Изменение траектории наборов пучков Эйри с помощью несущих пространственных частот

А.О. Фролов¹, А.В. Устинов², С.Н. Хонина^{1,2}

¹ Самарский национальный исследовательский университет имени академика С.П. Королёва,

443086, Россия, г. Самара, Московское шоссе, д. 34;

² ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,

443001, Россия, г. Самара, ул. Молодогвардейская, д. 151

Аннотация

В данной работе исследуется изменение траектории распространения набора автофокусирующихся лазерных пучков с использованием дробного преобразования Фурье. Рассмотрены кластеры смещённых ограниченных пучков Эйри–Гаусса, дополненных фазовой функцией, отклоняющей пучок аналогично призме. Смещение и фазовое отклонение (в соответствии с несущими пространственными частотами) позволяют менять траекторию распространения набора автофокусирующихся пучков. На основе численного моделирования выполнено исследование влияния рассматриваемых параметров на свойства автофокусировки кластера пучков Эйри–Гаусса.

<u>Ключевые слова</u>: свойства автофокусировки, наборы пучков Эйри–Гаусса, дробное преобразование Фурье.

<u>Цитирование</u>: **Фролов, А.О.** Изменение траектории наборов пучков Эйри с помощью несущих пространственных частот / А.О. Фролов, А.В. Устинов, С.Н. Хонина // Компьютерная оптика. – 2022. – Т. 46, № 5. – С. 724-732. – DOI: 10.18287/2412-6179-CO-1139.

<u>Citation</u>: Frolov AO, Ustinov AV, Khonina SN. Changing the trajectory of Airy beam sets with spatial carriers. Computer Optics 2022; 46(5): 724-732. DOI: 10.18287/2412-6179-CO-1139.

Введение

Особые свойства пучков Эйри [1], такие как сопротивление влиянию дифракции и распространение в свободном пространстве по параболической траектории [2–4], обусловили повышенный интерес к их применению во многих областях [5], включая оптическое манипулирование [6–8], микроскопию [9, 10], углубление фокуса оптических систем [11–13], лазерную обработку [14, 15] и оптическую маршрутизацию [16].

Так как функции Эйри, подобно функциям Бесселя, являются бесконечно протяжёнными, для их физической реализации требуется усечение. Чаще всего ограничение достигается умножением функции Эйри на экспоненциальную [2] или Гауссову [17] функцию. В обоих случаях формируемые пучки фактически перестают быть бездифракционными, хотя приблизительно сохраняют свой вид до некоторого расстояния. В работе [18] был рассмотрен иной способ усечения бесконечной функции Эйри – с помощью прямоугольной апертуры, усекающей функцию в положительной части аргумента при спадании её практически до нуля, а в отрицательной части до *n*-го нуля. Такие пучки демонстрируют сохранение своей структуры на значительно больших расстояниях.

Свойство ускорения пучков Эйри используется для формирования пучков с резкой автофокусировкой [19, 20] за счёт их зеркальной или круговой симметризации [21–23]. Востребованность пучков со свойствами автофокусировки в различных приложениях [24–26] стимулирует учёных к поискам новых модификаций и обобщений таких пучков [27–31].

Одним из подходов к расширению типов и разнообразию структуры автофокусирующихся пучков является формирование наборов или кластеров разных пучков [32–37].

В частности, в работах [36, 37] было исследовано распространение наборов пучков Эйри, которые обладают свойствами ускорения как отдельных элементов набора, так и всей структуры в целом. Отметим, что каждый из пучков в наборе может иметь дополнительные пространственные несущие частоты, меняющие характер траектории отдельных элементов кластера и, следовательно, свойства автофокусировки всего кластера в целом.

В настоящей работе теоретически и численно исследуются свойства автофокусировки наборов пучков Эйри–Гаусса с различными несущими пространственными частотами. При этом также варьируются параметры как самих пучков, так и всего набора. Рассматривается поведение набора, составленного из пучков, каждый из которых повёрнут на произвольный угол, а также поведение самих наборов, повёрнутых на определённый угол вокруг своей оси.

Моделирование выполнено с использованием дробного преобразования Фурье [38, 39], описывающего параксиальное распространение лазерного излучения через линзовые системы.

