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Abstract 

Binary neural networks (BNNs) have gained attention due to their computational efficiency. 
However, training BNNs has proven to be challenging. Existing algorithms either fail to produce 
stable and high-quality results or are overly complex for practical use. In this paper, we introduce a 
novel quantizer called UBQ (Uncertainty-based quantizer) for BNNs, which combines the 
advantages of existing methods, resulting in stable training and high-quality BNNs even with a 
low number of trainable parameters. We also propose a training method involving gradual network 
freezing and batch normalization replacement, facilitating a smooth transition from training mode 
to execution mode for BNNs. 

To evaluate UBQ, we conducted experiments on the MNIST and CIFAR-10 datasets and 
compared our method to existing algorithms. The results demonstrate that UBQ outperforms 
previous methods for smaller networks and achieves comparable results for larger networks. 
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Introduction 

Nowadays, artificial neural networks (ANNs) are 
widely used in various applications. They are ranging 
from large-scale language models [1] and image-
generation networks [2] with billions of parameters that 
require specialized servers, to small and fast networks for 
character recognition [3] designed to run on mobile and 
embedded devices. The latter case, involving small 
networks on edge devices, is particularly interesting for 
practical applications. For instance, a real-time document 
recognition system running on a mobile phone [4] may 
utilize ANNs to compute patch descriptors for template-
matching [5], localize and recognize text characters [6], 
and perform other small tasks. In order for the system to 
work effectively on a mobile phone, the networks must 
be small enough to avoid RAM overflow during 
execution and prevent an undesired increase in the size of 
the mobile application. Additionally, they must be fast 
enough to meet the real-time operation requirements. 
Other systems that require fast and lightweight ANNs 
include autonomous driving [7], internet of things (IoT) 
applications [8], and even medical diagnostics [9]. 

One approach to making an ANN faster and smaller 
in terms of memory involves replacing its 32-bit weights 
with discrete integer values, a process known as network 
quantization [10]. The extreme form of quantization is 
binarization, which provides binary neural networks 

(BNNs), where the only possible values for weights and 
activations (layer inputs) are – 1 and 1. In this case, a 
network occupies 32 times less memory than its real-
valued counterpart. Moreover, BNNs allow for the 
computation of dot products, which are the main building 
blocks of matrix multiplications and convolutions (which 
are the most computationally expensive operations in 
modern ANNs), using simple bitwise operations, bit-
counts, and additions [11]. These operations are 
significantly simpler and faster from a hardware 
perspective compared to multiplications or multiply-
accumulate operations used in real-valued networks. As a 
result, BNNs can be efficiently implemented on various 
computing devices such as FPGAs [12], GPUs [13], and 
CPUs [14]. BNNs can be applied to many tasks, which 
rely on computationally-demanding ANNs, including but 
not limited to: image recognition [11], semantic 
segmentation [15], and speech recognition [16]. 

It is worth noting that BNNs are not the only 
multiplication-free networks. Ternary neural networks, 
where weights and activations are constrained to the set 
{– 1, 0, 1}, can also be efficiently implemented using 
bitwise operations [17]. There are variations of binary 
and ternary neural networks where only weights are 
quantized and the activations remain floating-point [18, 
19]. There are also variations where inputs and weights 
are binary for each layer of the network, but a floating-
point skip-connection exists around the layer [20]. 
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Finally, there are neural networks with completely 
different models of neurons, such as AdderNet [21] that 
computes L1-distance between the input and the weights 
instead of dot-product, and a Bipolar morphological 
network that computes sums and maximums in the 
inner-most loop of matrix multiplication and may use 
fast approximations of non-linear functions like 
exponent and logarithm [22]. However, all of these 
methods are less computationally or memory-efficient 
than pure BNNs. Therefore, this paper is dedicated to 
the training of pure BNNs. 

Training Binary Neural Networks (BNNs) and other 
few-bit quantized networks is a more challenging task 
compared to training floating-point networks. The main 
difficulty arises from the fact that the standard gradient 
descent optimization method, based on error back-
propagation, is not directly applicable due to the nature of 
the binarization function (sign function, which has zero 
derivative at each point except for zero, where it is non-
differentiable). To address this problem, the common 
solution is to use the straight through estimator (STE), 
which involves computing the sign function as is during 
the forward pass and using a piecewise differentiable 
approximation (e.g., hardtanh (x) = min (1, max (– 1, x)) 
function) during the backward pass to compute gradients 
[23]. This simple solution has been shown to work 
surprisingly well when training BNNs from scratch [24]. 

