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Abstract 

The study is a comparative analysis of two fast reflection symmetry axis detection methods: an 
algorithm to refine the symmetry axis found with a chain of skeletal primitives and a boundary 
method based on the Fourier descriptor. We tested the algorithms with binary raster images of 
plant leaves (FLAVIA database). The symmetry axis detection quality and performance indicate 
that both methods can be used to solve applied problems. Neither method demonstrated any signif-
icant advantage in terms of accuracy or performance. It is advisable to integrate both methods for 
solving real-life problems. 
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Introduction 

Symmetry detection in binary raster images is a well-
known problem; there are robust approximate and exact 
methods [1–11]. However, comparative studies of their 
quality and performance are virtually not available.  

This study compares two reflection (mirror) sym-
metry axis detection methods: an algorithm to refine the 
symmetry axis found with chains of skeletal primitives 
alignment [1, 2], and a contour method based on the Fou-
rier descriptor [3]. 

The reference for quality assessment is the result of 
the exact reflection symmetry axis detection algorithm 
based on Jaccard’s measure [4]: 
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where B is the binary image, the brightness values are ei-
ther 1 for black pixels or 0 for the white pixels; Br is a mir-
ror reflection of the original binary image B relative to a 
straight line, S (B ) is a set of the image B pixels with their 
brightness level =1. Obviously, T

 (B ) = 1 has more favora-
ble basic measure properties: 0  T

 (B )  1, while 
T

 (B ) = 1, if B is perfectly symmetric, and T
 (B ) = 0, if B 

and Br do not intersect. The measure (1) for binary images 
(vectors) is called a Tanimoto similarity in some sources. 

To find the intersection and union of the sets of pixels 
of the original image and the reflected one, it is first nec-
essary to get a mirror reflected image. Let's derive an 
analytical expression for obtaining a mirror reflected im-
age Br of the original binary image B, relative to a straight 
line given by a pair of points (x1, y1) and (x2, y2). The axis 
relative to which the mirror reflection is performed is 
given by an equation of the form (x) = kx +b, where the 
coefficients k and b are obtained as follows: 
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Note that k = tg  = (sin  / cos ), where  – is the an-
gle between the straight line and the axis Ox. Let's ex-
press cos  and sin  from here as follows: 
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To do this, we use a group of affine transformations in 
the following order:  

1) the offset of the image along the axis Oy by a fac-
tor b to the origin; 
2) rotation of the image by an angle  / 2 –  (the an-
gle between the straight line and the axis Oy);  
3) performing the mirror reflection operation along 
the axis Oy; 
4) performing the operation reverse to the operation 2; 
5) performing the operation reverse to the operation 1. 
Then the combined matrix of these affine transfor-

mations will be the following: 

 
2 2

2 2 2 2

cos sin 2cos sin 2 cos sin
.

2cos sin sin cos 1 cos sin
b

b
       

         
 

Applying this affine transformation to the original im-
age, we get an image that is a mirror image of the original 
one. Obviously, the affine transformation will translate 
integer pixel coordinate values into real-valued ones. In 
this paper, we use a threshold (rounding rule) when cal-
culating the coordinates of a new pixel, which of course 
affects the accuracy of the methods for working with a 
raster image. We conducted a study to evaluate the im-
pact of this rounding rule. The essence of the experiment 
is that we estimate the Jaccard measure for an image re-
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flected relative to a random straight line and then reflect-
ed relative to the same straight line "back". Thus, with 
each double reflection, we get "kind of" a new copy of 
the image but subjected to an affine real-valued transfor-
mation. We repeated this procedure for one hundred ran-
dom lines and recorded the obtained Jaccard measures. 
Fig. 1 shows one hundred obtained values, sorted in as-
cending order. As it is seen, the corresponding residuals 
(differences from the value 1) do not exceed 0.003, which 
is, apparently, the natural accuracy of the method. 

 
Fig. 1. Jaccard measure between initial image and its double 

reflected copy for 100 random axes 

The exact reflection symmetry detection algorithm 
enumerates every line intersecting the figure defined by 
its boundary points and finds the one with the max sym-
metry measure (1). This line is the image’s reference axis 
of symmetry. The symmetry measures for the reference 
axis in real-world applications (e.g., scanned plant leaves, 
binarized ROIs in digital photographs) rarely reach 1. We 
will call an image quasi-symmetric if its measure (1) is 
close to 1. Fig. 2 shows axes and their symmetry measures 
for ideal, quasi-symmetric, and asymmetric images. 

