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Abstract 

In the conventional single-molecule localizations and super-resolution microscopy, the pixel 
size of a raw image is approximately equal to the standard deviation of the point spread func-
tion. Such a raw image is referred to herein as a conventional raw image, based on which better 
single molecule localization effect and efficiency can be achieved. It is found that both interpo-
lation and de-noising can effectively improve the Signal to Noise Ratio of the conventional raw 
image. The conventional raw image, the de-noised, the interpolated and the de-noised interpo-
lated are compared and analyzed and compressed sensing is used for super-resolution recon-
struction. The simulation results show that both the highest Signal to Noise Ratio and the best 
super-resolution reconstruction can be obtained by de-noising the interpolated conventional raw 
image. This method also renders the best super-resolution reconstruction and minimum gradient 
in the real experiment. De-noising the interpolated conventional raw image is an effective meth-
od to improve the super-resolution microscopy. 
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Introduction 

Optical microscopy imaging has several advantages 
such as magnification, real-time visualization and non-
invasive observation, making optical microscope a basic 
tool for cell research. Owing to the diffraction 
phenomenon, the point light source forms a diffuse spot 
(i.e., an Airy disc) on the focal plane, which is the point 
spread function (PSF) of the microscope. The diffraction 
limit restricts an optical microscope to resolve the 
subcellular organization and cell organelles. However, 
super-resolution microscopy (SRM) imaging based on 
fluorescent probes can observe the inside of cells and 
subcellular life activities. It breaks the diffraction limit 
and increases the imaging resolution [1 – 6].  

Super-resolution microscopy (SRM) techniques in-
clude single-molecule localization microscopy (SMLM), 
stimulated emission depletion microscopy (STED), struc-
tured illumination microscopy (SIM) and super-
resolution optical fluctuation imaging (SOFI), etc., 
among which SMLM achieves the highest resolution. 
SMLM methods include (fluorescence) photoactivated 
localization microscopy ((F)PALM), stochastic optical 
reconstruction microscopy (STORM), and DNA-based 
point accumulation for imaging in nanoscale topography 
(DNA-PAINT), etc[1 – 5, 7 – 9]. Since thousands frames 
of raw images in the same field of view are acquired for 
single molecule localization in SMLM, the temporal 
resolution of SMLM is very poor. Fluorescent molecules 
(fluorophores or emitters) must be sparsely activated in 
SMLM. If PSFs of some fluorescent molecules overlap, 
these fluorescent molecules will not be efficiently local-
ized [3, 4, 10 – 14].  

Compressed sensing (CS) can reconstruct the raw image 
with high density of fluorescent molecules. PSFs of fluores-
cent molecules can overlap in CS, greatly reducing the num-
ber of frames of the raw image required to reconstruct the fi-
nal super-resolution image. Thus the temporal resolution is 
much better than SMLM [13 – 16]. The CS mathematical 
model between a raw image and a super-resolution image is 
shown in Eq. (1). The vectors, y and x consist of column-
wise concatenations of the raw image and the super-
resolution image (i.e., pixelated original image) respectively. 
The measurement matrix A is subject to the PSF of the mi-
croscope. The acquired raw image corresponds to the ith col-
umn of A if only one molecule emits fluoroscopic photons at 
the position index i of x [13 – 16]. 

0min|| ||       s.t.      ,x y Ax  (1) 

where xRN, yRM, ARM×N, M < N, M and N are natu-
ral numbers. x is a vector containing N elements. y is a 
vector containing M elements. A is a matrix of size 
M × N. min||x||0 is a objective function. y = Ax is a con-
straint function. If the objective function is min||x||1 rather 
than min||x||0, Eq. (1) is transformed to a convex 
optimization problem. 

In conventional SMLMs, if the pixel size of the raw 
image is approximately equal to the standard deviation 
(s.d.) of the PSF, good and fast localization can be 
achieved. The existing research results show that 
interpolation can also improve the CS reconstruction [13, 
14, 17]. Interpolation based on the bicubic method can 
make the pixel size of the raw image become half of the 
original’s [14].  