1. Описание метода моделирования

Многие свойства распространения лазерных пучков в оптической системе можно получить, зная функцию амплитуды входного поля и ABCD-матрицу, описывающую данную оптическую систему [40]. Если AD-BC=1, то существует линейное каноническое

преобразование, связывающее входное и выходное поля, известное в оптике как интеграл Коллинза [41]:

$$F(u,v) = -\frac{ik}{2\pi B} \iint_{-\infty}^{+\infty} f(x,y) \exp\left\{\frac{ik}{2B} \left[A(x^2+y^2)-2(xu+yv)+D(u^2+v^2)\right]\right\} dx \, dy.$$
(1)

х.

В формуле (1) $k = 2\pi/\lambda$ – волновое число, мм⁻¹, λ – длина волны, мм.

При определённых значениях элементов АВСДматрицы можно получить частные случаи интеграла Коллинза – преобразование Фурье, которое применяется для разложения светового поля на плоские волны по частотам; преобразование Френеля, использующееся для описания распространения света в свободном пространстве; а также дробное преобразование Фурье, которое широко используется в квантовой механике для решения физических задач с применением уравнения Шрёдингера. Дробное преобразование Фурье (ДрПФ) также позволяет рассмотреть распространение света в градиентном оптическом волокне [42], а также в оптических системах из нескольких сферических и/или цилиндрических линз [43]. В данной работе интеграл Коллинза используется для моделирования системы, включающей в себя обобщённые линзы [44].

Для ДрПФ коэффициенты *A*, *B*, *C*, *D* имеют следующий вид:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \cos\frac{\pi z}{2f} & f\sin\frac{\pi z}{2f} \\ -\frac{\sin\frac{\pi z}{2f}}{f} & \cos\frac{\pi z}{2f} \end{pmatrix},$$
 (2)

где f – фокусное расстояние, мм, z – расстояние до плоскости изображения, мм.

Сами пучки Эйри Ai(x, y) задаются следующим образом:

$$\operatorname{Ai}(x, y) = \Im \left\{ \exp \left[i \left(\alpha u_0^3 + \beta v_0^3 + \alpha_0 u_0 + \beta_0 v_0 \right) \right] \right\}.$$
(3)

В формуле (3), приведённой выше, используется преобразование Фурье $\Im\{.\}$, применённое к комплексной экспоненте, содержащей кубические и линейные компоненты, которое в результате задает моду Эйри. Коэффициенты α , β – параметры масштаба (мм³), которые влияют на размер главного «лепестка» моды Эйри, α_0 , β_0 – смещения относительно центра входной плоскости (мм). Придавая коэффициентам различные значения, можно изменять траекторию распространения пучков. Для ограничения пучка используется функция Гаусса, в которой σ играет роль радиуса усечения. Таким образом, получаем формулу (4) пучка Эйри–Гаусса:

$$f(x,y) = \operatorname{Ai}(x,y) \exp\left(-\frac{x^2 + y^2}{\sigma^2}\right).$$
(4)

Для поворота пучка или набора пучков используются следующие формулы:

$$f_{rot}(x,y) = \begin{cases} f(x_r, y_r), & x_r \in [-a,a], y_r \in [-b,b], \\ 0, & \text{иначе}, \end{cases}$$
(5)

$$=x\cos\varphi - y\sin\varphi, \qquad (6)$$

$$y_r = x\sin\varphi + y\cos\varphi \,. \tag{7}$$

В формулах $(5-7) f_{rot}$ – повёрнутая мода, (x_r, y_r) – вычисленные координаты для новой точки (x, y), соответствующие точке неповёрнутой моды. В случае, если новые координаты выходят за пределы массива, значение в данной точке приравнивается к нулю; φ – угол, на который необходимо повернуть моду против часовой стрелки; [-a, a] и [-b, b] – интервалы (в мм) по осям x и y соответственно, на которых строится входное поле пучка или набора пучков.

Наборы пучков формируются по приведённой ниже формуле:

$$f_{cluster}(x,y) = \sum_{n=1}^{N} f(x - \rho \cos \varphi_n, y - \rho \sin \varphi_n) \times \\ \times \exp\left[-i\xi(x \cos \varphi_n + y \sin \varphi_n)\right].$$
(8)

В формуле (8) вводится несколько дополнительных параметров, необходимых для формирования набора пучка. N – количество пучков в кластере, ρ – радиус кластера, мм, $\varphi_n = 2\pi n/N$ – угол между пучком в наборе и осью x, ξ – параметр несущей пространственной частоты, мм⁻¹. Множители при x и y в показателе экспоненты выбраны так, чтобы «проекции несущей» были пропорциональны проекциям радиусвектора центра n-го пучка. Это обеспечивает сохранение симметрии кластера.