 
Fig. 2. Image examples. The axis corresponds to the max 

symmetry measure estimates with Jaccard similarity 

Since the computational complexity of the exact algo-
rithm is considerable, several better performance options 
were proposed, as well as fast approximate methods, the 
algorithms to refine the symmetry axis found by compar-
ing the subchains of skeletal primitives alignment [1, 2]. 
In this paper, we use a parallelized version of the exact 
algorithm [5]. Problem statement: comparison of the two 
reflection symmetry axis detection algorithms in terms of 
accuracy and performance relative to the reference solu-
tion. The measure of accuracy is Jaccard’s measure. 

Review of available reflection symmetry detection 
methods applicable to binary raster images 

The symmetry axis detection and two-dimensional 
shape symmetry estimation problems are well known. 
There are many efficient solutions based on: 1. parametric 
representation of the shape contour and its Fourier trans-
formation [6], 2. contour representation with rotation [7], 
3. representation of the contour by critical points and esti-
mating the similarity measure for two sub-boundaries us-
ing geodesic distance vectors [8], 4. the electric charge dis-
tribution model (ECDS) [9], 5. the contour-skeleton func-
tion (BSF) [10], 6. pairwise comparison of skeletal primi-
tive subchains [1], 7. building the Fourier descriptor of the 
image contour [3], 8. building image gradient histograms 
[11], 9. a descriptor built on the Radon transform [12].  

An exact algorithm was proposed in [1] to evaluate 
and compare the binary images reflection symmetry de-
tection algorithms. It detects the reference quasi-
symmetry axis and the measure of image symmetry. The 
exact algorithm performance is low; it cannot process im-
ages in real-time or close to real-time. Paper [1] proposes 
its optimization options, while [5] presents a parallelized, 
supercomputer-ready version. 

Axis position refinement algorithm based  
on the skeletal primitive subchains alignment 

The refinement algorithm concept is to use a fast ap-
proximate method first and then improve its results. Pa-
per [1] shows that the method based on skeletal primitive 
subchains alignment is a fast approximate method for re-
flection symmetry axis detection. Compared to complete 
enumeration (CE) and even to its optimized versions, the 
skeletal method is much faster. The initial axis it produc-
es is approximate. We should find the axis in its vicinity 
with the highest Jaccard’s measure. For this, the axis is 
slightly shifted ("swings") across the shape. Paper [2] co-
vers three refinement algorithm options. This paper uses a 
parallelized version of the second refinement algorithm 
option since it offers the best performance, accuracy, and 
predictability of the result [5]. Its essence is as follows. 
The initial axis crosses the shape contour at two points. 
We define points within a given neighborhood of the con-
tour : they represent two finite sets of some points on the 
contour, which are the search intervals. Then we define n 
equidistant points on each interval. The points in the two 
intervals are enumerated in pairs forming several test 
lines; the one with the maximum symmetry measure is 
chosen. The algorithm is repeated with the new line and a 
reduced interval until the interval reaches 1. Also, for 
each test axis, we check if it is in the vicinity of the center 
of mass (CoM). This eliminates some of the lines from 
the search and accelerates the algorithm. As a result, we 
find the axis with the measure of symmetry is not be less 
than the measure produced by the skeletal method.  

This algorithm is intrinsically paralleled associated as 
we enumerate all the test lines in the specified neighbor-
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hood and estimate their symmetry measure values. These 
operations are independent and can be performed in par-
allel for different lines. Parallel computing will further 
improve performance. 

Contour method based on the Fourier descriptor 

Paper [3] presents a method based on the Fourier de-
scriptor applied to the image contour as an alternative to 
other methods with high computational complexity. The 
contour method is as follows. The shape’s contour points 
are represented by a sequence of complex numbers, where 
the real is the x coordinate and the imaginary part is the y 
coordinate. The discrete Fourier transform is then applied 
to the sequence of points. The resulting coefficients are 
called the Fourier descriptor of the image contour. 

To find the symmetry axis, we should enumerate all 
the points of the contour and for each point find the opti-
mal line dividing the contour into two similar parts. To 
determine the line quality, the Q measure is used. It is the 
standard deviation of the coefficients from the optimal 
axis for all possible cyclic shifts of the contour. The clos-
er Q is to 0, the closer the line to the true axis of sym-
metry. The measure Q characterizes the shape asym-
metry. Its range is [0, + ]. It is assumed that the shape is 
symmetric if Q does not exceed an empirically defined 
threshold. 

