  (b)  (c)  (d)   
Fig. 4. Image “123.png” from the COLOR250 set; possible contrast loss on the sleeves and helmet stripes: (a) color image;  
(b) visualization with perceived contrast loss; obtained by Lu2012 algorithm [19]; (c) visualization with perceived contrast 

preservation; obtained by Grundland algorithm [33]; (d) visualization with perceived contrast loss; obtained by Sokolov algorithm [10] 

(a)  (b)  (c)  (d)  
Fig. 5. Image “27.png” from the COLOR250 set; possible contrast loss between radial bands of different colors: (a) color image;  
(b) visualization with perceived contrast loss; obtained by Lu2014 algorithm [18]; (c) decolorization with perceived contrast loss; 
obtained by CIE Y channel selection; (d) visualization with perceived contrast preservation; obtained by Sokolov algorithm [10] 

(a)  (b)  (c)  (d)  
Fig. 6. Fragment of the image “196.png” from the COLOR250 set; possible contrast loss between flower petals and grass  
in the background: (a) color image; (b) visualization with perceived contrast loss; obtained by Grundland algorithm [33];  
(c) visualization with perceived contrast loss; obtained by Sokolov algorithm [10]; d) visualization with perceived contrast 

preservation; obtained by Lu2012 algorithm [19] 

(a)  (b)  (c)  (d)  (e)  (f)  
Fig. 7. Fragment of image “227. png” from the COLOR250 set; possible contrast loss between the sea and land areas: (a) color 

image; (b) visualization with perceived contrast preservation; obtained by Gooch algorithm [34]; (c) visualization with perceived 
contrast preservation; obtained by CIE Y channel selection; (d) visualization with perceived contrast loss; obtained by Smith 

algorithm [35]; (e) visualization with perceived contrast preservation; obtained by Sokolov algorithm [10]; (f) visualization with 
perceived contrast preservation; obtained by Grundland algorithm [33] 

5. Comparison of quality measures 
 for visualization algorithms 

In the previous sections, we proposed a new wEscore 
measure and described the adjustment procedure. This 
measure has two predecessors, Escore and dEscore, so 
the performance of these measures should be compared. 

The quality measures will be compared using the data of 
the psychophysiological experiment published in [29]. The 
results of this experiment are a recognized standard and they 
have been already used to validate the Escore [18].  

In this experiment, the images were shown to the ob-
servers who sat approximately 70 cm away from the 

monitor in the native resolution of 1280 by 1024 pixels. 
Thus, the angular resolution of the observed images was 
106 pixels per degree, which is close to the angular reso-
lution of the images used for wEscore adjustment.  

In this experiment, 7 decolorization algorithms were 
evaluated, among them 6 creator-owned ([33 – 38]), and 
the algorithm «convert the input image to color coordi-
nates CIE XYZ and use the luminance channel CIE Y as 
the resulting image». Each algorithm was applied to a set 
of 24 color images. Thus, a set of 7 grayscale images cor-
responds to each color image.  

Among these 24 color images, one was used in the ad-
justment. This is the 8.png image (fig. 3a). However, the 
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sets of visualizations used for the adjustment and in the 
psychophysiological experiment [29] do not intersect. 
Thus, color images and the sets of grayscale visualiza-
tions corresponding to them in [29] can be used to cor-
rectly compare the adjusted wEscore with other quality 
measures. 

 
Fig. 8. Average Kendall's coefficient values corresponding  

to different combinations of CCPR and CCFR window sizes. 
Combination wP

 = 1, wF
 = 1 corresponds to the dEscore, 

combination wP
 = 61, wF

 = 7 corresponds to the adjusted 
wEscore, combination wP

 = 600, wF
 = 1 corresponds  

to the Escore. Contrast threshold: k = 5 

The experiment was designed based on the 2AFC 
(two-alternative forced choice) approach: for each color 
image, each grayscale image was compared against each 
other in pairs. The number of comparison pairs generated 
in this way is too large to be demonstrated to a single ob-
server for the latter to make a reasonable decision not 
compromised by fatigue. Therefore, each observer com-
pared decolorizations for only 8 randomly selected color 
images out of 24. 

The experiment included two types: accuracy experi-
ment (choosing from two grayscale alternatives with the 
demonstration of the original color image) and preference 
experiment (without the demonstration of the original 
color image). Out of 119 observers, 60 were engaged in 
the accuracy experiment, and 59 engaged in the prefer-
ence experiment. We will use only the results of the accu-
racy experiment since for MIV problem the preservation 
and distinguishability of the maximum amount of details 
present in the original image are more important than the 
pleasant experience from viewing the grayscale images 
without reference color image to compare to. 

In [29], the results of pairwise comparisons gathered 
from all observers were converted into averaged refer-
ence ranks of decolorization algorithms for each color 
image using the law of comparative judgments [39]. Fol-
lowing [18], we compare the reference ranks with the au-
tomatic ranks generated from the quality measures under 
study via Kendall's correlation coefficient. 

Kendall’s coefficient averaged over all 24 images was 
0.4167 for Escore, 0.3770 for dEscore, and 0.4881 for 
wEscore. Thus, the highest correlation between the meas-

ure and the reference ranks is achieved for the evaluation 
based on the adjusted wEscore measure. 

Also, following [18], we conducted an analysis based 
on the observers' ranking agreement when comparing de-
colorizations for each of the color images in the set (u-
score) [39]. A high u-score corresponds to color image 
with decolorizations rated uniformly by all observers. A 
low u-score corresponds to color image with decoloriza-
tions estimated differently by different observers.  

From the color images of the original set, subsets of 
N  {4,, 24}images with maximum possible u-score 
were formed. The graphs in fig. 9 illustrate the averaged 
Kendall’s coefficients for Escore, dEscore, and wEscore 
for each subset. The wEscore measure outperforms the 
results of the other measures for subsets of all sizes ex-
cept sizes 4 and 6, where the results of Escore and 
wEscore are equal. 

 
Fig. 9. Average Kendall's coefficient values for Escore, 

dEscore, and wEscore, calculated for subsets of images with 
maximum u-score. Contrast threshold: k = 5 

Conclusion 

In this work, we propose wEscore, a new quality 
measure for visualization algorithms evaluation. The 
original Escore, and dEscore, its previously proposed 
modification, do not consider the dependence of the sen-
sitivity of the human visual system to local contrasts on 
the angular resolution of the observed image. The 
wEscore measure, unlike previous versions, includes the 
parameters for the window sizes in which pairs of pixels 
are generated for contrast estimation. We proposed a pro-
cedure for window size adjustment: it can be used to ob-
tain the optimal values of wEscore parameters for a given 
angular resolution.  Using this procedure, we adjusted the 
wEscore parameters for the quality evaluation of the de-
colorization algorithms with the angular resolution of 115 
pixels per degree. The contrast threshold value for 
wEscore was set to 5. The optimal parameters were cal-
culated: wP

 = 61, wF
 = 7. We compared the adjusted 

wEscore with the Escore and the dEscore using the psy-
chophysiological experiment data from [29]. The 
wEscore rankings of the decolorization algorithms were 
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the closest to the benchmark rankings based on the ob-
servers’ perception. 
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