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Abstract 

We propose a method of analysis of spontaneous emission of a quantum emitter (an atom, a 
luminescence center, a quantum dot) inside or in vicinity of a cylinder. At the focus of our 
method are analytical expressions for the scattering matrix of the cylindrical nanoobject. We 
propose the approach to electromagnetic field quantization based of eigenvalues and eigenvec-
tors of the scattering matrix. The method is applicable for calculation and analysis of spontane-
ous emission rates and angular dependences of radiation for a set of different systems: semicon-
ductor nanowires with quantum dots, plasmonic nanowires, cylindrical hollows in dielectrics 
and metals. Relative simplicity of the method allows obtaining analytical and semi-analytical 
expressions for both cases of radiation into external medium and into guided modes.  
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Introduction 

Modification and control of spontaneous radiation of 
quantum emitters is a hot topic of recent decades [1 – 12]. 
The aim of spontaneous emission manipulation can be 
achieved with the structures with cylindrical geometry 
which became technologically accessible and widely re-
searched. Such nanoobjects include semiconductor nan-
owires [5 – 9, 11 – 17], metallic wires with nanoscale di-
ameters [10], cylindrically perforated metals and dielec-
trics. Potential applications lay in the arear of single-
photon sources [1 – 3, 5, 6], plasmonic metamaterials and 
nanolasers. Theoretical understanding of spontaneous 
emission process in such structures is of crucial im-
portance. 

Initially the theoretical consideration of spontaneous 
emission in cylindrical structures was limited to the prob-
lem of mode excitation in cylindrical waveguides with 
approaches based on classical electrodynamics [18, 19]. 
There were several theoretical methods published which 
account for radiation from inside a cylinder into external 
medium [9, 20 – 24, 26 – 28]. Chu and Ho approximated 
the cylindrical waveguide with a rectangular Fabry–Perot 
resonator [20]; Nha and Jhe used electrodynamic Green’s 
function technique to calculate radiative-dumping con-
stant of a quantum emitter [21]; Żakowicz and Janowicz 
used decomposition into cylindrical modes and Fermi’s 
Golden rule with complicated mode quantization ap-
proach to resolve a problem of luminescence from dielec-
tric cylinder [22]; Søndergaard and Tromborg [23] used 
formalism of Green’s tensor and quantum-mechanical 
current operator to study spontaneous emission in active 
waveguides; Klimov and Ducloy [24] calculated radiation 

of a classical electric dipole near dielectric nanofiber; 
Fam Le Kien et al. [25] concentrated attention on emis-
sion into the fundamental HE11 mode of cylindrical die-
lectric waveguide. In the paper of A.V. Maslov, 
M.I. Bakunov, and C.Z. Ning [26] a method based on 
Fourier integrals [18, 19] is generalized to allow calcula-
tion of a dipole radiation intensity from inside a wave-
guide or a finite-length dielectric cylinder; Henderson et 
al. [27] made another approach to the problem of classi-
cal dipole radiation in vicinity of a waveguide. We re-
cently proposed a relatively simple method for calcula-
tion of spontaneous emission from dielectric nanowires 
which is limited to the case of radial light extraction (with 
no account for polarization mixing) [28]. 

Relatively recent advance in this field was made in 
the paper of Paniagua–Domínguez et al. [9] where exter-
nal radiation from a dielectric cylinder was treated using 
so called leaky modes, i.e. continuation of guided modes 
in the region where these modes acquire imaginary part 
of propagation wavenumber and become unconfined. The 
method of Ref. [9] exploits semi-phenomenological ap-
proach of a one-dimensional (1D) optical resonator and 
the induced 1D current to account for the nanowire finate 
length. In the framework of this approach the researchers 
examine analogy between Mie resonances and leaky 
modes [29] and apply their theory to model angular dis-
tribution of quantum-dot luminescence from nanowires 
[30]. In Refs. [31, 32] the emission from nanowire sys-
tems with metallic parts are considered.  

