
Uncertainty-based quantization method for stable training of binary neural networks Trusov A.V., Putintsev D.N., Limonova E.E.

Компьютерная оптика, 2024, том 48, №4 DOI: 10.18287/2412-6179-CO-1427 573

Uncertainty-based quantization method
for stable training of binary neural networks

A.V. Trusov 1,2,3, D.N. Putintsev 2,3, E.E. Limonova 2,3
1 Moscow Institute of Physics and Technology (National Research University),

141701, Russia, Dolgoprudnii, Institutskiy per. 9;
2 Federal Research Center “Computer Science and Control” of Russian Academy of Sciences,

19333, Russia, Moscow, Vavilova str. 44, corp. 2;
3 LLC “Smart Engines Service”,

117312, Russia, Moscow, prospect 60-letiya Oktyabrya 9

Abstract

Binary neural networks (BNNs) have gained attention due to their computational efficiency.
However, training BNNs has proven to be challenging. Existing algorithms either fail to produce
stable and high-quality results or are overly complex for practical use. In this paper, we introduce a
novel quantizer called UBQ (Uncertainty-based quantizer) for BNNs, which combines the
advantages of existing methods, resulting in stable training and high-quality BNNs even with a
low number of trainable parameters. We also propose a training method involving gradual network
freezing and batch normalization replacement, facilitating a smooth transition from training mode
to execution mode for BNNs.

To evaluate UBQ, we conducted experiments on the MNIST and CIFAR-10 datasets and
compared our method to existing algorithms. The results demonstrate that UBQ outperforms
previous methods for smaller networks and achieves comparable results for larger networks.

Keywords: binary networks, neural networks training, quantization, gradient estimation,
approximation.

Citation: Trusov AV, Putintsev DN, Limonova EE. Uncertainty-based quantization method for
stable training of binary neural networks. Computer Optics 2024; 48(4): 573-581. DOI:
10.18287/2412-6179-CO-1427.

Introduction

Nowadays, artificial neural networks (ANNs) are
widely used in various applications. They are ranging
from large-scale language models [1] and image-
generation networks [2] with billions of parameters that
require specialized servers, to small and fast networks for
character recognition [3] designed to run on mobile and
embedded devices. The latter case, involving small
networks on edge devices, is particularly interesting for
practical applications. For instance, a real-time document
recognition system running on a mobile phone [4] may
utilize ANNs to compute patch descriptors for template-
matching [5], localize and recognize text characters [6],
and perform other small tasks. In order for the system to
work effectively on a mobile phone, the networks must
be small enough to avoid RAM overflow during
execution and prevent an undesired increase in the size of
the mobile application. Additionally, they must be fast
enough to meet the real-time operation requirements.
Other systems that require fast and lightweight ANNs
include autonomous driving [7], internet of things (IoT)
applications [8], and even medical diagnostics [9].

One approach to making an ANN faster and smaller
in terms of memory involves replacing its 32-bit weights
with discrete integer values, a process known as network
quantization [10]. The extreme form of quantization is
binarization, which provides binary neural networks

(BNNs), where the only possible values for weights and
activations (layer inputs) are – 1 and 1. In this case, a
network occupies 32 times less memory than its real-
valued counterpart. Moreover, BNNs allow for the
computation of dot products, which are the main building
blocks of matrix multiplications and convolutions (which
are the most computationally expensive operations in
modern ANNs), using simple bitwise operations, bit-
counts, and additions [11]. These operations are
significantly simpler and faster from a hardware
perspective compared to multiplications or multiply-
accumulate operations used in real-valued networks. As a
result, BNNs can be efficiently implemented on various
computing devices such as FPGAs [12], GPUs [13], and
CPUs [14]. BNNs can be applied to many tasks, which
rely on computationally-demanding ANNs, including but
not limited to: image recognition [11], semantic
segmentation [15], and speech recognition [16].

It is worth noting that BNNs are not the only
multiplication-free networks. Ternary neural networks,
where weights and activations are constrained to the set
{– 1, 0, 1}, can also be efficiently implemented using
bitwise operations [17]. There are variations of binary
and ternary neural networks where only weights are
quantized and the activations remain floating-point [18,
19]. There are also variations where inputs and weights
are binary for each layer of the network, but a floating-
point skip-connection exists around the layer [20].

https://www.computeroptics.ru journal@computeroptics.ru

574 Computer Optics, 2024, Vol. 48(4) DOI: 10.18287/2412-6179-CO-1427

Finally, there are neural networks with completely
different models of neurons, such as AdderNet [21] that
computes L1-distance between the input and the weights
instead of dot-product, and a Bipolar morphological
network that computes sums and maximums in the
inner-most loop of matrix multiplication and may use
fast approximations of non-linear functions like
exponent and logarithm [22]. However, all of these
methods are less computationally or memory-efficient
than pure BNNs. Therefore, this paper is dedicated to
the training of pure BNNs.

Training Binary Neural Networks (BNNs) and other
few-bit quantized networks is a more challenging task
compared to training floating-point networks. The main
difficulty arises from the fact that the standard gradient
descent optimization method, based on error back-
propagation, is not directly applicable due to the nature of
the binarization function (sign function, which has zero
derivative at each point except for zero, where it is non-
differentiable). To address this problem, the common
solution is to use the straight through estimator (STE),
which involves computing the sign function as is during
the forward pass and using a piecewise differentiable
approximation (e.g., hardtanh (x) = min (1, max (– 1, x))
function) during the backward pass to compute gradients
[23]. This simple solution has been shown to work
surprisingly well when training BNNs from scratch [24].