This paper assumes that the shape’s symmetry axis is 
always the symmetry axis of the convex hull of the given 
shape. The symmetry axis may contain either a point be-
ing a vertex of the convex shell or a point that lies on the 
line passing through the center of gravity and the center 
of the convex hull edge. To improve the performance, the 
convex shell points and the small neighborhood around 
these points are examined. However, it is worth noting 
that in the general case this assumption is not met. 

Also, not all of the Fourier descriptor coefficients are 
required to describe the shape with sufficient accuracy, 
but only those with a sufficiently large absolute value. 
Usually, these are the first and last harmonics. To im-
prove the performance, some of the Fourier coefficients 
are discarded (only coefficients that are greater than some 
manually defined threshold in absolute values). The pro-
cedure is equivalent to a contour frequency filtering to 
approximately detect the symmetry axis.  

To calculate the exact measure of the asymmetry of 
the shape Q the full set of coefficients in the small neigh-
borhood of the found vertex is estimated. 

Experiments 

The FLAVIA binary raster image database was used for 
experimental studies [13]. The FLAVIA database contains 
32 classes of leaf images approx. 800x600 pixels (see fig. 3). 

 
Fig. 3. Example: images of 32 leaf classes from the FLAVIA database 

Classes 3, 4, 5, 10, 12, 16, and 21 were selected. The 
images were processed by the exact CE algorithm, the 
reference axis of symmetry was found for each image, 
and Jaccard’s measure of symmetry J (1) was estimated. 
For each class, the best symmetry axes and their corre-
sponding symmetry measures Ja were obtained by align-
ing skeleton primitives subchains (the axis refinement al-
gorithm). The images were also processed by the contour 
method based on the Fourier descriptor. The best sym-
metry axis, asymmetry measure Q were obtained for each 
image, and Jaccard’s measure Jq was calculated for the ob-

tained axis. Since the algorithm finds several symmetry 
axes based on the Fourier descriptor, in this experiment we 
chose the axis with the smallest asymmetry measure Q. 

The algorithms were implemented as C++ codes. An 
accurate CE algorithm processed images using 128 
threads on the Lomonosov supercomputer [14]. The re-
finement algorithm for the initial axis found by aligning 
skeleton primitives subchains was run in 2 threads. The 
search intervals were divided into 10 segments, the CoM 
neighborhood was equal to 3 % of the distance between 
the CoM and the farthest point on the contour. 
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The accuracy and processing time for various leaf 
image classes obtained by the two algorithms are sum-
marized in tab. 1. The following properties were esti-
mated for each class: the average value, RMS, min and 
max values. The Jaccard measure for the axes found by 
the approximate methods always either does not exceed 
or at best equals the measure obtained by the exact CE 

algorithm. Let us estimate how close the proposed fast 
algorithm results are to the reference result. The best 
time and accuracy values for the two algorithms are 
highlighted in Table 1. In particular, for each class of 
images the mean, max, and min values of the symmetry 
measure, the average and max processing time for each 
class are highlighted. 

Tab. 1. Skeleton algorithm vs. Fourier descriptor-based contour algorithm 

 

Complete 
enumeration on 128 

threads 
Contour method based on the Fourier de-

scriptor 
Refinment of skeletal primitives 

chains alghnment 

J time, sec Q Jq J – Jq time, sec Ja J – Ja time, sec 

 

mean 0.9407 40.75 0.0078663 0.8788 0.0619 0.47 0.8667 0.0740 0.71 
RMS 0.0275 10.63 0.0028337 0.0710 – 0.0435 0.08 0.1655 – 0.1380 0.13 
min 0.8647 24.38 0.003537 0.6212 0.2435 0.31 0.3182 0.5464 0.44 

class #3 (65 objects) max 0.9844 73.86 0.015681 0.9770 0.0075 0.69 0.9844 0.0000 0.93 

 

mean 0.9483 56.90 0.007655 0.9358 0.0125 0.76 0.9426 0.0058 0.66 
RMS 0.0204 7.10 0.0030141 0.0274 – 0.0070 0.11 0.0269 – 0.0065 0.15 
min 0.8989 36.66 0.002582 0.8544 0.0446 0.53 0.8674 0.0315 0.48 

class #4 (72 objects) max 0.9869 71.53 0.015478 0.9833 0.0035 1.09 0.9869 0.0000 1.21 

 

mean 0.9659 26.19 0.0042942 0.9564 0.0095 0.38 0.9642 0.0017 0.68 
RMS 0.0102 9.24 0.0009783 0.0179 – 0.0077 0.07 0.0105 – 0.0003 0.06 
min 0.9335 14.47 0.002001 0.8530 0.0804 0.30 0.9335 0.0000 0.57 

class #5 (73 objects) max 0.9898 62.86 0.007318 0.9831 0.0067 0.63 0.9898 0.0000 0.95 