Despite the wealth of theoretical results on this sub-
ject and significant advances made, many researchers use 
purely numerical methods designed for calculation of a 
classical dipole radiation in arbitrary dielectric surround-
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ings. Such situation might be due to complexity of exist-
ing quantum-mechanical methods and leaves limited 
space to analytical interpretation of numerical and exper-
imental results. The aim of our work is to develop a rela-
tively simple, rigorous and universal theoretical method 
and present analytical and semi-analytical formulas for 
spontaneous emission in guided modes and external space 
for arbitrary position of a quantum emitter in a system 
containing a cylinder. In the center of our approach is an 
analytical expression of the optical scattering matrix of a 
cylinder which could be metallic or dielectric with arbi-
trary refractive index. We propose a relatively straight-
forward method of quantization of the modes radiating 
into external space and solve the problem analytically us-
ing eigenvalues and eigenvectors of the scattering matrix 
of the cylinder. The treatment of the guided modes is 
consistent with that for radiating modes and is based on 
the same principles. 

1. Optical scattering matrix of homogeneous cylinder 

In this work we consider a quantum emitter placed in 
an arbitrary point inside or outside of an infinitely-long 
cylinder with the radius 0. The external embedding medi-
um is characterized by the values of dielectric permittivity 1 
and magnetic permeability 1 at the emitter wavelength; and 
the cylinder is described by parameters 2 and 2. As a start-
ing point we consider the mode structure of classical elec-
tromagnetic fields in a system containing an infinite cylin-
der. Monochromatic electromagnetic fields can be expressed 
in a form Re{E (r) exp (– it)} where the real part is taken 
from the product of a coordinate-dependent complex- vector 
field E (r) and a time-dependent factor. If a structure pos-
sesses cylindrical symmetry in respect to the z axis, one may 
consider an electric field written in a cylindrical coordinate 
system (, , z) as E (r) = Em

 () exp(i [kzz + m]) where kz is 
the wavenumber of propagation along the symmetry di-
rection, m is an integer number standing for a photon an-
gular momentum. In this work we consider modes which 
freely propagate along z axis, hence kz is a real number. 

For the subsequent analysis the following dimention-
less parameters are important: 
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where k0
 =  / c is the wavevector of emitted light in vac-

uum, q is the size parameter, z̃ is dimensionless propaga-
tion number and x1(2) are external (internal) transverse 
wavenumbers 2 2

0i i i zk k k      multiplied by the radius 
0 of the cylinder. Although in this work we consider 
nonmagnetic materials, we keep magnetic permeabilities 
in following expressions for the sake of completeness 
presuming that their values are real and positive. The die-
lectric permittivities are presumed to be real and can have 
an arbitrary sign; a negative value of permittivity is re-
served for description of a metallic medium below plas-

mon resonance [10]. Thus, the dimensionless parameters 
x1, x2 can be either real or pure imaginary depending on 
the wavelength, the values of the propagating constant kz 
and the dielectric permitivities. In case the expression 
i i q2– z ̃2 is negative one should choose the value of the 
square root from the upper half of complex plain. 

The method which we develop in this paper allows to 
analyze several distinct types of structures and their oper-
ating regimes. The type I structure is characterized by the 
permittivity of the cylinder which is larger than the per-
mittivity of the surrounding medium 2

 > 1, both per-
mitivities are positive. This type of structure corresponds 
to semiconductor nanowires and nanopillars which can be 
considered dielectric at the wavelength of a quantum 
emitter. In this case parameter x2 is real and positive 
whereas x1 is imaginary for guided modes and real for the 
modes radiating in the external medium. 

We designate the opposite case 2
 < 1 as Type II 

structure; this model structure can be applied to cylindri-
cal hollows (2

 = 1 for air permittivity) etched in a dielec-
tric. In this case x1 is always real corresponding to the 
modes radiating into a surrounding dielectric whereas the 
parameter x2, which describes the internal field, can be 
ether real or imaginary. 

Our method will also allow to model metallic struc-
tures below plasmon resonance where either 2 or 1 are 
negative. The negative 2 and positive 1 (Type III struc-
ture) corresponds to metallic nanowires [10] whereas the 
opposite case (Type IV) can be used to model cylindrical 
hollows in a metallic film.  

If x1 is real, the field with fixed m and kz in the exter-
nal medium can be written as a superposition of converg-
ing and diverging propagating waves of TM and TE po-
larizations: 

 , ,
,
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m J J m J J m

J TM TE

A A   


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where /
/TM TEA   are constant amplitude coefficients; the 

plus (minus) superscript stands for diverging (converg-
ing) waves. The axial component of magnetic (electric) 
field in TM (TE) polarized cylindrical wave is zero; the 
explicit form of the dimensionless field profiles 

/
/ ,

ext
TM TE m

 E can be found in Appendix A, Eqs. (A1-2).  
If parameter x1 is imaginary the transverse wave-

number k1 is imaginary as well and the fields outside the 
structure are changing exponentially with the distance 
from the axis. For the general description of the external 
fields we can use Eq. (2) with the convention that for im-
aginary x1 plus (minus) superscripts stand for the fields 
exponentially increasing (decreasing) with the growth of 
the distance  from the structure axis; the field profiles 
for exponentially-changing waves are presented in Ap-
pendix A, Eqs. (A4-5). For physically meaningful guided 
modes exponentially increasing fields are absent.  