Хотя численное моделирование в параграфе 2 выполнено для выражения (8), теоретический анализ рассмотрим для одномерного одиночного пучка Эйри вида:

$$E_0(x) = \operatorname{Ai}\left(\frac{x - x_0}{s}\right) \exp(iax) \,. \tag{9}$$

Такой подход позволяет качественно описать распространение каждого отдельного пучка из кластера. Так как каждый пучок разделим по координатам, то можно применить одномерный подход в плоскости, проходящей через оптическую ось и начальную точку пучка. При этом отсутствие Гауссова множителя приведет лишь к небольшим количественным отклонениям.

Таким образом, далее функция Эйри определяется как [1]:

$$\operatorname{Ai}(p) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(i\frac{t^3}{3} + ipt\right) \mathrm{d}t.$$
 (10)

Можно убедиться, что параметры в (9) выражаются через параметры, введённые выше, следующим образом:

$$x_0 = -\alpha_0; \quad s = \sqrt[3]{3\alpha}; \quad a = -\xi.$$
 (11)

На основе (9), (10) можно получить выражение для амплитуды пучка на произвольном расстоянии

$$E(u,z) = \sqrt{i\pi\delta^2} \cdot \operatorname{Ai}\left(\frac{\delta^2}{2s} \cdot \frac{ku}{z} - \frac{x_0}{s} - \frac{\delta^4}{16s^4}\right) \times \\ \times \exp\left[i\left(\frac{\delta^4}{8s^3} \cdot \frac{ku}{z} - \frac{\delta^2}{4s^3} \cdot x_0 - \frac{\delta^2}{4} \cdot \frac{k^2u^2}{z^2} - \frac{\delta^6}{96s^6}\right)\right],$$
(12)

где

 $\frac{1}{\delta^2} = \frac{k}{2z} - \frac{k}{2f}.$

Выражение (12) получено при a=0 (в отсутствие несущей), иначе надо заменить u на u - (az/k).

Максимальное значение функции Ai(p) достигается при значении $p_0 \approx -1,02$. Приравнивая аргумент функции Эйри в (12) этому числу, получаем уравнение траектории, по которой движется максимум амплитуды. В развёрнутом виде уравнение траектории следующее:

$$u = \left(p_0 + \frac{x_0}{s}\right)s \cdot \frac{f - z}{f} + \frac{z^2}{4k^2s^3} \cdot \frac{f}{f - z} + \frac{az}{k}.$$
 (13)

Выражение (13) можно переписать в виде:

$$u = A(f-z) + B \cdot \frac{z^2}{f-z} + \frac{a}{k}z, \qquad (14)$$

где

$$A = \left(p_0 + \frac{x_0}{s}\right) \frac{s}{f}, \quad B = \frac{f}{4k^2 s^3}$$

Из выражения (14) можно определить расстояние, на котором траектория пучка пересечет оптическую ось (т.е. произойдет фокусировка вне фокальной плоскости линзы). Это расстояние определяется из равенства u = 0:

$$z_{1,2}^{axis} = f \cdot \frac{(A-C) \pm \sqrt{D}}{2(B-C)},$$
(15)

где $C = (a/k) - A, D = (C-A)^2 - 4A(B-C).$

Предполагается, что хотя бы одно из значений $z_{1,2}^{axis}$ имеет физический смысл, т.е. является вещественным и положительным. Иначе траектория не пересекает оптическую ось. Следует отметить, что фокусировка здесь понимается не вполне в стандартном смысле: увеличения амплитуды *отдельного* пучка в этой точке не происходит. Но при определённом расположении начальных центров смещенных пучков кластера *все они* пересекут оптическую ось в *одной точке*, благодаря чему произойдёт увеличение амплитуды. Поэтому мы называем такой эффект фокусировкой кластера в целом.