Unfortunately, STE method has its own limitations. It
leads to weights oscillation around zero, resulting in
frequent sign changes and slower and less stable training
[25]. It also causes gradient mismatch, when the gradients
in the backward pass disagree with function in the
forward one [26]. In contrast to STE, quantization
methods, based on smooth approximations of the sign
function [27] (e.g. tanh (vx)  sign (x), if v  ∞ [28]), do
not suffer from gradient mismatch. These methods
provide a way to convert floating-point model to binary
smoothly by gradually adjusting of approximation
accuracy. Such training is usually faster and more stable
compared to STE. However, it introduces a gap between
the binary model and its smooth approximation, leading
to optimization objective mismatch [29]. While there are
more complex approaches to training BNNs, such as
minimizing quantization error [11] or using Bayesian
learning rules [30], this paper focuses primarily on STE
and smooth quantization due to their ease of
implementation and satisfactory results in terms of
quality (in comparison to other methods) [24, 28].

Despite the existence of various training methods for
BNNs, there is still a significant accuracy gap between
full precision (floating-point) ANNs and BNNs with the
same architecture. This is why BNNs are mainly studied
in academic settings, unlike 8-bit quantization, which is
widely used in practice [31] and natively implemented in
popular machine-learning frameworks like PyTorch [32]
or Keras [33]. However, recent studies have shown that
by adjusting the network structure, BNNs can outperform

ANNs under the same computational budget [34]. This
means that a more accurate BNN with more parameters
and operations can fit into the same computational budget
as its floating-point counterpart. This makes BNNs
interesting not only from a theoretical perspective but
also from a practical standpoint, especially for devices
that do not support floating-point multiplications. That
why is stable and accurate algorithms for BNN training
are of great interest.

In this paper we propose a new method for training
BNNs from scratch. Our method can be viewed as an
extension of smooth quantization methods but it has
several important differences:

• It relies on uncertainty-based activations (see
Section 3.1), which provide a more accurate smooth
approximation of a sign function and helps us to
improve the performance of the BNNs.
• It uses stochastic binarization with STE as a
regularization technique, which helps us to minimize
the mismatch between the BNN and its
approximation, and leads to better performance.
• During training, it replaces the standard batch
normalization [35] technique with a simpler
intermediate module. It simplifies the transition to
binary inference, where there is no batch
normalization at all.
To evaluate our proposed model, we trained three

small Convolutional Neural Networks (CNNs) on the
MNIST dataset [36] and three larger CNNs from the
VGG family [37] on the CIFAR-10 dataset [38]. We
compared our training method with STE [39] and smooth
self-binarization methods [28] empirically. The results of
our experiments confirm that our method combines the
strengths of both approaches: the stable training of
smooth binarization and the direct transition to binary
inference of the STE-based methods. Our method also
achieves higher accuracy compared to STE, especially on
models with a small number of parameters.

1. Preliminaries

Our method of stable training binary neural network
is majorly inspired by commonly-used Straight Through
Estimator [39] and soft quantization methods [28, 29].
However, before going into the details let us first
formalize what a BNN is, what the quantizers are and
how they allow for training of BNNs.

1.1. BNN

As we mentioned above, a binary neural network is an
ANN, in which weights and activations (layer inputs) are
binary (i.e. belong to the set {– 1, 1}). Such networks
consists of binary layers. Each binary layer takes a binary
vector as an input, computes dot-products with binary
weights using bit-wise operations and sums the
intermediate results in integer accumulators. After that,
those integer results are binarized using sign function and
passed to the next binary layer.

Uncertainty-based quantization method for stable training of binary neural networks Trusov A.V., Putintsev D.N., Limonova E.E.

Компьютерная оптика, 2024, том 48, №4 DOI: 10.18287/2412-6179-CO-1427 575

It is important to note, that the input and the output of
a network can be non-binary vectors. In the image
classification task, an input is an image, which is usually
interpreted as a real-valued array, and the output is real-
valued class confidences. For example, to build such a
network we can binarize the input by a certain threshold
for the first layer, and use integer results of binary dot-
product as an input of softmax function in the last layer.
However, the first and the last layer are usually easy-to-
compute, because there are few channels in the input, in
comparison to the rest of the network. That is why they
are usually, preserved in real-valued form (not binarized).
It allows for higher accuracy and simpler training, at the
cost of negligible performance overhead [11]. Such
networks with almost all binary layers are usually also
referred to as BNNs.

1.2. BNN inference

Let us start with a description of computations in
already trained BNN.

The core operation in a linear layer, whether it is
fully-connected or convolutional, is a dot product which
can be represented as:

=1

= ,
N

i i
i

z x w (1)

where xi and wi are the input and weight values
respectively, and z is an output, which will further
undergo non-linear activation (binarization for BNNs).

In the case of a binary neural network, the dot products
can be computed using XNOR (exclusive NOR) and
bitcount operations [11]. The XNOR operation compares
each bit of the input and weight values, returning 1 if they
are both 1 or both 0, and 0 otherwise. Thus,

= 1 = 1,i i i ix w x w  

where ix and iw are the binary encodings of input xi and
weight wi (e.g. = 2i ix x , since { 1,1}ix  ).

The bitcount operation counts the number of 1 bits.
Therefore, equation (1) can be rewritten as:

= 2 bitcount (,) ,z N  x w  (2)

where  stands for bit-wise XNOR operation over binary
vectors x and w , and N is the number of elements in
those vectors.

After the dot product is computed, the result (integer
value z) is binarized according to a certain threshold b,
which can be seen as an addition of an integer bias,
followed by binarization with the sign function. Thus, the
output value (y) of a binary layer can be computed as:

1, if 2 (,) 0
= .