Noise in the raw image is inevitable. Especially in 
low light environment, noise can almost drown the signal. 
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The noises of a raw image mainly include a shot noise 
following a Poisson distribution, a readout noise 
following a Gaussian distribution and a background. The 
reconstruction of CS is also restricted by noise [4, 12, 
17 – 19]. Large noise can even lead to reconstruction 
failure. Wide spectrum denoising (WSD) is a SRM de-
noising algorithm for various random noises, which helps 
improve the reconstruction of CS [18, 20]. Hereinafter, 
the raw image whose pixel size is approximately equal to 
the s.d is referred to as a conventional raw image (CR). 
CI is the interpolated CR. CW and CIW respectively 
represent the de-noised CR and CI with WSD. 

The denoising effect and CS reconstruction of CIW 
are studied in this paper, and they also compared with 
those of CR, CW and CI. It is found that both interpola-
tion and de-noising can effectively improve the Signal to 
Noise Ratio (SNR) of the CR and the highest SNR can be 
obtained by de-noising the CI. The simulation and real 
experimental results show that the best super-resolution 
reconstruction can be obtained by de-noising the CI. Thus 
de-noising the CI is an effective method to improve the 
super-resolution microscopy.  

1. Wide spectrum de-noising and quantitative 
evaluation 

WSD can effectively remove random noise such as 
Poisson and Gaussian noise from very low density to ul-
tra-high density fluorescent molecular distribution scenar-
ios. If the measurement matrix A is operated by orthogo-
nalization and normalization, the measurement matrix AO 
can be obtained. Row orthogonal normalization is an op-
eration in the matrix theory. It makes the rows of the ma-
trix completely orthogonal. Moreover, it makes the 2-
norm of each row of the matrix equal to 1. Through AO 
and A, the operator matrix T which is equivalent to the 
row orthogonal normalization operation can be obtained, 
where T = AOAT (AAT) –1. Therefore, y = Ax can be 
equivalently converted to Ty = TAx. If a singular value 
decomposition is applied to T, T = USVT. S is a diagonal 
sparse matrix that is composed of singular values of T. 
VT is a transpose matrix of V. Therefore, Ty = TAx can 
be equivalently converted to SVTy = SVTAx. Let 
z = SVTy. z’s elements greater than cri are set to cri. The 
new z is represented by zWSD. The threshold value cri is 
the largest absolute values of elements of z between the 
indices M×0.9 and M×0.95. The de-noised raw image is 
yWSD, yWSD

 = T –1UyWSD [18, 20]. 
SNR can indicate the overall quality of the de-noised 

raw image and the reconstructed super-resolution image 
[14]. Structural similarity index measure (SSIM) can 
measure the similarity between two images. The SSIM 
values range between 0 and 1. If the two images are iden-
tical, the value of SSIM is equal to 1[10, 21]. 
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where x is a true signal, xRN; ||||2 is the norm of a vector; 
and xR denotes the reconstructed signal corresponding x. 

    
1 2

2 2 2 2
1 2

(2 )(2 )
, ,x y xy

x y x y

c c
SSIM x y

c c
    


      

 (3) 

where x and x represent the mean and the variance of 
image x, respectively. xy represents the covariance of 
image x and y. c1

 = (k1L)2 and c2
 = (k2L)2. L is the dynamic 

range of pixel values. k1
 = 0.01, k2

 = 0.03.  

2. Interpolation and de-noising of simulated 
conventional raw images 

In real experiments, an inverted optical microscope 
with a 100× oil immersion objective lens (N.A. 1.40) was 
used. Tubulin of HeLa cells was stained with Alexa-647. 
The fluorescence wavelength was 670 nm. The fluores-
cent lights were acquired using an EMCCD. Twenty CR 
frames were collected. The PSF was a Gaussian function. 
The full width at half maximum (FWHM) of the PSF was 
239.286 nm. The same parameters were used in simula-
tion experiments. 

To be distinguished from the pixels of the CR, the 
pixels of the super-resolution image were referred to as 
grids. The super-resolution image’s grid was 1/8 of the 
pixel size of the CR. If the size of the CR was 7 × 7 pixels, 
it was located in the middle of the 64 × 64 grid super-
resolution image. The pixel size of the CI was 1/2 of the 
pixel size of the CR.  