2. Результаты моделирования

Хотя полученные аналитические выражения позволяют вычислять распределения в различных плоскостях без численного интегрирования, однако с учетом необходимости сложения нескольких пучков их удобнее использовать для анализа свойств кластеров, а не для моделирования. Для расчета распределения формируемых полей как в поперечных, так и в продольных сечениях были использованы быстрые алгоритмы расчета [42, 43, 45]. Применим дробное преобразование Фурье к наборам пучков Эйри–Гаусса, сформированных по формулам (3), (4), (8) с помощью формулы (1), используя значения (2). Во всех случаях использовались следующие параметры моделирования: a=b=4 мм, $\sigma=1$ мм, $\rho=2$ мм, N=3, $\lambda=633$ нм, f=1000 мм.

Рассмотрим распространение набора пучков Эйри–Гаусса в свободном пространстве в случае $\xi = 0$. Ниже показаны результаты моделирования кластеров пучков Эйри для параметров (здесь и далее размерность не указывается): $\alpha = \beta = 1$, $\alpha_0 = \beta_0 = 0$ (рис. 1), $\alpha = \beta = 5$, $\alpha_0 = \beta_0 = 0$ (рис. 2), $\alpha = \beta = 5$, $\alpha_0 = \beta_0 = 1$ (рис. 3) и $\alpha = \beta = 5$, $\alpha_0 = \beta_0 = -5$ (рис. 4).

Сравнивая рис. 1 и 2, можно заметить, что увеличение параметров α , β приводит к увеличению размера главного «лепестка» пучка Эйри–Гаусса, но при этом остальные «лепестки» уменьшаются в размере. α_0 , β_0 позволяют задавать смещение пучка в плоскости. При этом получается, что отрицательные значения двигают пучок так, что в область максимума Гауссовой функции главный «лепесток» попадает лишь частично и пучок в основном состоит из дополнительных «лепестков».

Отметим, что наличие линзы изменяет траекторию максимума: она не очень похожа на параболическую, по которой пучок Эйри изгибается в свободном пространстве. Это показывает и выражение (13), имеющее вид дробно-рациональной функции.

Примем в дальнейших исследованиях $\alpha = \beta = 5$, $\alpha_0 = \beta_0 = -5$. Рассмотрим теперь случаи $\xi = 6$ (рис. 5) и $\xi = -6$ (рис. 6).

Увеличение параметра несущей пространственной частоты ξ приводит к более ранней (на расстоянии z = 800 мм вместо z = 1000 мм в случае $\xi = 0$) и более резкой фокусировке (интенсивность осталась сосредоточенной в области главного «лепестка»). Использование отрицательного значения ξ также позволяет произвести такую же резкую фокусировку, но уже на расстоянии z = 1200 мм. Теоретический расчёт по формуле (15) даёт соответственно 804,6 мм (при $\xi = 6$) и 1321 мм (при $\xi = -6$).

Рис. 1. Распределение интенсивности набора пучков Эйри–Гаусса с параметрами $\xi = 0$, $\alpha = \beta = 1$, $\alpha_0 = \beta_0 = 0$ на различных расстояниях: a) z = 0 м, б) z = 0.25 м, в) z = 0.5 м, г) z = 0.75 м, д) z = 1 м, е) z = 1.25 м, ж) z = 1.5 м, з) z = 1.75 м, и) z = 2 м, к) продольное распределение интенсивности на интервале z = 0,1...1,9 м

Рис. 2. Распределение интенсивности набора пучков Эйри–Гаусса с параметрами $\xi = 0$, $\alpha = \beta = 5$, $\alpha_0 = \beta_0 = 0$ на различных расстояниях: (a)–(u) расстояния, как на рис. 1, (к) продольное распределение интенсивности на интервале, как на рис. 1

Рис. 3. Распределение интенсивности набора пучков Эйри–Гаусса с параметрами $\xi = 0$, $\alpha = \beta = 5$, $\alpha_0 = \beta_0 = 5$ на различных расстояниях: (a)–(u) расстояния, как на рис. 1, (к) продольное распределение интенсивности на интервале, как на рис. 1

Рис. 4. Распределение интенсивности набора пучков Эйри–Гаусса с параметрами $\xi = 0$, $\alpha = \beta = 5$, $\alpha_0 = \beta_0 = -5$ на различных расстояниях: (а)–(и) расстояния, как на рис. 1, (к) продольное распределение интенсивности на интервале, как на рис. 1