Due to the requirement of continuity of tangential 
components of electric and magnetic fields on the cylin-
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drical interface the four coefficients /
/TM TEA   are connected 

to each other. One can write the relation between the plus 
and minus coefficients of two different polarizations in 
the matrix form: 
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In this expression quantities r ̃ can be considered as 
analogues of reflection coefficients and the 2×2 matrix ŝ 
composed of these coefficients is a form of the scattering 
matrix written in a particular basis. Using continuity con-
ditions and the requirement of the finiteness of the fields 
on the structure axis we derived the explicit expression of 
the scattering matrix in a general form: 
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with the following designations introduced: 
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These expressions contain functions which are de-
fined differently for real and imaginary arguments. For 
real arguments these functions are: 
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where (1/2)
mH  are Hankel functions. For a pure imaginary 

argument x = i | x | these functions are defined as follows: 
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where Im and Km are modified Bessel functions. One can 
see that for zero photon angular momentum (m = 0) or for 
direction perpendicular to the structure axis (kz

 = 0, z̃ = 0) 
the scattering matrix is diagonal, which manifests ab-
sence of polarization mixing for such conditions [28]. 

In further analysis we would need to know a relation 
between the fields outside and inside the cylinder. The 
field inside the structure can be written as a superposition 
of field profiles of TM and TE polarizations:  

, , .Int Int Int
m TM TM m TE TE mB B E E E   (8) 

Explicit expressions of field profiles / ,
Int
TM TE mE  can be 

found in Appendix B, Eqs. (B1,2,5,6). We have found a 
matrix which connects internal-field coefficients BTM /TE 
to the external coefficients /TM TEA  of converging or ex-
ponentially decreasing waves: 
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Here we introduced designations for the functions 
 (1/2)

mZ x . For real arguments they coincide with the fol-
lowing Bessel functions: 

       ( ((1) 2)2) ,,m m m mZ x J x Z H xx   (10) 

and for imaginary x these designations stand for the mod-
ified Bessel functions: 

       (1) (2), .m mm mZ Zx xI x Kx    (11) 

Similarly to the scattering matrix, the matrix B̂̃Int is diag-
onal for m = 0 or kz

 = 0, z̃ = 0. 

2. Spontaneous emission of a quantum emitter 

Let us consider a quantum emitter placed at the point 
r0 with an optical transition characterized by the dipole 
matrix element dfi

 = |df i|ed (ed is a complex vector of opti-
cal-transition polarization). Spontaneous emission rate 
can be calculated using Fermi’s Golden Rule: 
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2
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p
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
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
 (12) 

where ħf i is the energy of the optical transition and 
Ep

 (r0) is the complex amplitude of the electric field of a 
quantized mode at the location of the emitter. The sub-
script p stands for the mode quantization numbers; the re-
al electric field of the mode is calculated as Re{Epexp (–
 ipt)}. The optical mode should be quantized and nor-
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malized so that the total electromagnetic energy inside a 
quantization volume is equal to the single photon energy 
ħp. Summation in Eq. (12) is taken over all possible 
quantized optical modes. 

It is natural for the considered problem to take quanti-
zation figure in a form of a cylinder which z axis coin-
cides with the symmetry axis of the structure; the radius 
R and the height Lz of the quantization cylinder are put to 
infinity at the final stage.  

On the top and bottom facets of a quantization cylin-
der the standard Born–von Karman periodic boundary 
condition can be used [20] which discretizes the propaga-
tion wavenumber kz or the parameter z̃. The differential of 
the mode number connected with the light propagation 
along the axis is 

.
2

z
z z

L
dN dk


 (13) 

In the expression (12) one can substitute summation 
over the discrete quantum number Nz with integration 
over the propagation wavenumber differential dkz. 

2.1. Radiation into external medium 

Emission of a quantum emitter into external medium 
can be analyzed as follows. If the conditions are such that 
the parameter x1 and the transverse wavenumber k1 are 
real (see Eq. (1)), the field outside the cylinder is a super-
position of converging and divergent cylindrical waves of 
TM and TE polarizations, Eq. (2). For spontaneous-
emission calculation a quantization procedure for such 
modes should be devised. 