To evaluate the de-noising performance of WSD for 
different molecular densities and pixel sizes for CR and 
CI, simulated CRs with known real molecular positions 
were generated. The simulation randomly placed K mole-
cules in a 64 × 64 grid region. K represented the sparsity 
in CS. K ranged from 1 to 16, with corresponding molec-
ular densities from1.869 to 30 m2. The grid size was 
11.43 nm. The effective pixel size of the CR, 45.714 nm, 
matched the pixel size of the microscope setup and was 
roughly equal to half of the s.d. of the PSF of the setup. 
The size of the CR was 7 × 7 pixels in the middle of the 
64 × 64 grid super-resolution image. The simulation was 
for a photon number of 3,000 per molecule and a uniform 
background of 16 photons per pixel. Poisson noise and 
Gaussian noise (Gaussian noise variances of 0.01 and 
0.0025) were added to each CR frame. The size of the CI 
was 13×13 pixels. 

Fig. 1 is mean SNRs of 500 frames of CR and CI before 
and after de-noising. For each K, the simulation was repeat-
ed 500 times as shown in Fig. 1. CI is the CI. CW and CIW 
respectively represent the CW and CI with WSD. 

The de-noising performance analysis curves are 
shown in Fig. 1a and b. Both interpolation and de-noising 
can effectively improve the SNR of the CR. The highest 
SNR can be obtained by de-noising the CI. In Fig. 1a for 
the high noise environment (Gaussian noise with a vari-
ance of 0.01), the SNR of the CI is lower than that of the 
CW. In Fig. 1b for the low noise environment (Gaussian 



http://www.computeroptics.ru journal@computeroptics.ru 

616 Computer Optics, 2023, Vol. 47(4)   DOI: 10.18287/2412-6179-CO-1272 

noise with a variance of 0.0025), the SNR of the CI is 
almost the same as that of the CW.  
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Fig. 1. Comparison of mean SNRs based on 500 simulated CRs 
before and after interpolation and de-noising. The simulation 

is for a photon number of 3,000 per molecule and a background 
of 64 photons per pixel. Poisson noise and Gaussian noise are 
added to each frame of the CR. The y axis is labeled as SNR 

(dB). The x axis is labeled as both molecular density and signal 
sparsity. a) Gaussian noise variance of 0.01, b) Gaussian noise 

variance of 0.0025 

Figs. 2 and 3 are one simulation of Fig. 1a at K equal 
to 4. Fig. 2a is the true super-resolution image containing 
four fluorescence molecules. Fig. 2b is the noisefree CR 
corresponding to Fig. 2a. Fig. 2c is the noisefree CI.  

a)   b)   

c)  
Fig. 2. Comparison of the true super-resolution image, the 

corresponding simulated noisefree CR and the corresponding 
simulated noisefree CI. a) 4 molecules, b) noisefree CR, 

c) noisefree CI 

Fig. 3a is the CR after adding background, Poisson 
noise and Gaussian noise with variance of 0.01 to Fig. 2b. 
Fig. 3b is the CW. Fig. 3c and d are respectively interpo-
lated Fig 3a and de-noised Fig. 3c. SNRs of the CR and 
CI after de-noising is improved by 2.485 dB and 
1.814 dB respectively. 

3. Simulation data analysis 

To evaluate the CS reconstruction for CIW, 20 frames 
of simulated super-resolution image with known true mo-
lecular positions and their corresponding CR frames were 
generated. The simulation randomly placed molecules in 
a grid region. The molecular density was 6.304 m –2.  

Fig. 4a is a CR frame without noise. Fig. 4b is a CI 
frame without noise. Fig. 4c is the true super-
resolution image.  

a)  b)   c)   d)  
Fig. 3. Comparison of the CR (Gaussian noise with a variance of 0.01), the CW, the CI, and the CIW. The numbers indicate SNR 

(dB) of the images a) CR 14.421 dB, b) CW 16.906 dB, c) CI 16.366 dB, d) CIW 18.18dB  

a)   b)   c)  
Fig. 4. Comparison of the simulated noisefree CRs, the corresponding simulated noisefree CI, and the true super-resolution image, 

Scale bars: 1 μm. a) noisefree CR, b) noisefree CI, c) True Super 
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Raw 

a)   b)   c)   d)  
Super 

e)   f)   g)   h)  
Fig. 5. Comparison of the simulated (interpolated) CR (Gaussian noise with a variance of 0.01) and the corresponding 

superresolution images before and after de-noising. The upper row is one frame of CR and CI before and after de-noising. The lower 
row is the final super-resolution images corresponding to the upper row. The number pairs indicate SSIM and SNR (dB) of the 

images. Scale bars: 1 μm. a) CR (0.312, 7.059 dB), b) CW (0.452, 11.397 dB), c) CI (0.25, 8.615 dB), d) CIW (0.325, 10.791 dB), 
e) CR, f) CW (0.574, –2.093 dB), g) CI, h) CIW (0.671, –2.021 dB) 