1, otherwise

b N
y

    



 x w 
 (3)

Having the equation for the dot product, we can
compute matrix multiplications in fully-connected layers

and convolutions in convolutional layers. With some
additional tricks (special reordering, 16-bit accumulators
for sums, vector operations, etc.), they can be efficiently
implemented on different computing devices [12 – 14].
We will keep in mind the implementation [40] and
remember that a layer in the trained BNN should have
binary input, binary weights, integer bias, and no
floating-point operations. Fig. 1a demonstrates how
trained BNN layer works.

1.3. Quantizers and BNN training

The equation (3) involves operations over discrete
values. So, in that formulation, a BNN cannot be trained
using gradient descent. That is why during training,
quantizers are required. Quantizers are the modules of a
neural network that map real-valued input to the discrete
quantized set. They can have their own adjustable
parameters [41].

In this paper, we will consider quantizers in a broader
sense: a quantizer is a module of a neural network that
approximates quantization (in our case, binarization)
operation and allows for error backpropagation.

Another useful module for neural network training is
batch normalization [35]. Let us remind that it is a linear
transformation of a vector:

2
ˆ = ,i i

i

i

x
x


  

  
 (4)

where ˆix is the normalized value of the i-th element of
the input vector x,  and 2 are estimated mean and
variance,  and  are trainable parameters, and  is a
small constant added for numerical stability.

The combination of quantizers and batch
normalization allows for the creation of a trainable BNN
block, as shown in Fig. 1b. Now let us show how
quantizers work in different BNN training algorithms.

a)

b)
Fig. 1. BNN layer structure in the execution and training

modes. (a) Execution mode, (b) training mode

https://www.computeroptics.ru journal@computeroptics.ru

576 Computer Optics, 2024, Vol. 48(4) DOI: 10.18287/2412-6179-CO-1427

1.3.1. STE

The most commonly used quantizer is STE. It
computes the sign function in the forward pass:

1, if 0 ,
= STE() = sign() =

1, otherwise.

x
y x x




 (5)

Here and later in the article, we consider sign (0) = 1
(not 0), so that the output is binary. The forward pass
described above is used in modern BNNs [24, 42], while
earlier versions used a more complex stochastic scheme
involving sampling from a Bernoulli distribution:

old= STE () =

1, if with probability hardsigmoid()
,

1, otherwise

y x

x
 

 (6)

where hardsigmoid (x) = max(0, min(1, (x + 1) / 2)) [18,
39]. Although this complication does not seem to be
necessary for BNNs to achieve high quality, we will use a
similar approach as a regularization (see Section 2.2).

In the backward path, the gradient is computed as if in
the forward pass there was a piecewise differentiable
function, such as hardtanh [24, 39], AproxSign [20], or
any other appropriate approximation [42] of sign.

The major strengths of STE quantizer are the ease of
its implementation, direct correspondence of a forward
pass to that of BNN in evaluation mode (linear operation
over binary values), and the fact that it achieves
acceptable quality [24]. Its main weaknesses are unstable
training caused by frequent sign changes of weights and
the gradient mismatch [25].

1.3.2. Self binarizing quantizer

The self-binarizing quantizer (SBQ) was proposed by
Lahoud et al. [28] to achieve smooth quantization of BNN.

In the forward pass, the SBQ computes the function

= SBQ() = tanh(),y x x (7)

where v is a hyperparameter that controls the
approximation of the sign function. By increasing the
value of v, the output of the SBQ approximates the sign
function. During training, v is gradually increased.

In the backward pass, the gradient is computed using
the derivative of tanh (vx), which is v (1 – tanh2 (vx)). So,
there is no gradient mismatch like in STE. Moreover, the
weights do not oscillate around zero and the training is
more stable.

Unfortunately, there is no direct correspondence
between the training and evaluation mode with SBQ
quantizer [29], so there is a gap in quality. Also, there is a
mismatch of optimization objectives in the early (when v
is low) and late (when v is large) stages of training, so the
resulting quality might be lower than expected.

1.4. Transaction from training to evaluation

To convert a neural network from training mode to
evaluation mode (see Fig. 1), one needs to apply

quantization (5) to the weights. Then, Quantizer1 is no
longer required. Quantizer2 is replaced by a sign
function (5).

After that, the only remaining excess module is batch
normalization. Some authors do not consider the presence
of a few floating-point operations as a problem and
preserve batch norm as is [11, 39]. Lahoud et al. [28]
noticed that batch normalization followed by the sign
function can be replaced with integer bias addition
followed by sign multiplication by the sign of  in equation
(4). We would like to point out that the latter multiplication
is also excessive and this sign can be “folded” into the
signs of corresponding weights and biases, similar to the
“folding” of the batch normalization layer during 8-bit
quantization in the work of Benoit et al. [31]. In Section
2.3, we propose an alternative to standard batch
normalization simplifying the transformation even further.

Thus, the transformation of a BNN layer from training
mode to integer-only inference is completed.

2. Uncertainty based quantization

To overcome the weaknesses and combine strengths
od STE and SBQ quantizers, we propose our own
quantizer and BNN trainig procedure which are described
in this section.

2.1. Uncertainty-based quantizer

The key feature of our quantized is uncertainty-based
activation:

tanh(), if ,
(,) =

sign(), otherwise,

x
u

x u u
x

    


 (8)

where the real value u[0, 1] denotes uncertainty of the
input x,  is a threshold at which smooth quantization
switches to a hard one (we use  = 10 – 5), and  is a small
enough value added for numerical stability (we set
 = 10 – 7). If uncertainty u is below the threshold , the
error gradient is no longer propagated through this
activation (which may happen only for a part of the input
vector, since  (x, u) is an element-wise operation).