Рис. 5. Распределение интенсивности набора пучков Эйри–Гаусса с параметрами $\xi = 6$, $\alpha = \beta = 5$, $\alpha_0 = \beta_0 = -5$ на различных расстояниях: a) z = 0 м, б) z = 0,2 м, в) z = 0,4 м, г) z = 0,6 м, д) z = 0,8 м, е) z = 1,1 м, ж) z = 1,4 м, з) z = 1,7 м, и) z = 2 м, к) продольное распределение интенсивности на интервале z = 0,1...1,9 м

Рис. 6. Распределение интенсивности набора пучков Эйри–Гаусса с параметрами $\xi = -6$, $\alpha = \beta = 5$, $\alpha_0 = \beta_0 = -5$ на различных расстояниях: a) z = 0 м, б) z = 0,3 м, в) z = 0,6 м, г) z = 0,9 м, д) z = 1,2 м, е) z = 1,4 м, ж) z = 1,6 м, з) z = 1,8 м, и) z = 2 м, к) продольное распределение интенсивности на интервале z = 0,1...1,9 м

Теперь будем поворачивать кластер пучков Эйри– Гаусса на 45 (рис. 7), 90, 135 и 180 градусов (рис. 8) против часовой стрелки (пр.ч.с.).

На рис. 7 и 8 видно, что поворот кластера мод не вносит каких-либо изменений в её траекторию (на

рис. 8*а*-*в* показано несколько сечений одного и того же кластера под различным наклоном).

Наконец, будем теперь сначала поворачивать каждый пучок Эйри на 45 (рис. 9), 90, 135, 180 градусов (рис. 10), а затем формировать из них набор мод.

Рис. 7. Распределение интенсивности повёрнутого на 45° пр.ч.с. набора пучков Эйри–Гаусса с параметрами ξ = 6, α = β = 5, α₀ = β₀ = -5 на различных расстояниях: (a)-(u) расстояния, как на рис. 5, (к) продольное распределение интенсивности на интервале, как на рис. 5

Рис. 8. Продольное распределение интенсивности набора пучков Эйри–Гаусса с параметрами $\xi = 6$, $\alpha = \beta = 5$, $\alpha_0 = \beta_0 = -5$ на интервале, как на рис. 5: набор повёрнут на а) 90°, б) 135°, в) 180° пр. ч.с.

Рис. 9. Распределение интенсивности набора пучков Эйри–Гаусса, повёрнутых на 45° по ч.с. с параметрами ξ = 6, α = β = 5, α₀ = β₀ = -5 на различных расстояниях: (a)-(u) расстояния, как на рис. 5, (к) продольное распределение интенсивности на интервале, как на рис. 5

в)

Рис. 10. Продольное распределение интенсивности набора пучков Эйри–Гаусса с параметрами $\xi = 6$, $\alpha = \beta = 5$, $\alpha_0 = \beta_0 = -5$ на интервале, как на рис. 5: пучки повёрнуты на а) 90°, б) 135°, в) 180° по ч.с.

На рис. 9 и 10 видно, что траектория повёрнутых пучков стала более синхронной, но распределение интенсивности в области фокуса и само расстояние фокусировки не изменились.

Заключение

В данной работе исследована возможность изменения траектории распространения набора пучков, смещённых в исходной плоскости, за счёт добавления фазы, имеющей линейную зависимость (аналогично действию призмы). Такой подход применён к модам, обладающим свойством автофокусировки, а именно, к пучкам Эйри–Гаусса, с целью расширения возможности управления свойствами их распространения при автофокусировке.

С использованием дробного преобразования Фурье выполнено численное моделирование распространения таких пучков. Показано, как величина смещения и отклоняющей фазы изменяет траекторию автофокусирующихся пучков Эйри–Гаусса. Результаты показали, что изменение параметра несущей пространственной частоты ξ (аналог параметра призмы) позволяет управлять расстоянием до области фокусировки. При этом форма траектории пучка за счёт наличия линзы в соответствии с теоретическими предсказаниями перестаёт быть параболической. Поворот каждой моды, как и поворот кластера в целом, приводят к ожидаемому в силу бездифракционности пучков Эйри повороту поперечного распределения поля на тот же угол.

Благодарности

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 20-07-00505-А) в части численного моделирования, а также при поддержке Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ «Кристаллография и фотоника» РАН (соглашение № 007-ГЗ/Ч3363/26) в теоретической части.

References

 Berry MV, Balazs NL. Nonspreding wave packets. Am J Phys 1979; 47(3): 264-267. DOI: 10.1119/1.11855.