Unfortunately, STE method has its own limitations. It 
leads to weights oscillation around zero, resulting in 
frequent sign changes and slower and less stable training 
[25]. It also causes gradient mismatch, when the gradients 
in the backward pass disagree with function in the 
forward one [26]. In contrast to STE, quantization 
methods, based on smooth approximations of the sign 
function [27] (e.g. tanh (vx)  sign (x), if v  ∞ [28]), do 
not suffer from gradient mismatch. These methods 
provide a way to convert floating-point model to binary 
smoothly by gradually adjusting of approximation 
accuracy. Such training is usually faster and more stable 
compared to STE. However, it introduces a gap between 
the binary model and its smooth approximation, leading 
to optimization objective mismatch [29]. While there are 
more complex approaches to training BNNs, such as 
minimizing quantization error [11] or using Bayesian 
learning rules [30], this paper focuses primarily on STE 
and smooth quantization due to their ease of 
implementation and satisfactory results in terms of 
quality (in comparison to other methods) [24, 28]. 

Despite the existence of various training methods for 
BNNs, there is still a significant accuracy gap between 
full precision (floating-point) ANNs and BNNs with the 
same architecture. This is why BNNs are mainly studied 
in academic settings, unlike 8-bit quantization, which is 
widely used in practice [31] and natively implemented in 
popular machine-learning frameworks like PyTorch [32] 
or Keras [33]. However, recent studies have shown that 
by adjusting the network structure, BNNs can outperform 

ANNs under the same computational budget [34]. This 
means that a more accurate BNN with more parameters 
and operations can fit into the same computational budget 
as its floating-point counterpart. This makes BNNs 
interesting not only from a theoretical perspective but 
also from a practical standpoint, especially for devices 
that do not support floating-point multiplications. That 
why is stable and accurate algorithms for BNN training 
are of great interest. 

In this paper we propose a new method for training 
BNNs from scratch. Our method can be viewed as an 
extension of smooth quantization methods but it has 
several important differences:  

• It relies on uncertainty-based activations (see 
Section 3.1), which provide a more accurate smooth 
approximation of a sign function and helps us to 
improve the performance of the BNNs.  
• It uses stochastic binarization with STE as a 
regularization technique, which helps us to minimize 
the mismatch between the BNN and its 
approximation, and leads to better performance.  
• During training, it replaces the standard batch 
normalization [35] technique with a simpler 
intermediate module. It simplifies the transition to 
binary inference, where there is no batch 
normalization at all.  
To evaluate our proposed model, we trained three 

small Convolutional Neural Networks (CNNs) on the 
MNIST dataset [36] and three larger CNNs from the 
VGG family [37] on the CIFAR-10 dataset [38]. We 
compared our training method with STE [39] and smooth 
self-binarization methods [28] empirically. The results of 
our experiments confirm that our method combines the 
strengths of both approaches: the stable training of 
smooth binarization and the direct transition to binary 
inference of the STE-based methods. Our method also 
achieves higher accuracy compared to STE, especially on 
models with a small number of parameters. 

1. Preliminaries 

Our method of stable training binary neural network 
is majorly inspired by commonly-used Straight Through 
Estimator [39] and soft quantization methods [28, 29]. 
However, before going into the details let us first 
formalize what a BNN is, what the quantizers are and 
how they allow for training of BNNs. 

1.1. BNN 

As we mentioned above, a binary neural network is an 
ANN, in which weights and activations (layer inputs) are 
binary (i.e. belong to the set {– 1, 1}). Such networks 
consists of binary layers. Each binary layer takes a binary 
vector as an input, computes dot-products with binary 
weights using bit-wise operations and sums the 
intermediate results in integer accumulators. After that, 
those integer results are binarized using sign function and 
passed to the next binary layer. 
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It is important to note, that the input and the output of 
a network can be non-binary vectors. In the image 
classification task, an input is an image, which is usually 
interpreted as a real-valued array, and the output is real-
valued class confidences. For example, to build such a 
network we can binarize the input by a certain threshold 
for the first layer, and use integer results of binary dot-
product as an input of softmax function in the last layer. 
However, the first and the last layer are usually easy-to-
compute, because there are few channels in the input, in 
comparison to the rest of the network. That is why they 
are usually, preserved in real-valued form (not binarized). 
It allows for higher accuracy and simpler training, at the 
cost of negligible performance overhead [11]. Such 
networks with almost all binary layers are usually also 
referred to as BNNs. 