It may seem that we reinvented SBQ with v = (u + ) – 1
(see eq. (7)), and with an additional threshold , but the
major difference is how we compute u. This process
varies for weight and activation quantizers (Quantizers 1
and 2 in Fig. 2 respectively).

We define the uncertainty of a real variable t[0, 1] as
ut

 = 1 – t2. If t =  1, we are certain of its value (u = 0), and
if t is close to zero, uncertainty is close to one – we are
not certain, if it should be – 1 or + 1 in a trained BNN.
For a sum of variables

=1
=

N
ii

T t ,

uncertainty is defined as the mean uncertainty of the
variables:

Uncertainty-based quantization method for stable training of binary neural networks Trusov A.V., Putintsev D.N., Limonova E.E.

Компьютерная оптика, 2024, том 48, №4 DOI: 10.18287/2412-6179-CO-1427 577

2
=1 =1

1
= () / = 1

N N
T i ii i

u u t N t
N

  .

Thus, we can compute uncertainty for a dot-product in
BNN (1):

2 2

=1

1
= 1 .

N

z i i
i

u x w
N

  (9)

In the case when only weights of a layer are binary (for
example, in the input layer with non-binary the input):

2

=1

1
= 1 .

N

z i
i

u w
N

  (10)

We call the latter case BWN (Binary Weight
Network) mode.

Now, for a BNN layer to work, we need weights and
uncertainties for the weight quantizer. To that end, we
denote inner (hidden) vector of weights as v (trainable
parameters); and inner (hidden) vector of uncertainties as
 (they are sampled from a normal distribution (0, 1));
these values do not change during training;  is single
adjustable value per layer that controls the uncertainty.
Then, the uncertainties of weights are computed as:

= (),w ii
u     (11)

where (ꞏ) denotes the sigmoid function: (t) = et /(et + 1).
Thus, the forward pass through BNN with our

quantizer works as follows:
1. Compute weight uncertainties uw

 (, ) using eq. (11).
2. Compute weights using quantizer w =  (v, uw)
using eq. (8).
3. Compute dot-products in matrix multiplication or
convolution z (x, w) using eq. (1).
4. Compute batch normalization ˆ()z z using eq. (4).
5. Compute uncertainty uz(x, w) using eq. (9) or (10).
6. Finally, compute output ˆ= (,)zy z u using (8).
Usually, there are multiple layers in a neural network.

Thus, there are many adjustable parameters . We initially
set their values to 8, so that uw is very close to 1. Then we
gradually (linearly) decrease them during training. When the
value of  in the layer reaches – 12, the layer is considered
“frozen”, and it is converted to evaluation mode. Moreover,
we set the “freezing” speed of different layers so that the
upper layers of the network are “frozen” prior to the bottom
layers and so that the bottom layers have some time to adapt.
This is similar to the sequential quantization of a neural
network demonstrated in [43].

2.2. STE as regularization

One possible disadvantage of SBQ and our proposed
Uncertainty Based Quantizer (UBQ) is that during
training, some weights and activations may appear to be
close to zero. The network may adapt so that those values
are expected to be close to zero and during binarization,
the quality will drop. To prevent this from happening, we
introduce STE-regularization.

After the output of a quantizer y = (x, u) is
computed according to (8), a fixed part p[0, 1] of its
output is randomly binarized according to (6). In the
backward pass, the binarization is completely ignored,
and the network is trained as if quantization was
smooth. It means that the 1– p part of weights is trained
using smooth quantization, while the p part is trained
using STE.

This approach can be viewed as an analog of dropout
regularization [44], as it serves the same goal –
preventing a network from adapting to certain features.
Here, we use the term “regularization” in a broad sense –
as a method of preventing a network from overfitting (not
only to the traning data but to hidden representation as
well). As dropout regularization prevents complex co-
adaptations of neurons in ANNs, our regularization
prevents their adaptation to close-to-zero inputs, which
only exist in the training stage.

2.3. Alternative normalization

As we mentioned above, binarizing the batch
normalization layer may be a bit tricky. To simplify it we
introduce the following procedure.

We start with standard batch normalization (4). After
a few epochs of training, we replace it with simpler
normalization:

2
ˆ = | |,i i

i

i

x b
x


 

  
 (12)

where b is fixed (not learnable) integer bias,  is a
trainable floating-point parameter,  is a small constant
added for numerical stability, and finally 2 is a running
mean for (x + b)2 (which is a sort of a biased variance).

The transaction from that normalization to the trained
BNN layer is extremely simple: b becomes the bias of the
network, and the rest of the normalization is omitted
because multiplication by positive value does not affect
the sign function.

The transaction from standard batch norm to our is as
follows:

2
2 2= , =| |, sign()b

  
       



and the weights of the layer are element-wise multiplied
by the corresponding value of sign (i).

3. Experiments

We evaluated STE, SBQ, and the proposed UBQ
quantizers on MNIST handwritten digits [36] and
CIFAR-10 images [38] datasets. These datasets pose 10-
class image classification problems. We train several
neural networks to solve them and compare the
recognition accuracies of the networks, trained by
different methods.

In our neural networks, all the layers except the first
and the last one are binary. As we mentioned in Section

https://www.computeroptics.ru journal@computeroptics.ru

578 Computer Optics, 2024, Vol. 48(4) DOI: 10.18287/2412-6179-CO-1427

1.1, it is a common practice, that does not significantly
affect the performance of ANN. That is why such
networks can be seen as representative examples of
BNNs used in practical computer vision tasks.