We propose a simple and straightforward quantization 
condition: the electric field components tangential to the 
cylindrical surface of the quantization cylinder should be 
equated to zero. Such procedure has a distant analogy to 
quantization of electron-hole pairs in quasi-continuous 
part of spectrum (the Elliott formula). 

Let us introduce an auxiliary matrix: 
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where ŝ̃ can be obtained from the cylinder scattering ma-
trix ŝ Eqs. (3, 4) by multiplication of the lower row by –1. 
Using the relation between coefficients of convergent and 
divergent waves Eq. (3) and asymptotics of Hankel func-
tions at large arguments one can show that the require-
ment of zero transverse electric field components at the 
quantization cylindrical surface in the limit R  ∞ is 
equivalent to equality of the matrix M̂ eigenvalue to mi-
nus one: 
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where ̃ are the eigenvalues of the matrix ŝ̃: 
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In addition, for the quantized mode the pair of coeffi-
cients },{ TM TEA A   is an eigenvector of matrix M̂ and con-
sequently is an eigenvector of the modified scattering ma-
trix of the cylinder ŝ̃. This conclusion allows to obtain re-
lations between polarizations in the quantized radiating 
modes: 
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Coefficients for the divergent waves can be expressed 
through the coefficients of the convergent waves using 
the scattering matrix Eq. (3). Thus we show that the pro-
posed quantization procedure produces analytical expres-
sions for the polarization mode structure which depends 
on the cylinder reflection properties (the analytical ex-
pressions of r ̃coefficients for different types of cylinders 
were presented in the previous chapter, see Eq. (4, 8)). 

Let us analyze the obtained results. If the conditions 
are such that mixing of TM and TE polarizations are 
weak or absent (when m = 0 or the radiation propagates 
perpendicularly to the axis, i.e. kz

  0, z̃  0,    /2) then 
cross-coefficients go to zero rT̃MTE

  0, rT̃ETM
  0 and 
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Thus at weak mixing conditions the quantized mode 
corresponding to the eigenvalue ̃+ transforms into a pure 
TM mode, whereas ̃– modes approach TE modes. Such 
transformation is typical for a cylindrical waveguide 
mode: EH-modes approach pure TM modes and HE-
modes go to TE modes with the decrease of the wave-
guide dielectric contrast. Therefore we can label radiating 
modes at perpendicular propagation angle corresponding 
to ̃+ as EH (or TM-like) modes, and the quantized modes 
corresponding to ̃–can be considered as HE (or TE-like) 
modes. At an arbitrary propagation angle we choose the sign 
in Eq. (18) in such manner that the angular dependencies of 
̃+() are everywhere continuous. Considering Eq. (17) one 
can see that the expression (17a) can be more conveniently 
used for EH modes and expression (17b) suits HE modes 
since in this case correct polarizations are obtained in the vi-
cinity of the perpendicular propagation angle. Therefore we 
can state that another quantum number designating external 
radiative modes labels polarization and can be either EH or 
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HE corresponding to the different eigenvalues ̃+ of the 
modified scattering matrix. 

To be able to use these modes for spontaneous-emission 
calculation Eq. (12) one needs to normalize them: 
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where integration of electromagnetic energy density  
up(r) over the volume Vc of the quantization cylinder is 
performed (in this work the Gaussian unit system is 
used). In case of modes radiating into external space this 
integral goes to infinity with the increase of the size of 
quantization cylinder. Therefore, for normalization pro-
cedure we can consider the asymptotic form of cylindri-
cal waves at large distances which transform into local 
plain waves (see Appendix A, Eq. (A3)). Hence we ob-
tain the normalization condition 
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.pTM TE
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A A
x

L R
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 

  (20) 

In (20) it is presumed that any light absorption or genera-
tion in the cylindrical structure can be neglected. 