1.2. BNN inference 

Let us start with a description of computations in 
already trained BNN. 

The core operation in a linear layer, whether it is 
fully-connected or convolutional, is a dot product which 
can be represented as: 

=1

= ,
N

i i
i

z x w  (1) 

where xi and wi are the input and weight values 
respectively, and z is an output, which will further 
undergo non-linear activation (binarization for BNNs). 

In the case of a binary neural network, the dot products 
can be computed using XNOR (exclusive NOR) and 
bitcount operations [11]. The XNOR operation compares 
each bit of the input and weight values, returning 1 if they 
are both 1 or both 0, and 0 otherwise. Thus,  

= 1 = 1,i i i ix w x w    

where ix  and iw  are the binary encodings of input xi and 
weight wi (e.g. = 2i ix x , since { 1,1}ix   ). 

The bitcount operation counts the number of 1 bits. 
Therefore, equation (1) can be rewritten as:  

= 2 bitcount ( , ) ,z N  x w   (2) 

where  stands for bit-wise XNOR operation over binary 
vectors x  and w , and N is the number of elements in 
those vectors. 

After the dot product is computed, the result (integer 
value z) is binarized according to a certain threshold b, 
which can be seen as an addition of an integer bias, 
followed by binarization with the sign function. Thus, the 
output value (y) of a binary layer can be computed as: 

1, if 2 ( , ) 0
= .

1, otherwise

b N
y

    



 x w 
 (3) 

Having the equation for the dot product, we can 
compute matrix multiplications in fully-connected layers 

and convolutions in convolutional layers. With some 
additional tricks (special reordering, 16-bit accumulators 
for sums, vector operations, etc.), they can be efficiently 
implemented on different computing devices [12 – 14]. 
We will keep in mind the implementation [40] and 
remember that a layer in the trained BNN should have 
binary input, binary weights, integer bias, and no 
floating-point operations. Fig. 1a demonstrates how 
trained BNN layer works. 

1.3. Quantizers and BNN training 

The equation (3) involves operations over discrete 
values. So, in that formulation, a BNN cannot be trained 
using gradient descent. That is why during training, 
quantizers are required. Quantizers are the modules of a 
neural network that map real-valued input to the discrete 
quantized set. They can have their own adjustable 
parameters [41]. 

In this paper, we will consider quantizers in a broader 
sense: a quantizer is a module of a neural network that 
approximates quantization (in our case, binarization) 
operation and allows for error backpropagation. 

Another useful module for neural network training is 
batch normalization [35]. Let us remind that it is a linear 
transformation of a vector:  

2
ˆ = ,i i

i

i

x
x


  

  
 (4) 

where ˆix  is the normalized value of the i-th element of 
the input vector x,  and 2 are estimated mean and 
variance,  and  are trainable parameters, and  is a 
small constant added for numerical stability. 

The combination of quantizers and batch 
normalization allows for the creation of a trainable BNN 
block, as shown in Fig. 1b. Now let us show how 
quantizers work in different BNN training algorithms. 

a)  

b)  
Fig. 1. BNN layer structure in the execution and training 

modes. (a) Execution mode, (b) training mode 
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1.3.1. STE 

The most commonly used quantizer is STE. It 
computes the sign function in the forward pass:  

1, if 0 ,
= STE( ) = sign( ) =

1, otherwise.

x
y x x




 (5) 

Here and later in the article, we consider sign (0) = 1 
(not 0), so that the output is binary. The forward pass 
described above is used in modern BNNs [24, 42], while 
earlier versions used a more complex stochastic scheme 
involving sampling from a Bernoulli distribution:  

old= STE ( ) =

1, if with probability hardsigmoid( )
,

1, otherwise

y x

x
 

 (6) 

where hardsigmoid (x) = max(0, min(1, (x + 1) / 2)) [18, 
39]. Although this complication does not seem to be 
necessary for BNNs to achieve high quality, we will use a 
similar approach as a regularization (see Section 2.2). 

In the backward path, the gradient is computed as if in 
the forward pass there was a piecewise differentiable 
function, such as hardtanh [24, 39], AproxSign [20], or 
any other appropriate approximation [42] of sign. 