- [2] Siviloglou GA, Christodoulides DN. Accelerating finite energy Airy beams. Opt Lett 2007; 32(8): 979-981. DOI: 10.1364/OL.32.000979.
- [3] Saari P. Laterally accelerating Airy pulses. Opt Express 2008; 16(4): 10303-10308. DOI: 10.1364/OE.16.010303.
- [4] Bandres MA. Accelerating beams. Opt Lett 2009; 34(24): 3791-3793. DOI: 10.1364/OL.34.003791.
- [5] Vallée O, Soares M. Airy functions and applications in physics. London: Imperial College Press; 2004. ISBN: 1-86094-478-7.
- [6] Baumgartl J, Mazilu M, Dholakia K. Optically mediated particle clearing using Airy wavepackets. Nat Photonics 2008; 2(11): 675-678. DOI: 10.1038/nphoton.2008.201.
- [7] Khonina SN, Skidanov RV, Moiseev OYu. Airy laser beams generation by binary-coded diffractive optical elements for microparticles manipulation. Computer Optics 2009; 33(2): 138-146.
- [8] Zheng Z, Zhang B-F, Chen H, Ding J, Wang H-T. Optical trapping with focused Airy beams. Appl Opt 2011; 50(1): 43-49. DOI: 10.1364/AO.50.000043.
- [9] Vettenburg T, Dalgarno HIC, Nylk J, Coll-Llado C, Ferrier DEK, Čižmár T, Gunn-Moore FJ, Dholakia K. Lightsheet microscopy using an Airy beam. Nat Methods 2014; 11(5): 541-544. DOI: 10.1038/nmeth.2922.
- [10] Piksarv P, Marti D, Le T, Unterhuber A, Forbes LH, Andrews MR, Stingl A, Drexler W, Andersen PE, Dholakia K. Integrated single- and two-photon light sheet microscopy using accelerating beams. Sci Rep 2017; 7(1): 1435. DOI: 10.1038/s41598-017-01543-4.
- [11] Dowski ER, Cathey WT. Extended depth of field through wave-front coding. Appl Opt 1995; 34(11): 1859-1866. DOI: 10.1364/AO.34.001859.
- [12] Pan C, Chen J, Zhang R, Zhuang S. Extension ratio of depth of field by wavefront coding method. Opt Express 2008; 16(17): 13364-13371. DOI: 10.1364/oe.16.013364.
- [13] Khonina SN, Volotovskiy SG, Dzyuba AP, Serafimovich PG, Popov SB, Butt MA. Power phase apodization study on compensation defocusing and chromatic aberration in the imaging system. Electronics 2021; 10(11): 1327. DOI: 10.3390/electronics10111327.
- [14] Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M, Lacourt PA, Dudley JM. Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Appl Phys Lett 2012; 101(7): 071110. DOI: 10.1063/1.4745925.
- [15] Courvoisier S, Götte N, Zielinski B, Winkler T, Sarpe C, Senftleben A, Bonacina L, Wolf JP, Baumert T. Temporal Airy pulses control cell poration. APL Photon 2016; 1(4): 046102. DOI: 10.1063/1.4948367.