The quantization condition Eq. (15) can be analyzed 
as follows. In the absence of absorption or generation the 
absolute values of the modified scattering matrix eigen-
values are always equal to unity |̃|=1, which is the con-
sequence of the energy-flux conservation. Thus Eq. (15) 
imposes restriction on the phase of the complex number 
on the right hand side. When the quantization-cylinder 
diameter R is large the main contribution into phase var-
iation stems from the exponential factor whereas varia-
tion of the phase of the eigenvalue ̃ can be neglected. 
This gives us a quasi-discrete spectrum of the radiating 
modes, and the differential of the mode quantum number 
related to the transverse field distribution is: 
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As a result, the summation over photon modes in Fermi’s 
Golden Rule can be expressed as  
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A number of radiating modes with fixed m and polari-
zation J = EH / HE in an interval of photon energies 
[ħp, ħp

 + d(ħp)] can be written as: 
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where  is the angle between the symmetry axis and the 
propagation direction of cylindrical waves at large dis-

tances (tan  = x1/z̃ = , see Appendix A, Eq. (A3)). To ob-
tain the analogue of the photonic density of states Eq. 
(25) from Eq. (24) we used the dispersion relation be-
tween the light wavevector and frequency in the external 
medium 2 2

1 1 1 1 /z ck k k     with the help of 
which an area element in the {k1, kz} half-plane can be 
transformed 
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Rewriting Eq. (12) using Eqs. (20, 22, 23) we obtain 
the expression for the spontaneous emission rate Wrad into 
external radiating modes: 
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where the coefficients Cm were introduced (see Eq. (17)) 
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 (26) 

which stem from the mode normalization Eq. (19). 
One can see that Cm

 = 0 when the polarization mixing 
is absent. 

In Eq. (25) the quantity *
EH/HE,J mE  is a dimensionless 

electric-field profile of the quantized radiating mode of 
the structure. This complex vector field is formed as fol-
lows. For EH (HE) polarization one should put 1TMA   
( 1TEA  ) and the equation (17a) (equation (17b)) should 
be used for calculating another converging-wave coeffi-
cient. The coefficients of the outgoing cylindrical waves 
( TMA , TEA ) and of the field inside the cylindrical struc-
ture (BTM, BTE) are obtained using the matrix expressions 
Eq. (4) and Eq. (10) respectively.  Since the elements of 
the matrices ŝ and B̂̃Int were obtained analytically, one can 
find an analytic expressing for *

,J mE  in any point inside 
and outside the cylindrical structure and use it in Eq. (25) 
to calculate spontaneous emission of a quantum emitter 
placed at that point.  

One can see that parameters of quantization cylinder 
R and Lz do not enter the final expression Eq. (25). If the 
quantum emitter is placed on the cylinder axis, one 
should restrict angular momentum numbers to m = – 1, 0, 
1 because the modes with |m| >1 have zero electric field at 
the axis (see Appendix B). 
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2.2. Spontaneous emission into guided modes 

Let us consider the case when the parameter x1 is im-
aginary (or the transverse wavenumber k1 is imaginary, 
see Eq. (1)). This situation may occur for the nanowire 
(type I structure) in a waveguide regime or for the cylin-
drical hollow in a metal film (type IV structure). In this 
case the plus coefficients /TM TEA  in Eq. (2) at exponential-
ly increasing fields should be equal to zero. In the matrix 
form, Eq. (3), this condition is written as  

0
ˆ ,
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A
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
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 (27) 

and similarly for the modified scattering matrix ŝ̃. This 
leads to the requirement of degeneracy of the scattering 
matrices: 
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For the type I structure this condition reduces to the 
standard dispersion equation of the cylindrical wave-
guide. The equation (28) produces the dispersion depend-
ence between the mode frequency and the propagation 
wavenumber for a particular guided mode  with an an-
gular number m: 
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From such dispersion relations group velocities of guided 
modes can be found 
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The relations between external exponentially-
decreasing fields of different polarizations are defined by 
Eq. (27): 

,

.

TE
TE TM

TE

TM
M

TM

TE

TE

TM
T TE

TM

r
A A

r

r
A A

r

 



 



 

 






 (31) 

The fields inside the cylinder can be found from Eq. (10). 
The summation over guided modes in Eq. (12) takes 

the form: 
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where Eqs. (13) and (30) were used; ,
c
m   is the cut-off 

frequency of the guided mode. Normalization of the elec-
tromagnetic energy of a guided mode in a cylinder of 

height Lz leads to the following expression for the spon-
taneous emission rate into a particular guided mode with 
quantum numbers m and : 
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where H () is the Heaviside function, ,m
WG

E  is the mode 
electric field and 

 ,

0

, 2m mS du


       (34) 

is the normalization integral of the mode energy density 
Eq. (19b) over the plain perpendicular to the symmetry 
axis. In Eq. (34) the field profile ,m

WG
E  can be scaled arbi-

trary provided that that the same field is used in calcula-
tion of the energy density Eq. (19b), Eq. (34). For calcu-
lation of field profiles in an arbitrary point of the struc-
ture one can employ Eq. (2) for external fields and Eq. (9) 
for internal fields putting / 0TM TEA  ; the relation be-
tween coefficients /TM TEA  is fixed by Eq. (31) and the in-
ternal-field coefficients BTM / TE are given by the general 
matrix relation Eq. (10). 