 

mean 0.8921 74.79 0.0178218 0.8061 0.0860 0.84 0.8223 0.0698 0.70 
RMS 0.0253 19.90 0.005491 0.0916 – 0.0663 0.22 0.1357 – 0.1104 0.17 
min 0.8284 46.92 0.008606 0.4863 0.3422 0.58 0.2248 0.6037 0.45 

class #10 (59 objects) max 0.9396 133.92 0.030189 0.9391 0.0005 1.48 0.9396 0.0000 0.96 

 

mean 0.9456 56.51 0.0054881 0.9057 0.0399 0.62 0.9451 0.0006 0.75 
RMS 0.0324 7.42 0.0038819 0.0912 – 0.0587 0.21 0.0327 – 0.0003 0.06 
min 0.8526 41.58 0.001221 0.3036 0.5490 0.40 0.8526 0.0000 0.60 

class #12 (63 objects) max 0.9910 74.41 0.027541 0.9909 0.0001 1.59 0.9910 0.0000 0.97 

 

mean 0.9404 76.22 0.0098355 0.8753 0.0652 0.67 0.9161 0.0244 0.73 
RMS 0.0245 9.63 0.0036439 0.0766 – 0.0521 0.13 0.0342 – 0.0097 0.04 
min 0.8516 55.67 0.00429 0.6369 0.2147 0.51 0.8216 0.0299 0.63 

class #16 (56 objects) max 0.9796 94.50 0.019049 0.9595 0.0201 1.43 0.9698 0.0097 0.81 

 

mean 0.9351 42.82 0.0038465 0.8759 0.0592 0.50 0.7945 0.1406 0.83 
RMS 0.0327 5.56 0.0018317 0.0603 – 0.0276 0.06 0.1191 – 0.0864 0.05 
min 0.8112 25.46 0.000644 0.6553 0.1559 0.37 0.5394 0.2717 0.72 

class #21 (60 objects) max 0.9929 52.37 0.009304 0.9411 0.0518 0.70 0.9929 0.0000 0.95 
 

Based on the available results we can conclude that the 
Fourier descriptor-based contour algorithm rarely finds the 
reference axis. In our experiments, the reference axes were 
found only in 4 of 448 processed images. Also, for some im-
ages, the axes were located diametrically opposed. 

In general, if we just calculate the number of 
measures with the max accuracy and performance (high-
lighted cells in tab. 1), the Fourier descriptor-based con-

tour algorithm scores 14 points while the alignment of 
skeletal primitives subchains method scores 21 points.  

Below we analyze the cases where the compared ap-
proaches failed. Tab. 2 lists the failed cases of the Fourier 
descriptor-based contour algorithm for each class. The im-
ages in each class with the smallest Jaccard measure are 
shown. For comparison, the second axis that the Fourier de-
scriptor-based contour algorithm was able to detect, and the 
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result of the refinement algorithm based on skeletal primi- tive subchains for the same image are also included.
Tab. 2. Examples: images with the worst Jaccard measure for the Fourier descriptor-based contour algorithm 

Class Reference axis Symmetry axes detected by the Fourier descriptor-based con-
tour algorithm 

The axis detected by the skeletal 
subchain refinement algorithm 

3  
J: 0.902764 

 
Jq:0.6212 

Q: 0.009632 

 
Jq: 0.8219 

Q: 0.009812 

 
Ja: 0.902764 

4 

 
J: 0.94533 

 
Jq:0.854358 
Q: 0.010179 

 
Jq: 0.895871 
Q: 0.014879 

 
Ja: 0.8904 

5  
J: 0.983181 

 
Jq: 0.853038 
Q: 0.003378 

 
Jq: 0.789079 
Q: 0.021418 

 
Ja: 0.983181 

10  
J: 0.865941 

 
Jq:0.486275 
Q: 0.017842 

 
Jq: 0.65169 
Q: 0.031518 

 
Ja: 0.865941 

12  
J: 0.860935 

 
Jq:0.303648 
Q: 0.027541 

 
Jq: 0.756208 
Q: 0.037157 

 
Ja: 0.860935 

16  
J: 0.95656 

 
Jq: 0.636884 
Q: 0.019049 

 
Jq: 0.755429 
Q: 0.019471 

 
Ja: 0.9269 

21 
 

J: 0.932312  
Jq: 0.655273 
Q: 0.004406 

 
Jq: 0.86296 
Q: 0.006143 

 
Ja: 0.932312 

 
In the above cases, the Fourier descriptor-based contour 

algorithm places the axis quite close to the reference sym-
metry axis, but the Jaccard measure for this axis is some-
what worse due to the binding to the convex shell points. 
In some cases, it is significantly worse than the measure 
obtained by the skeletal subchain refinement algorithm. 
For all the images listed in Table 2, the skeletal subchain 
refinement algorithm performed better, the reference axis 
was found in five classes (3, 5, 10, 12, and 21). 