- [16] Rose P, Diebel F, Boguslawski M, Denz C. Airy beam induced optical routing. Appl Phys Lett 2013; 102(10): 101101. DOI: 10.1063/1.4793668.
- [17] Banders MA, Gutierrez-Vega JC. Airy-Gauss beams and their transformation by paraxial optical systems. Opt Express 2007; 15(25): 16719-16728. DOI: 10.1364/OE.15.016719.
- [18] Khonina SN, Volotovsky SG. Bounded 1D Airy beams: Laser fan. Computer Optics 2008; 32(2): 168-174.
- [19] Efremidis NK, Christodoulides DN. Abruptly autofocusing waves. Opt Lett 2010; 35(23): 4045-4047. DOI: 10.1364/OL.35.004045.
- [20] Davis JA, Cottrell DM, Sand D. Abruptly autofocusing vortex beams. Opt Express 2012; 20(12): 13302-13310. DOI: 10.1364/OE.20.013302.
- [21] Vaveliuk P, Lencina A, Rodrigo JA, Matos OM. Symmetric Airy beams. Opt Lett 2014; 39(8): 2370-2373. DOI: 10.1364/OL.39.002370.
- [22] Jiang Y, Zhao S, Yu W, Zhu X. Abruptly autofocusing property of circular Airy vortex beams with different initial launch angles. J Opt Soc Am A 2018; 35(6): 890-894. DOI: 10.1364/JOSAA.35.000890.
- [23] Khonina SN. Mirror and circular symmetry of autofocusing beams. Symmetry 2021; 13(10): 1794. DOI: 10.3390/sym13101794.
- [24] Zhang P, Prakash J, Zhang Z, Mills MS, Efremidis NK, Christodoulides DN, Chen Z. Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt Lett 2011; 36(15): 2883-2885. DOI: 10.1364/OL.36.002883.
- [25] Manousidaki M, Papazoglou DG, Farsari M, Tzortzakis S. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica 2016; 3(5): 525-530. DOI: 10.1364/OPTICA.3.000525.
- [26] Panagiotopoulos P, Papazoglou DG, Couairon A, Tzortzakis S. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nat Commun 2013; 4: 2622. DOI: 10.1038/ncomms3622.
- [27] Li P, Liu S, Peng T, Xie G, Gan X, Zhao J. Spiral autofocusing Airy beams carrying power-exponent phase vortices. Opt Express 2014; 22(7): 7598-7606. DOI: 10.1364/OE.22.007598.
- [28] Khonina SN, Ustinov AV. Fractional Airy beams. J Opt Soc Am A 2017; 34(11): 1991-1999. DOI: 10.1364/JOSAA.34.001991.
- [29] Khonina SN, Porfirev AP, Ustinov AV. Sudden autofocusing of superlinear chirp beams. J Opt 2018; 20(2): 025605. DOI: 10.1088/2040-8986/aaa075.
- [30] Brimis A, Makris KG, Papazoglou DG. Tornado waves. Opt Lett 2020; 45(2): 280-283. DOI: 10.1364/OL.45.000280.
- [31] Khonina SN, Porfirev AP, Ustinov AV, Butt MA. Generation of complex transverse energy flow distributions

with autofocusing optical vortex beams. Micromachines 2021; 12(3): 297. DOI: 10.3390/mi12030297.

- [32] Lü B, Ma H. Beam propagation properties of radial laser arrays. J Opt Soc Am A 2000; 17(11): 2005-2009. DOI: 10.1364/JOSAA.17.002005.
- [33] Song L, Yang Z, Li X, Zhang S. Controllable Gaussianshaped soliton clusters in strongly nonlocal media. Opt Express 2018; 26(15): 19182-19198. DOI: 10.1364/OE.26.019182.
- [34] Suarez RA, Neves AA, Gesualdi MR. Generation and characterization of an array of Airy-vortex beams. Opt Commun 2019; 458: 124846.
- [35] Song L, Yang Z, Zhang S, Li X. Dynamics of rotating Laguerre-Gaussian soliton arrays. Opt Express 2019; 27(19): 26331-26345. DOI: 10.1364/OE.27.026331.
- [36] Suarez RA, Neves AA, Gesualdi MR. Optimizing optical trap stiffness for Rayleigh particles with an Airy array beam. J Opt Soc Am B 2020; 37(2): 264-270. DOI: 10.1364/JOSAB.379247.
- [37] Frolov AO, Khonina SN. Modeling the propagation of sets of autofocusing laser beams. Proc SPIE 2021; 11793: 117930I. DOI: 10.1117/12.2592792.
- [38] Namias V. The fractional order Fourier transform and its application to quantum mechanics. IMA J Appl Math 1980; 25(3): 241-265. DOI: 10.1093/imamat/25.3.241.
- [39] Mendlovic D, Ozaktas HM. Fractional Fourier transformations and their optical implementation. I. J Opt Soc Am A 1993; 10(9): 1875-1881. DOI: 10.1364/JOSAA.10.001875.
- [40] Haskel M, Stern A. Evaluation of the influence of arbitrary masks on the output field of optical systems using ABCD matrices. J Opt Soc Am A 2017; 34(4): 609-613. DOI: 10.1364/JOSAA.34.000609.
- [41] Collins SA. Lens-system diffraction integral written in terms of matrix optics. J Opt Soc Am 1970; 60(9); 1168-1177. DOI: 10.1364/JOSA.60.001168.
- [42] Khonina SN, Striletz AS, Kovalev AA, Kotlyar VV. Propagation of laser vortex beams in a parabolic optical fiber. Proc SPIE 2010; 7523: 75230B. DOI: 10.1117/12.854883.
- [43] Monin EO, Ustinov AV, Khonina SN. Propagation modeling of vortex generalized Airy beams in parabolic fiber. Proc Progress in Electromagnetics Research Symposium 2018; F134321: 583-589. DOI: 10.1109/PIERS.2017.8261809.
- [44] Ustinov AV, Khonina SN. Generalized lens: Calculation of distribution on the optical axis. Computer Optics 2013; 37(3): 307-315.
- [45] Kirilenko MS, Zubtsov RO, Khonina SN, Calculation of eigenfunctions of a bounded fractional Fourier transform, Computer Optics, 2015; 39(3): 332-338. DOE: 10.18287/0134-2452-2015-39-3-332-338.