Our networks take a digital image (as 3-dimentional
real-valued array) as an input and compute real-valued
class confidences for that image.

3.1. Neural networks

We used two families of networks in our work. First
are small convolutional networks used for training on
MNIST. Their architecture is presented in Fig. 2a.
Convolutional layers conv1 and conv2 also have output
stride 2. Convolutional layers and fully-connected layer
fc1 are binary, while the last layer has real-valued
weights (a common practice for better convergence).

For CIFAR-10 we used VGG-like [37] models
similar to Small VGG of LQ-Nets [41]. Their
architecture is shown in Fig. 2b. In those models, an
input of each convolutional layer is padded by one pixel
to preserve size, and pool denotes the max-pooling
layer. Once again, the last layer has real-valued weights,
and convolutional layers conv1-conv5 are binary. But,
here the first (conv0) layer has real-valued input and
binary weights (BWN mode).

It is worth mentioning that in our work both MNIST
CNNs and CIFAR-10 VGGs do not have layers with both
real-valued input and weights, thus they can run in
multiplication-free mode (if we do not consider sign
inversion a multiplication). The major amount of
computations of such networks lies within convolutional
layers thus they are computationally efficient.

a)

b)
Fig. 2. Architectures of the considered networks

The number of neurons in tree CNNs and tree VGGs is
presented in Tab. 1 and 2 respectively. Tab. 3 represents the
number of learnable parameters in all the networks.

Tab. 1. The number of neurons in MNIST CNNs

 conv1 conv2 fc1
cnn1 16 32 64
cnn2 32 64 128
cnn3 64 128 128

Tab. 2. The number of neurons in CIFAR-10 CNNs

 conv0 conv1 conv2 conv3 conv4 conv5
vgg/16 32 32 64 64 128 128
vgg/4 64 64 128 128 256 256
vgg 128 128 256 256 512 512

Tab. 3. The number of trainable parameters in the networks

cnn1 cnn2 cnn3 vgg/16 vgg/4 vgg
52.7K 208K 561K 308K 1.19M 4.66M

3.2. Experimental setup
3.2.1. MNIST

MNIST is a dataset of handwritten digits represented
as single-channel images with a resolution of 28×28.
During training, we applied random rotations of up to 9
degrees and random shifts by  2 as augmentations. We
also binarized the input by applying a threshold of 0.22
(considering pixel values in [0, 1] interval).

We trained our networks for 200 epochs using the
Adam optimizer [45] with a batch size of 100 and varying
learning rates.

For the SBQ quantizer, we exponentially increased
the parameter  from 1 at the beginning to 1000 as
suggested in the original paper [28].

For UBQ, we trained the network for 30 epochs and
then replaced batch normalization as described in Section
2.3. After that, we gradually decreased the  values in the
layers so that the conv1, conv2, and fc layers were frozen

at epochs 132, 158, and 173, respectively. For cnn2 and
cnn3, the epochs for freezing were 149, 168, and 173.
During the experiments with various learning rates, p was
set to 0.2. During the experiments with various values of
p, the learning rate was set to 10– 3.

3.3. CIFAR-10

For CIFAR-10, which consists of 3-channel 32×32
images in 10 classes, we used simpler augmentations:
random horizontal flips and random shifts by  4
pixels. We trained all the networks using the Adam
optimizer with a learning rate of 10– 3 for all methods,
for 500 epochs, with a batch size of 256. The settings
for SBQ were the same as in the MNIST experiments.
For UBQ, batch normalization was replaced at the 50th
epoch. The frozen epochs for all the networks were
320, 365, 388, 410, 455, and 478 for the convolutional
layers conv0 – conv5, respectively. The parameter p
was set to 0.1.

3.4. Experimental results

We conducted 5 experiments (training a BNN from
scratch each time) for each neural network and
parameter setting.

Tab. 4 represents a series of experiments with our
quantizer with different values of the parameter p (the
part of the STE-binarized values in the quantizer). We
can see that increasing p to some point helps to improve
the accuracy of the result. However, a very high value of
p results in lower accuracy. The latter is likely a result of
the less stable training process caused by STE. Thus we
recommend setting p in the range of 0.1 – 0.2.

Tab. 5 represents a series of experiments with all the
quantizers and different learning rates. We report the
highest , median, and the lowest accuracies for each

experiment. We can see that higher learning rates result

Uncertainty-based quantization method for stable training of binary neural networks Trusov A.V., Putintsev D.N., Limonova E.E.

Компьютерная оптика, 2024, том 48, №4 DOI: 10.18287/2412-6179-CO-1427 579

in better accuracies. That is likely a result of using the
Adam optimizer, which attentively decreases the learning
rate for the weights with often gradient direction change
(which happens in BNNs, especially with STE quantizer,
at the end of the training process), thus eliminating the
need to decrease the learning rate manually.