Raw 

a)   b)   c)   d)  
Super 

e)   f)   g)   h)  
Fig. 6. Comparison of the simulated (interpolated) CR (Gaussian noise with a variance of 0.0025) and the corresponding 

superresolution images before and after de-noising. The upper row is one frame of CR and CI before and after de-noising. The 
second row is the final super-resolution images corresponding to the upper row. The number pairs indicate SSIM and SNR (dB) 

of the images. Scale bars: 1 μm. a) CR (0.45, 12.261 dB), b) CW (0.547, 15.86 dB), c) CI (0.373, 13.873 dB), d) CIW (0.433, 
15.977 dB), e) CR, f) CW (0.637, –1.76 dB), g) CI (0.779, –1.68 dB), h) CIW (0.796, –1.411 dB) 

Fig. 5a is one CR frame after adding background, 
Poisson noise and Gaussian noise with variance of 0.01 to 
Fig. 4a. Fig. 5b is the CW frame corresponding to Fig. 5a. 
Fig. 5c and d respectively are the CI and the CIW frames. 
SNRs of Fig. 5b and d increased by 4.338 dB and 
2.176 dB than Fig. 5a and c. SSIMs of Fig. 5b and d in-
creased by 0.14 and 0.075 than Fig. 5a and c. 

The lower row of Fig. 5 is the final super-resolution 
image reconstructed by CS. SSIM and SNR of Fig. 5h 
reached the maximum, respectively 0.671 and – 2.021 dB. 
The cell microtubule structure is clearer and thinner. SSIM 
and SNR increased by 0.097 and 0.072 dB respectively 
compared with Fig. 5f. The CS reconstruction of Fig. 5e 
and g failed. No valid microtubule structures can be seen. 
Although some scattered structures can be seen in Fig. 5g, 
the result is too poor to be useful. The microtubule 
structure of the rectangle area in Fig. 5h is cleaner than that 

in Fig. 5f. All three microtubules are clearly identifiable in 
Fig. 5h. However, only two microtubules can be seen 
clearly in Fig. 5f. Therefore, the CS reconstruction of 
Fig. 5h is the best.  

Fig. 6a is one CR frame after adding background, 
Poisson noise and Gaussian noise with variance of 0.0025 
to Fig. 4a. SNRs of Figs. 6b and d respectively increased 
by 3.599 dB and 2.104 dB than Figs. 6a and c. SSIMs of 
Figs. 6b and d respectively increased by 0.097 and 0.06 
than Figs. 6a and c. 

The second row of Fig. 6 is the final super-resolution 
image reconstructed by CS. SSIM and SNR of Fig. 6(h) 
reached the maximum, respectively 0796 and – 1.411 dB. 
The cell microtubule structure is clearer and thinner. 
SSIM and SNR increased by 0.159 and 0.349 dB respec-
tively compared with Fig. 6f. SSIM and SNR are better 
than Fig. 6g, too. The CS reconstruction of Fig. 6e failed. 
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No valid microtubule structures can be seen. The area be-
tween microtubules in the rectangular area in Fig. 6h has 
almost no discrete points, which is cleaner than that in 
Fig. 6f and g. Therefore, the CS reconstruction of Fig. 6h 
is the best. 

4. Real experimental data analysis 

Fig. 7 shows the real experimental CR and CI before 
and after de-noising and the corresponding CS 
reconstruction results. Fig. 7a – d of the upper row is CR 
and CI frames before and after de-noising. Since the real 
raw image cannot be known, the sum of the absolute 
values of the horizontal and vertical gradients of the raw 

image is used as an indicator of measuring the de-noising 
effect. The gradients of CR, CW, CI, and CIW were 
7.458×105, 7.146×105, 4.25×105 and 3.974×105 
respectively. Through comparison of the images, it is 
obvious that the raw image after denoising is smoother 
than that before denoising, indicating prominent de-
noising effects. 