3. Results and discussion 

We apply obtained theoretical results to calculate Pur-
cell factors for quantum emitters placed in GaN nan-
owires. The Purcell factor is defined as a ratio of the 
spontaneous emission rate of an emitter into a particular 
channel to the emission rate of that emitter placed into 
homogeneous bulk GaN. The refractive index of GaN is 
taken to be equal to 2.4 which approximately corresponds 
to the yellow-green region of the spectrum [33]. The 
emitter emission wavelength is taken to be 550 nm to 
simulate radiation of InGaN quantum dots [34]. The radi-
ating quantum dot is placed at the center of the nanowire; 
the length of the nanowire is considered to be large 
enough to apply an infinite waveguide approximation.  
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Fig. 1. Purcell factors of an InGaN quantum dot (emission 

wavelength 550 nm) placed in the center of a GaN nanowire as 
functions of nanowire diameter. In the left panel (a) the optical-

transition matrix element is directed along the nanowire axis 
(axial orientation); in panel (b) the matrix element is 

perpendicular to the axis (radial orientation) 

In Fig. 1 calculation of the Purcell factors for a InGaN 
quantum dot in a GaN nanowire (NW) is shown. In the 
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left panel the radiating optical transition is described by a 
linear dipole directed along the NW axis; in the right 
panel the direction of the dipole is perpendicular to the 
axis. The latter case can be considered as corresponding 
to the circularly-polarized transition or as a radiation of a 
linear dipole averaged by its direction perpendicular to 
the axis. One may see that both external and guided 
channels of radiation significantly influence the total 
spontaneous emission.  

Maxima in the external emission seen in Fig. 1 occur 
due to microcavity effect [35] or the Purcell enhancement 
induced by the light confinement in the lateral directions. 
One may see in Fig. 1 that distance between diameters at 
which maxima appear approximately coincide with the 
emission wavelength in the material of the cylinder (230 
nm in the considered example). In the simple case when 
an emitter is placed in the center of a one-dimensional 
(1D) Fabry-Perot cavity resonant conditions are satisfied 
when the length of the resonator is exactly equal to the 
odd number of half-wavelengths in the cavity material. 
The considered case of cylindrical geometry and the 
emitter which can radiate light at any angle is more com-
plicated than the 1D case. This can be seen in Fig. 1 
where Purcell enhancement peaks are broad and the posi-
tions of their maxima do not follow the simple Fabry-
Perot rule, but the tendency to have wavelength distance 
between maxima is recovered at larger diameters. 

As the diameter of the nanowire increases new guided 
modes appear and start to participate in the radiation pro-
cess. When the diameter exceeds the cut-off value the 
emission in that particular mode quickly reaches maxi-
mum but with further diameter increase the electric field 
of the guided mode at the cylinder axis decreases. Thus 
the decrease of the guided-mode confinement factor at 
the emitter position stipulates the decline of the mode in-
teraction with the emitter. 

In Fig. 1 one may see that emergence of new guided 
modes (TM-polarized for axial-dipole case and EH-
polarized for radial case) coincide with the decrease of 
the luminescence in radiative modes. In the axial-
transition case the diameter at which radiation in external 
space is maximal approximately coincides with that for 
guided-mode luminescence. 

Thus an important finding evident in our calculation 
results (Fig. 1) is a direct correlation between emission 
into external space and the waveguide emission. We 
would like to stress attention that our formalism of spon-
taneous emission into radiative modes summarized in the 
expression (25) does not contain any artificial provision 
for guided modes and their cut-off frequencies. There-
fore, the attained correlation between external and wave-
guide radiation is naturally embedded in our formalism 
and shows that the two parts of the developed theory are 
self-consistent.  

From Fig. 1b one may see that dependencies of the 
HE Purcell factors on diameter are qualitatively different 
from that for EH modes. Indeed, the radiation into HE-

polarized modes commences evenly starting from zero 
values at cut-off diameters whereas luminescence into EH 
modes shows threshold-like character at cut-off condi-
tions with an abrupt jump of the Purcell factor. This ef-
fect is due to different behavior of the group velocities of 
HE and EH modes at cut-off. 