Tab. 4. The results using the UBQ on MNIST with varying p.
The median accuracy over 5 experiments, %

p
 BNN

0.02 0.05 0.1 0.2 0.5

 cnn1 97.60 97.98 98.08 98.10 98.05
 cnn2 98.68 98.75 98.78 98.72 98.65
 cnn3 98.88 98.97 99.00 99.02 99.00

Tab. 5. The results on MNIST with varying learning rate. The highest (upper), the median (middle), and the lowest (lower)

obtained accuracy, %

BNN
lr

 Quant.
10– 4 2ꞏ10– 4 5ꞏ10– 4 10– 3 2ꞏ10– 3

cnn1

 STE
97.67

86.29
96.29

98.04

92.70
95.76

98.00

95.99
97.50

97.99

95.99
97.50

97.91

92.23
97.69

 SBQ
95.49

87.32
89.19

97.06

88.86
96.88

97.07

88.70
96.26

97.26

94.09
96.42

93.30

90.98
91.89

 UBQ (ours)
97.52

97.02
97.26

97.76

97.43
97.60

98.17

97.79
97.93

98.33

98.02
98.07

98.35

97.99
98.10

cnn2

 STE
98.66

96.39
98.19

98.58

97.23
98.04

98.88

97.96
98.72

98.98

97.81
98.70

98.88

98.49
98.78

 SBQ
97.14

88.28
96.25

97.65

96.69
97.31

98.38

97.28
97.93

98.48

98.27
98.40

98.13

97.89
98.07

 UBQ (ours)
98.51

98.27
98.33

98.61

98.41
98.50

98.77

98.58
98.66

98.89

98.76
98.82

98.95

98.79
98.86

cnn3

 STE
98.79

98.64
98.76

98.96

98.62
98.86

99.14

98.82
99.00

99.22

98.49
98.95

99.08

99.00
99.05

 SBQ
97.75

96.78
97.56

98.25

96.64
97.96

98.96

98.66
98.81

99.02

98.75
98.99

98.99

98.63
98.84

 UBQ (ours)
98.87

98.57
98.69

98.92

98.68
98.82

99.02

98.85
98.94

99.03

98.84
98.99

99.15

98.84
98.99

Tab. 6 demonstrates the results of the three considered
quantizers on the CIFAR-10 dataset. We also report the
highest , median, and the lowest accuracies. From

Tables 5 and 6, we can see that the proposed method
noticeably outperforms both STE and SBQ for smaller
networks (cnn1-2, vgg / 16, and vgg / 4). For larger
networks, it shows results comparable (or maybe slightly
lower than STE). Generally, we believe that the latter is a
result of the experiment setup: we trained all the networks

for a fixed number of epochs (500 for CIFAR-10). STE
increased its score during the whole training, while SBQ
and our OBQ methods increased the accuracy in the
beginning and then started to decrease it when the
networks were binarized. It can be seen on training plots
(see Fig. 3), showing the median score and score range
during training. So more training at the high weight
uncertainty stage may have helped our method to achieve
higher than STE results.

Tab. 6. The results on CIFAR-10. The lowest (left) , the median (middle), and the highest (right) obtained accuracy %

Quant
 BNN

STE SBQ UBQ (ours)

 vggb16 60.36 67.9665.41 32.99 41.4039.11 70.47 70.9370.70

 vggb4 69.70 78.0974.56 59.83 67.2163.12 75.70 77.1676.35

 vgg 78.85 82.0581.22 73.68 76.1675.43 79.76 80.4180.05

Tabl. 5 – 6 as well as Fig. 3 also suggest that our
method is the most stable one, as the deviation between
the highest and the lowest accuracies in 5 experiments is
lower for our method.

Conclusion

In this paper, we have introduced a novel quantizer
called UBQ (Uncertainty-based quantizer) for binary

neural networks. UBQ combines the advantages of both
STE and SBQ, resulting in stable training and high-
quality BNNs even with a low number of trainable
parameters. We have also proposed a training method that
involves gradual network freezing and batch
normalization replacement, which is suitable for UBQ
and facilitates a smooth transition from training mode to
execution mode for BNNs.

https://www.computeroptics.ru journal@computeroptics.ru

580 Computer Optics, 2024, Vol. 48(4) DOI: 10.18287/2412-6179-CO-1427

a) b)
Fig. 3. Training curves of the considered quantizers on CIFAR-10. (a) VGG / 16 (b) VGG

To evaluate the performance of UBQ, we conducted
experiments on the MNIST and CIFAR-10 datasets. We
trained six different convolutional neural networks with
binary layers to solve image classification tasks, using
UBQ, STE and SBQ methods. After that, we compared
the recognition accuracies. The results demonstrate that
UBQ outperforms both methods for smaller networks and
achieves comparable results to STE for larger networks.

In terms of future work, there are several directions that
can be explored. This includes adapting UBQ parameters
(such as freezing time and p) for different tasks and neural
networks, experimenting with dynamic weight uncertainty
(which is currently manually controlled in UBQ), and
applying UBQ ideas to other quantized networks, such as
ternary networks. Additionally, it would be interesting to
evaluate UBQ against other BNN training algorithms and on
a broader variety of tasks.

References

[1] Hoffmann J, Borgeaud S, Mensch A, et al. An empirical
analysis of compute-optimal large language model
training. Adv Neural Inf Process Syst 2022; 35: 30016-
30030.

[2] Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B.
High-resolution image synthesis with latent diffusion
models. Proc IEEE/CVF Conf on Computer Vision and
Pattern Recognition 2022: 10684-10695.

[3] Ilyuhin SA, Sheshkus AV, Arlazarov VL. Recognition of
images of korean characters using embedded networks. Proc
SPIE 2020; 11433: 1143311. DOI: 10.1117/12.2559453.

[4] Bulatov K, Arlazarov VV, Chernov T, Slavin O, Nikolaev D.
Smart IDReader: Document recognition in video stream, 2017
14th IAPR Int Conf on Document Analysis and Recognition
(ICDAR) 2017: 39-44. DOI: 10.1109/ICDAR.2017.347.

[5] Sheshkus A, Chirvonaya A, Arlazarov VL. Tiny CNN for
feature point description for document analysis: approach
and dataset. Computer Optics 2022; 46(3): 429-435. DOI:
10.18287/2412-6179-CO-1016.