Comparing the CS reconstruction results of CR, CW, 
CI and CIW in the lower row, we can see noticeably 
improved spatial resolutions of CI and CIW and clearer, 
thinner cell microtubule structure. The super-resolution 
reconstruction of Fig. 7f is the worst, and Fig. 7g is the 
second-worst. 

Raw 

a)   b)   c)   d)   e)  
Super 

f)   g)   h)   i)   j)  
Fig. 7. Comparison of the experimental (interpolated) CR and the corresponding final super-resolution images before and after 
denoising. (a)-(d) of the upper row is one frame of the experimental CR and CI before and after de-noising. The number indicate 

gradient of the images. (f)-(i) of the lower row is corresponding final super-resolution images before and after denoising, 
respectively. (e) and (i) is plots of photon-count profiles obtained by measurements made along the red lines in (h)-(i). The maximum 
wave peak is 4300. Scale bars: 1 μm. a) CR 7.458×105, b) CW 7.146×105, c) CI 4.25×105, d) CIW 3.974×105, e) CI-profile, f) CR, 

g) CW, h) CI, i) CIW, j) CIW- profile 

The peaks in Fig. 7e and j correspond to the photon-
count profiles at the red line in Fig. 7h and i. The highest 
peak value is 4300. The peak in Fig. 7j is thinner and less 
than Fig. 7e. Therefore, the super-resolution reconstruc-
tion of Fig. 7i is the best.  

Conclusion 

In the conventional single-molecule localizations and 
super-resolution microscopy, the pixel size of a raw 
image is approximately equal to the standard deviation of 
the point spread function. Both interpolation and de-
noising can effectively improve the SNR of the CR. It is 
found that the highest SNR and minimum gradient can be 
obtained by de-noising the CI. In the high noise 
environment, the SNR of the CI is lower than that of the 
CW and the CI cannot achieve effective super-resolution 
reconstruction, while in the low noise environment, the 
SNR of the CI is almost the same as that of the CW. The 
simulation and real experimental results show that the 
best super-resolution reconstruction can be obtained by 
de-noising the CI. In conclusion, de-noising the CI is an 
effective method to improve the super-resolution 
microscopy. 

Acknowledgements 

The work was funded by Guangxi National Natural 
Science Foundation (2022GXNSFAA035593), Nation-
al Natural Science Foundation of China (81660296, 
41461082). 

References 

[1] Gabitto MI, Marie-Nellie H, Pakman A, Pataki A, Darzacq 
X, Jordan MI. A Bayesian nonparametric approach to 
super-resolution single-molecule localization. Ann Appl 
Stat 2021; 15(4): 1742-1766. DOI: 10.1214/21-
AOAS1441. 

[2] Nevskyi O, Tsukanov R, Gregor I, Karedla N, Enderlein J. 
Fluorescence polarization filtering for accurate single 
molecule localization. APL Photon 2020; 5(6): 061302. 
DOI: 10.1063/5.0009904. 

[3] Costello I, Cox S. Analysing errors in single-molecule 
localisation microscopy. Int J Biochem Cell Biol 2021; 
27(2): 105931. DOI: 10.1016/j.biocel.2021.105931. 

[4] Rimoli CV, Valades-Cruz CA, Curcio V, Mavrakis M, 
Brasselet S. 4polar-STORM polarized super-resolution 
imaging of actin filament organization in cells. Nat 
Commun 2022; 13(1): 301. DOI: 10.1038/s41467-022-
27966-w. 



Super-resolution microscopy based on interpolation and wide spectrum de-noising  Cheng T., Chenchen T.  

Компьютерная оптика, 2023, том 47, №4   DOI: 10.18287/2412-6179-CO-1272 619 

[5] Kwon J, Elgawish MS, Shim SH. Bleaching-resistant 
super-resolution fluorescence microscopy. Adv Sci 2022; 
9(9): 2101917. DOI: 10.1002/advs.202101817. 

[6] Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, 
Mhlanga MM. QuickPALM: 3D real-time photoactivation 
nanoscopy image processing in ImageJ. Nat Methods 2010; 
7(5): 339-340. DOI: 10.1038/nmeth0510-339. 

[7] Kozma E, Kele P. Fluorogenic probes for super-resolution 
microscopy. Org Biomol Chem 2019; 15(17): 215-233. 
DOI: 10.1039/c8ob02711k. 