Сведения об авторах

Фролов Антон Олегович, студент Самарского университета. Область научных интересов: моделирование работы оптических элементов, программирование. Е-mail: <u>*f-miralius@yandex.ru*</u>.

Устинов Андрей Владимирович, 1968 года рождения, в 1991 году окончил Куйбышевский авиационный институт имени академика С.П. Королёва (КуАИ) по специальности «Прикладная математика». Кандидат физико-математических наук (2016 год), работает научным сотрудником в ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН. Область научных интересов: дифракционная оптика, разработка программ мо-

делирования работы оптических элементов; обработка изображений, в частности, гидродинамических процессов и биомедицинских изображений. E-mail: <u>andr@ipsiras.ru</u>.

Хонина Светлана Николаевна, доктор физико-математических наук, профессор Самарского университета; главный научный сотрудник ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН. Область научных интересов: дифракционная оптика, сингулярная оптика, модовые и поляризационные преобразования, оптическое манипулирование, оптическая и цифровая обработка изображений. Е-mail: <u>khonina@ipsiras.ru</u>.

ГРНТИ: 29.31.15 Поступила в редакцию 01 апреля 2022 г. Окончательный вариант – 07 мая 2022 г.

Changing the trajectory of Airy beam sets with spatial carriers

A.O. Frolov¹, A.V. Ustinov², S.N. Khonina^{1,2}

¹ Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34, ² IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS, 443001, Samara, Russia, Molodogvardeyskaya 151

Abstract

In this paper, we study a change in the propagation trajectory of a set of autofocusing laser beams using a fractional Fourier transform. Clusters of displaced bounded Airy-Gaussian beams supplemented by a phase function that deflects the beam similarly to a prism are considered. The shift and phase deviation (according to the carrier spatial frequencies) make it possible to change the propagation trajectory of a set of autofocusing beams. The influence of the parameters under consideration on the properties of autofocusing of a cluster of Airy-Gaussian beams is investigated by means of numerical simulation.

Keywords: autofocusing properties, sets of Airy-Gaussian beams, fractional Fourier transform.

<u>Citation</u>: Frolov AO, Ustinov AV, Khonina SN. Changing the trajectory of Airy beam sets with spatial carriers. Computer Optics 2022; 46(5): 724-732. DOI: 10.18287/2412-6179-CO-1139.

<u>Acknowledgements</u>: This work was supported by the Russian Foundation for Basic Research under grant No. 20-37-90129 (numerical modeling) and the Ministry of Science and Higher Education within the State assignment of the FSRC "Crystallography and Photonics" RAS (theoretical analysis).

Authors' information

Anton Olegovich Frolov, student of Samara University. Research interests: modeling of the work of optical elements, programming. E-mail: <u>f-miralius@yandex.ru</u>.

Andrey Vladimirovich Ustinov, (b. 1968) graduated from Kuibyshev Aviation Institute named after academician S.P. Korolyov (KuAI) on a specialty "Applied Mathematics" in 1991. Candidate of Physical and Mathematical Sciences (2016), works as the researcher in the IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS. Research interests: diffractive optics; software design for modeling of optical elements operating; images processing, particularly images of hydrodynamic processes and biomedical images. E-mail: <u>andr@ipsiras.ru</u>.

Svetlana Nikolaevna Khonina, Doctor of Physical and Mathematical Sciences; Professor of Samara National Research University. Main researcher of the IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS. Research interests: diffractive optics, singular optics, mode and polarization transformations, optical manipulating, optical and digital image processing. E-mail: <u>khonina@ipsiras.ru</u>.

Received April 01, 2022. The final version – May 07, 2022.