[6] Chernyshova YS, Chirvonaya AN, Sheshkus AV.
Localization of characters horizontal bounds in text line
images with fully convolutional network. Proc SPIE 2020;
11433: 114333F. DOI: 10.1117/12.2559449.

[7] Liang T, Bao H, Pan W, Pan F. ALODAD: An anchor-free
lightweight object detector for autonomous driving, IEEE
Access 2022; 10: 40701-40714. DOI:
10.1109/ACCESS.2022.3166923.

[8] Sivapalan G, Nundy KK, Dev S, Cardiff B, John D. Annet:
a lightweight neural network for ecg anomaly detection in
iot edge sensors. IEEE Trans Biomed Circuits Syst 2022;
16(1): 24-35. DOI: 10.1109/TBCAS.2021.3137646.

[9] He Z, Zhang X, Cao Y, Liu Z, Zhang B, Wang X. LiteNet:
Lightweight neural network for detecting arrhythmias at
resource-constrained mobile devices. Sensors 2018; 18(4):
1229. DOI: 10.3390/s18041229.

[10] Gholami A. Kim S, Dong Z, Yao Z, Mahoney MW, Keutzer
K. A survey of quantization methods for efficient neural
network inference. In Book: Thiruvathukal GK, Lu Y-H,
Kim J, Chen Y, Chen B, eds. Low-power computer vision.
New York: Chapman and Hall/CRC; 2022: 291-326.

[11] Rastegari M, Ordonez V, Redmon J, Farhadi A. XNOR-
Net: Imagenet classification using binary convolutional
neural networks, In Book: Leibe B, Matas J, Sebe N,
Welling M, eds. European conference on computer vision.
Cham: Springer International Publishing AG; 2016: 525-
542. DOI: 10.1007/978-3-319-46493-0_32.

[12] Moss DJ, Nurvitadhi E, Sim J, Mishra A, Marr D,
Subhaschandra S, Leong PH. High performance binary neural
networks on the Xeon+FPGA™ platform. 2017 27th Int Conf
on Field Programmable Logic and Applications (FPL) 2017:
1-4. DOI: 10.23919/FPL.2017.8056823.

[13] He S, Meng H, Zhou Z, Liu Y, Huang K, Chen G. An
efficient GPU-accelerated inference engine for binary
neural network on mobile phones. J Syst Archit 2021; 117:
102156.

[14] Zhang J, Pan Y, Yao T, Zhao H, Mei T. daBNN: A super
fast inference framework for binary neural networks on
arm devices. Proc 27th ACM Int Conf on Multimedia
2019: 2272-2275.

[15] Frickenstein A, Vemparala M-R, Mayr J, Nagaraja N-S,
Unger C, Tombari F, Stechele W. Binary DAD-Net:
Binarized driveable area detection network for autonomous
driving. 2020 IEEE Int Conf on Robotics and Automation
(ICRA) 2020: 2295-2301.

[16] Xiang X, Qian Y, Yu K. Binary deep neural networks for
speech recognition. INTERSPEECH 2017: 533-537.

[17] Alemdar H, Leroy V, Prost-Boucle A, Pétrot F. Ternary
neural networks for resource-efficient AI applications. 2017
Int Joint Conf on Neural Networks (IJCNN) 2017: 2547-2554.

[18] Courbariaux M, Bengio Y, David J-P. BinaryConnect:
Training deep neural networks with binary weights during
propagations. Proc 28th Int Conf on Neural Information
Processing Systems (NIPS'15) 2015; 2: 3123-3131.

[19] Liu B, Li F, Wang X, Zhang B, Yan J. Ternary weight
networksю ICASSP 2023-2023 IEEE Int Conf on
Acoustics, Speech and Signal Processing (ICASSP) 2023:
1-5. DOI: 10.1109/ICASSP49357.2023.10094626.

Uncertainty-based quantization method for stable training of binary neural networks Trusov A.V., Putintsev D.N., Limonova E.E.

Компьютерная оптика, 2024, том 48, №4 DOI: 10.18287/2412-6179-CO-1427 581

[20] Liu Z, Wu B, Luo W, Yang X, Liu W, Cheng K-T. Bi-Real
Net: Enhancing the performance of 1-bit cnns with
improved representational capability and advanced training
algorithm. Proc European Conf on Computer Vision
(ECCV) 2018: 722-737.

[21] Chen H, Wang Y, Xu C, Shi B, Xu C, Tian Q, Xu C.
AdderNet: Do we really need multiplications in deep
learning? Proc IEEE/CVF Conf on Computer Vision and
Pattern Recognition 2020: 1468-1477.

[22] Limonova EE. Fast and gate-efficient approximated
activations for bipolar morphological neural networks.
Informatsionnye Tekhnologii i Vychslitel'nye Sistemy
2022; 2: 3-10. DOI: 10.14357/20718632220201.

[23] Bengio Y, Léonard N, Courville A. Estimating or
propagating gradients through stochastic neurons for
conditional computation. arXiv Preprint. 2013. Source:
<https://arxiv.org/abs/1308.3432>.

[24] Bethge J, Yang H, Bornstein M, Meinel C. Back to simplicity:
How to train accurate bnns from scratch? arXiv Preprint.
2019. Source: <https://arxiv.org/abs/1906.08637>.

[25] Bulat A, Tzimiropoulos G. XNOR-Net++: Improved
binary neural networks. arXiv Preprint. 2019. Source:
<https://arxiv.org/abs/1909.13863>.