Our results for GaN nanowires presented in Fig. 1b 
are qualitatively similar to purely-numerical calculations 
obtained by the J.M. Gerard scientific group for GaAs 
nanowires of finite length and radial dipole orientation, 
see Refs. [3, 6 – 8]. In the paper of Claudon et al. Ref. [6] 
in Fig. 1 numerical calculations of external and guided 
mode Purcell factors are shown and one can see sharp 
drop in the external emission at the cut-off diameter of a 
new guided mode. This behavior closely matches our 
semi-analytical calculations in Fig. 1b, although the au-
thors of Ref. [6] attribute the guided mode as HE12 
whereas we conclude that it is EH11 mode.  

In the limiting case of small diameters, the spontane-
ous emission is suppressed by dielectric screening of a 
dipole inside a nanowire [6-8, 18, 26]. In thin nanowires 
the analytical expressions for Purcell factors of axial (Pax) 
and radial (Prad) dipoles are known [26]: 
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For a GaN nanowire (the refractive-index value is 2.4) in air 
these Purcell factors are Pax

 = 0.417, Prad
 = 0.0365 and strong 

suppression of the radial-transition radiation is evident. 
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Fig. 2. (a) External-radiation Purcell factors from a GaN 

nanowire for smaller diameters shown in logarithmic scale; 
dashed horizontal lines correspond to Eq. (35) . The Purcell 

factor for a radial dipole radiation into the fundamental HE11 
mode is also shown. (b) External radiation factors as functions 
of the nanowire diameter for axial and radial optical-transition 

orientation 

In Fig. 2a the Purcell factors in smaller-diameter re-
gion are shown in logarithmic scale. One can see that our 
calculations exactly match the analytical values Eq. (35) 
when the diameter goes to zero (dashed lines in Fig. 2a). 
It can be seen in Fig. 2a that despite the existence of the fun-
damental HE11 mode in the small-diameter region the emis-
sion in that mode is negligible due to the weak light localiza-
tion inside NW. The onset of spontaneous emission into the 
fundamental HE11 mode happens when the nanowire diame-
ter exceeds the value of approximately 130 nm.  

In Fig. 2b external radiation factors are shown which 
are defined as ratios of a luminescence intensity in exter-
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nal space to the total luminescence intensity including ra-
diation in guided modes. One can see that the fraction of 
radiation that goes directly into surrounding space is al-
ways significant for axial optical transitions. This sug-
gests that one cannot limit consideration of the spontane-
ous emission process to guided modes in such material 
system. At small diameters there are no guided modes in-
teracting with the axial transition, thus all luminescence is 
transmitted by external radiating modes. At the same time 
the radial transition directs almost all its luminescence in 
external space despite the formal existence of the funda-
mental HE11 mode at small diameters (see Fig. 2a). It is 
evident that in the radial case the variation of the external ra-
diation factor is strong and diameter regions exist where rel-
ative external luminescence is either suppressed or en-
hanced; but the external radiation factor newer falls to zero 
value showing that it is not possible to direct total spontane-
ous emission in guided modes in the considered system.  
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Fig. 3. Angular dependence of spontaneous emission from GaN 
nanowires of different diameters D: 70 nm (I), 165 nm (II), 210 
nm (III), 285 nm (IV) and 325 nm (V). Black (gray) curves show 
normalized spontaneous emission rate inside a solid angle for 
axial (radial) dipole direction; dashed (dash-dotted) curves 

depict angular distribution of emission for an axial (averaged 
radial) dipole transition in bulk GaN. The panel (a) shows 

external-emission Purcell factors; arrows point the NW 
diameters under investigation  

In Fig. 3 we examine angular dependence of sponta-
neous emission of a quantum emitter placed in the center 
of a nanowire; the emission rates in particular solid an-
gles are normalized to the total emission rate of a dipole 
in air. It is evident that directionality of emission strongly 
depends on the nanowire diameter for both axial and ra-
dial dipole-transition orientations.  One may list the fol-
lowing findings: a) at NW diameters when the total ex-
ternal emission of the axial dipole reaches local maxima 
(panels (I) and (IV) in Fig. 3) the radiation of that type of 
optical transition has preferable direction perpendicular to 
the NW axis resembling the case of a dipole emission in 
homogeneous medium; b) when the NW diameter ap-
proaches the cut-off condition from below (panel (II) for 
TM mode interacting with the axial dipole and panel (IV) 
for EH11 mode interacting with the radial dipole) the 
spontaneous radiation of the corresponding optical transi-
tion becomes highly directional and the light tends to 
propagate at sharp angles to the NW axis; c) when the di-
ameter passes the cut-off (panels III and V) the angular 
distributions of emission intensity change abruptly 

switching from a highly directional regime to more ho-
mogeneous one. 