Tab. 3 shows the images with the smallest Jaccard 
measures in each class obtained by the skeletal subchain 
refinement algorithm. 

In these cases, the poor result is due to an unfavorable 
location of the initial axis (class 3) or a rather complex 
shape contour (class 10). As can be seen, in the other cas-
es the general location of the axis is correct, and the ref-
erence was found in class 5. 
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Tab. 3. Examples: images with the worst Jaccard measure for skeletal subchain refinement algorithm 

Class Reference axis Symmetry axes detected by the Fourier descriptor-based con-
tour algorithm 

The axis detected by the skeletal 
subchain refinement algorithm 

3  
J: 0.888802 

 
Jq: 0.856431 
Q: 0.013557 

 
Jq: 0.801577 
Q: 0.016151 

 
Ja: 0.3182 

4 

 
J: 0.94533 

 
Jq: 0.945189 
Q: 0.006408 

 
Jq: 0.846394 
Q: 0.018132 

 
Ja: 0.8674 

5 
 

J: 0.933452 
 

Jq: 0.931157 
Q: 0.00674 

 
Jq: 0.839889 
Q: 0.016927 

 
Ja: 0.933452 

10  
J: 0.870916 

 
Jq: 0.825267 
Q: 0.014704 

 
Jq: 0.612275 
Q: 0.035813 

 
Ja: 0.2248 

12  
J: 0.852649 

 
Jq: 0.789036 
Q: 0.011473 

 
Jq: 0.620413 
Q: 0.031411 

 
Ja: 0.852649 

16 
 

J: 0.948346 
 

Jq: 0.790205 
Q: 0.015472 

 
Jq: 0.762799 
Q: 0.020872 

 
Ja: 0.8216 

21 

 
J: 0.811176 

 
Jq: 0.798206 
Q: 0.007485 

 
Jq: 0.0505199 
Q: 0.025378 

 
Ja: 0.5394 

Conclusion 

The Fourier descriptor-contour algorithm ran for hun-
dreds of milliseconds. The time depends on the complexi-
ty of the contour. However, the generated axes have a 
measure less than the reference axis measure, and in 
some cases are located much differently from the refer-
ence axes. It should be noted that such an axis can be 
used as an initial one for the refinement algorithm. 

Directly using the measure of asymmetry Q calculated 
by the Fourier descriptor-based contour method to esti-

mate Jaccard’s measure of the same axis should be con-
sidered separately. In our opinion, Jaccard’s measure is 
an objective, well interpreted, and clearly understood by 
human metric, which cannot be said about the measure Q. 
We analyzed the triples of Q, J, and Jq values for the 
same symmetry axis in different images. To represent the 
measure Q in the suitable scale of the Jaccard measure, 
we used an empirical conversion coefficient equal to 1 –
 10Q. Fig. 4 shows the triples for the 65 images, class 3. 
The reference measure J values are sorted in ascending 
order. Unfortunately, as can be seen from the diagrams 
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(see fig. 4), there is no clear relationship between the 
asymmetry parameter Q and the Jaccard’s symmetry 
measures calculated both for the axis detected by the con-
tour method (Jq) and for the reference axis (J ). 

 
Fig. 4. J, Jq, and (1 – 10  Q ) values for class 3 images. Sorted 

in ascending order by measure J 

The axis refinement algorithm based on skeletal prim-
itives subchains alignment offers better accuracy with 
slightly slower performance. Also, the result of the re-
finement greatly depends on the initial axis position. The 
disadvantage of both methods is the obvious slight inac-
curacy as a trade-off for performance, and the stochastic 
nature of the results. It is also worth considering that the 
algorithms use different approaches to symmetry axis de-
tection. The Fourier descriptor-based algorithm is a con-
tour method, while the axis refinement algorithm based 
on skeletal primitives subchains alignment uses the skele-
tal paradigm morphology. We assume that to solve the 
practical problems of reflection quasi-symmetry (asym-
metry) detection, categorization, and recognition, it 
would be best to apply the two approaches simultaneous-
ly. In this way, the accuracy will probably be improved, 
and the obvious individual faults of one of the methods 
will be compensated. 
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