[26] Xu Z, Lin M, Liu J, Chen J, Shao L, Gao Y, Tian Y, Ji R.
ReCU: Reviving the dead weights in binary neural
networks. Proc IEEE/CVF Int Conf on Computer Vision
2021: 5198-5208.

[27] Gong R, Liu X, Jiang S, Li T, Hu P, Lin J, Yu F, Yan J.
Differentiable soft quantization: Bridging full-precision
and low-bit neural networks. Proc IEEE/CVF Int Conf on
Computer Vision 2019: 4852-4861.

[28] Lahoud F, Achanta R, Márquez-Neila P, Süsstrunk S. Self-
binarizing networks. arXiv Preprint. 2019. Source:
<https://arxiv.org/abs/1902.00730>.

[29] Yang J, Shen X, Xing J, Tian X, Li H, Deng B, Huang J, Hua
X-s. Quantization networks. Proc IEEE/CVF Conf on
Computer Vision and Pattern Recognition 2019: 7308-7316.

[30] Meng X, Bachmann R, Khan ME. Training binary neural
networks using the bayesian learning rule. Int Conf on
Machine Learning (PMLR) 2020: 6852-6861.

[31] Jacob B, Kligys S, Chen B, Zhu M, Tang M, Howard A,
Adam H, Kalenichenko D. Quantization and training of
neural networks for efficient integer-arithmetic-only
inference. Proc IEEE Conf on Computer Vision and
Pattern Recognition 2018: 2704-2713.

[32] Paszke A, Gross S, Massa F, et al. PyTorch: An imperative
style, high-performance deep learning library. Proc 33rd
Int Conf on Neural Information Processing Systems
(NIPS'19) 2019: 8026-8037.

[33] Keras: Simple. Flexible. Powerful. 2023. Source:
<https://keras.io>.

[34] Xue P, Lu Y, Chang J, Wei X, Wei Z. Fast and accurate
binary neural networks based on depth-width reshaping.
Proc AAAI Conf on Artificial Intelligence 2023; 37:
10684-10692.

[35] Ioffe S, Szegedy C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
Proc 32nd Int Conf on on Machine Learning (ICML'15)
2015; 37: 448-456.

[36] LeCun Y. The mnist database of handwritten digits. 1998.
Source: <http://yann.lecun.com/exdb/mnist/>.

[37] Simonyan K, Zisserman A. Very deep convolutional
networks for large-scale image recognition. arXiv Preprint.
2014. Source: <https://arxiv.org/abs/1409.1556>.

[38] Krizhevsky A, Hinton G, et al. Learning multiple layers of
features from tiny images. 2009. Source:
<https://www.cs.toronto.edu/~kriz/learning-features-2009-
TR.pdf>.

[39] Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio
Y. Binarized neural networks. In Book: Lee D, Sugiyama
M, Luxburg U, Guyon I, Garnett R, eds. Advances in
Neural Information Processing Systems 29 (NIPS 2016).
2016. Source:
<https://proceedings.neurips.cc/paper_files/paper/2016/file
/d8330f857a17c53d217014ee776bfd50-Paper.pdf>.

[40] Trusov AV, Limonova EE, Nikolaev DP, Arlazarov VV. Fast
matrix multiplication for binary and ternary CNNs on ARM
CPU. 2022 26th Int Conf on Pattern Recognition (ICPR)
2022: 3176-3182. DOI: 10.1109/ICPR56361.2022.9956533.

[41] Zhang D, Yang J, Ye D, Hua G. LQ-Nets: Learned
quantization for highly accurate and compact deep neural
networks. In Book: Ferrari V, Hebert M, Sminchisescu C,
Weiss Y, eds. Computer Vision – ECCV 2018. Cham:
Springer Nature Switzerland AG; 2018: 365-382.

[42] Darabi S, Belbahri M, Courbariaux M, Nia VP.
Regularized binary network training. arXiv Preprint. 2018.
Source: <https://arxiv.org/abs/1812.11800>.

[43] Sher AV, Trusov AV, Limonova EE, Nikolaev DP,
Arlazarov VV. Neuron-by-neuron quantization for efficient
low-bit qnn training. Mathematics 2023; 11(9): 2112. DOI:
10.3390/math11092112.

[44] Hinton GE, Srivastava N, Krizhevsky A, Sutskever I,
Salakhutdinov RR. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv
Preprint. 2012. Source: <https://arxiv.org/abs/1207.0580>.

[45] Kingma DP, Ba J. Adam: A method for stochastic
optimization, arXiv Preprint. 2014. Source:
<https://arxiv.org/abs/1412.6980>.

Authors’ information

Anton V. Trusov. Federal Research Center “Computer Science and Control” of Russian Academy of Sciences,
Moscow Russia, 1-st grade programmer. Smart Engines Services LLC, Moscow, Russia, programmer. Number of
publications: 8. Research interests: neural networks, image processing, high performance computing.
E-mail: trusov.av@smartengines.com

Dmitry N. Putintsev. Federal Research Center “Computer Science and Control” of Russian Academy of Sciences,

Moscow, Russia, senior scientist. Smart Engines Services LLC, Moscow, Russia. Number of publications: 35.
E-mail: putincevd@gmail.com

Elena E. Limonova. Federal Research Center “Computer Science and Control” of Russian Academy of Sciences,

Moscow, Russia, PhD in Computer Science, researcher. Smart Engines Services LLC, Moscow, Russia, programmer.
Number of publications: 38. Research interests: neural networks, image processing, pattern recognition on mobile
devices. E-mail: limonova@smartengines.com

Code of State Categories Scientific and Technical Information (in Russian – GRNTI)): 28.23.37
Received September 19, 2023. The final version – November 20, 2023.