Conclusions 

We have developed a theoretical approach which al-
lows calculation and analysis of spontaneous radiation of 
a quantum emitter in a presence of a cylinder. The posi-
tion of the emitter can be arbitrary (inside or outside the 
cylinder) and the refractive index of the cylinder can ex-
ceed or be less than the refractive index of the surround-
ing medium. The dielectric permittivity of the cylinder or 
the medium in which it is placed can be negative as in the 
case of metals below plasmonic resonance. Therefore, our 
method allows modeling of spontaneous emission in a va-
riety of structures such as semiconductor nanowires, cy-
lindrical hollows in dielectric substrates, plasmon wave-
guides and metals with cylindrical perforation. Our meth-
od accounts for emission into external space as well as 
for radiation channeling into guided modes. 

We applied our method to investigation of spontane-
ous emission from GaN nanowires. We had researched 
dependence of Purcell factors on the nanowire diameter; 
comparison of the emission intensities into external me-
dium and into different guided modes was performed. We 
have found strong correlation between radiation in exter-
nal space and into guided modes. In particular, we have 
shown that when the values of parameters of the structure 
cross cut-off conditions for guided modes qualitative and 
abrupt quantitative changes in spontaneous emission oc-
cur. It is shown that directionality of spontaneous emission 
strongly depends on the diameter of the cylindrical structure. 
We demonstrate that the angular dependence of radiation in 
external space for diameters just below guided-mode cut-off 
is highly directional whereas above cut-off emission is 
channeled into a newly formed guided mode. 
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Supplementary А: Cylindrical waves outside a cylinder 

If the transverse wavenumber k1 and the parameter x1 are real (see Eq. (1)) the cylindrical waves in external medi-
um are propagating and the components of TM polarized waves are proportional to the following dimensionless field 
profiles:  
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where ̃ =  /0 is the distance from the symmetry axis reduced to the radius of the cylindrical structure. Hankel func-
tions of the first (second) kind enter expressions designated by plus (minus) superscript and stand for divergent (con-
vergent) waves.  

TE polarized waves have two nonzero electric components: 

       
( 1/

1

(1/2)
1/ /

, 1 ,
2)1 1

, .
2 2

Ext Ext
TE m TE

m
m m

x
i x

x

H
H m   

 


  


E E

 


 (A2) 

The asymptotic form of the cylindrical waves at large distances from the symmetry axis is: 
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where e is a unit vector corresponding to the spherical coordinate  . Thus at large distances from the axis and in local 
regions of space cylindrical waves transform into orthogonal plain waves. 

For imaginary k1 and x1 the TM-polarized field profile has a form: 
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where expressions with plus superscripts contain functions     (1)
m mZ x I x  which exponentially increase with the dis-

tance from the symmetry axis and waves with minus superscript contain exponentially decreasing functions 
   (2)

m mZ x K x  (see Eq. (12)). 
TE-polarized exponentially-changing electric fields are  
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At large distance from the axis Ẽ+/– exp(|x1| ̃) for both polarizations. 

Supplementary B: Cylindrical fields inside a cylinder 

If the value of parameter x2 is real (i.e. the internal transverse wavenumber k2 is real, see Eq. (1)) TM-polarized 
electric-field profile inside the cylinder can be written as: 
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where Jm is the Bessel function of the first order. The nonzero components of TE field are: 
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Let us consider electric field at the symmetry axis. Only TM polarized mode demonstrate nonzero axial electric field 
at the axis: 
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The nonzero radial electric field at the axis is present only for TM/TE modes with m = 1: 
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The modes with |m| >1 have zero electric field at the symmetry axis. 
The expression of TM-polarized field for imaginary x2 is 
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where only the modified Bessel function Im is preserved due to its finiteness at zero argument. 
The TE-polarized field inside the cylinder for imaginary x2 can be written as: 
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The electric fields at the axis for modes with imaginary x2 are similar to the aforementioned case of real x2.  
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