[8] Chung J, Jeong U, Jeong D, Go S, Kim D. Development of 
a new approach for low-laser-power super-resolution 
fluorescence imaging. Anal Chem 2021; 101(94): 618-627. 
DOI: 10.1021/acs.analchem.1c01047. 

[9] Jeong D, Kim D. Super-resolution fluorescence 
microscopy-based single-molecule spectroscopy. Bulletin 
of the Korean Chemical Society 2022; 43(12): 316-327. 
DOI: 10.1002/bkcs.12471. 

[10] Roa C, Le VND, Mahendroo M, Saytashev I, Ramella-
Roman JC. Auto-detection of cervical collagen and elastin 
in Mueller matrix polarimetry microscopic images using. 
Biomed Opt Express 2021; 12(4): 2236-2249. DOI: 
10.1364/BOE.420079. 

[11] Holden SJ, Uphoff S, Kapanidis AN. DAOSTORM: an 
algorithm for high-density super-resolution microscopy. Nat 
Methods 2011; 8(4): 279-280. DOI: 10.1038/nmeth0411-279. 

[12] Junhong M, Cédric V, Hagai K, Lina C, Nicolas O, 
Seamus H, Suliana M, Chul YJ, Michael U. FALCON: fast 
and unbiased reconstruction of high-density super-
resolution microscopy data. Sci Rep 2014; 4(4): 4577. 
DOI: 10.1038/srep04577. 

[13] Zhu L, Zhang W, Elnatan D, Huang B. Faster STORM 
using compressed sensing. Nat Methods 2012; 9(7): 721-
723. DOI: 10.1038/nmeth.1978. 

[14] Cheng T, Chen DN, Yu B, Niu HB. Reconstruction of 
super-resolution STORM images using compressed 
sensing based on low-resolution raw images and 
interpolation. Biomed Opt Express 2017; 8(5): 2445-2457. 
DOI: 10.1364/BOE.8.002445. 

[15] Arjoune Y, Kaabouch N, Ghazi HE, Tamtaoui A. A 
performance comparison of measurement matrices in 
compressive sensing. Int J Commun Syst 2018; 31(2): 
e3576. DOI: 10.1002/dac.3576. 

[16] Calisesi G, Ghezzi A, Ancora D, D'Andrea C, Valentini G, 
Farina A, Bassi A. Compressed sensing in fluorescence 
microscopy. Prog Biophys Mol Biol 2022; 60(6): 66-80. 
DOI: 10.1016/j.pbiomolbio.2021.06.004. 

[17] Thompson RE, Larson DR, Webb WW. Precise nanometer 
localization analysis for individual fluorescent probes. 
Biophys J 2002; 43(82): 2775-2783. DOI: 10.1016/s0006-
3495(02)75618-x. 

[18] Cheng T, Chen DN, Li H. Wide spectrum denoising 
(WSD) for superresolution microscopy imaging using 
compressed sensing and a high-resolution camera. J Phys 
Conf Ser 2020; 1651: 012177. DOI: 10.1088/1742-
6596/1651/1/012177. 

[19] Beier HT, Ibey BL. Experimental comparison of the high-
speed imaging performance of an EM-CCD and sCMOS 
camera in a dynamic live-cell imaging test case. PLoS 
ONE 2014; 18(9): e84614. DOI: 
10.1371/journal.pone.0084614. 

[20] Cheng T. Wide spectrum denoising method for 
microscopic images. US Patent 16845110 of July 2, 2022. 

[21] Lee G, Oh JW, Her NG, Jeong WK. DeepHCS ++ : 
Bright-field to fluorescence microscopy image conversion 
using multi-task learning with adversarial losses for label-
free high-content screening. Med Image Anal 2021; 70: 
101995. DOI: 10.1016/j.media.2021.101995. 

 
 

Authors’ information  

Tao Cheng, Doctor of Technical Sciences, Professor, Professor of School of Mechanical and Automotive Engineer-
ing of Guangxi University of Science and Technology. Research interests: medical imaging and image processing. He is 
also the corresponding author of this paper. E-mail: ctnp@163.com . 

 
Chenchen Tao, Master's student of School of Foreign Studies of Guangxi University of Science and Technology. 

Research interests: microscopy and image processing. She is also the corresponding author of this paper. E-mail: 
taochenchen621@126.com . 
 
 

Received January 6, 2023. The final version – February 20, 2023.  
 
 