The major strengths of STE quantizer are the ease of 
its implementation, direct correspondence of a forward 
pass to that of BNN in evaluation mode (linear operation 
over binary values), and the fact that it achieves 
acceptable quality [24]. Its main weaknesses are unstable 
training caused by frequent sign changes of weights and 
the gradient mismatch [25]. 

1.3.2. Self binarizing quantizer 

The self-binarizing quantizer (SBQ) was proposed by 
Lahoud et al. [28] to achieve smooth quantization of BNN. 

In the forward pass, the SBQ computes the function  

= SBQ( ) = tanh( ),y x x  (7) 

where v is a hyperparameter that controls the 
approximation of the sign function. By increasing the 
value of v, the output of the SBQ approximates the sign 
function. During training, v is gradually increased. 

In the backward pass, the gradient is computed using 
the derivative of tanh (vx), which is v (1 – tanh2 (vx)). So, 
there is no gradient mismatch like in STE. Moreover, the 
weights do not oscillate around zero and the training is 
more stable. 

Unfortunately, there is no direct correspondence 
between the training and evaluation mode with SBQ 
quantizer [29], so there is a gap in quality. Also, there is a 
mismatch of optimization objectives in the early (when v 
is low) and late (when v is large) stages of training, so the 
resulting quality might be lower than expected. 

1.4. Transaction from training to evaluation 

To convert a neural network from training mode to 
evaluation mode (see Fig. 1), one needs to apply 

quantization (5) to the weights. Then, Quantizer1 is no 
longer required. Quantizer2 is replaced by a sign 
function (5). 

After that, the only remaining excess module is batch 
normalization. Some authors do not consider the presence 
of a few floating-point operations as a problem and 
preserve batch norm as is [11, 39]. Lahoud et al. [28] 
noticed that batch normalization followed by the sign 
function can be replaced with integer bias addition 
followed by sign multiplication by the sign of  in equation 
(4). We would like to point out that the latter multiplication 
is also excessive and this sign can be “folded” into the 
signs of corresponding weights and biases, similar to the 
“folding” of the batch normalization layer during 8-bit 
quantization in the work of Benoit et al. [31]. In Section 
2.3, we propose an alternative to standard batch 
normalization simplifying the transformation even further. 

Thus, the transformation of a BNN layer from training 
mode to integer-only inference is completed. 

2. Uncertainty based quantization 

To overcome the weaknesses and combine strengths 
od STE and SBQ quantizers, we propose our own 
quantizer and BNN trainig procedure which are described 
in this section. 

2.1. Uncertainty-based quantizer 

The key feature of our quantized is uncertainty-based 
activation:  

tanh( ), if ,
( , ) =

sign( ), otherwise,

x
u

x u u
x

    


 (8) 

where the real value u[0, 1] denotes uncertainty of the 
input x,  is a threshold at which smooth quantization 
switches to a hard one (we use  = 10 – 5), and  is a small 
enough value added for numerical stability (we set 
 = 10 – 7). If uncertainty u is below the threshold , the 
error gradient is no longer propagated through this 
activation (which may happen only for a part of the input 
vector, since  (x, u) is an element-wise operation). 

It may seem that we reinvented SBQ with v = (u + ) – 1 
(see eq. (7)), and with an additional threshold , but the 
major difference is how we compute u. This process 
varies for weight and activation quantizers (Quantizers 1 
and 2 in Fig. 2 respectively). 

We define the uncertainty of a real variable t[0, 1] as 
ut

 = 1 – t2. If t =  1, we are certain of its value (u = 0), and 
if t is close to zero, uncertainty is close to one – we are 
not certain, if it should be – 1 or + 1 in a trained BNN. 
For a sum of variables 

=1
=

N
ii

T t , 

uncertainty is defined as the mean uncertainty of the 
variables: 
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2
=1 =1

1
= ( ) / = 1

N N
T i ii i

u u t N t
N

  . 

Thus, we can compute uncertainty for a dot-product in 
BNN (1):  

2 2

=1

1
= 1 .

N

z i i
i

u x w
N

   (9) 

In the case when only weights of a layer are binary (for 
example, in the input layer with non-binary the input):  

2

=1

1
= 1 .

N

z i
i

u w
N

   (10) 

We call the latter case BWN (Binary Weight 
Network) mode. 

Now, for a BNN layer to work, we need weights and 
uncertainties for the weight quantizer. To that end, we 
denote inner (hidden) vector of weights as v (trainable 
parameters); and inner (hidden) vector of uncertainties as 
 (they are sampled from a normal distribution (0, 1)); 
these values do not change during training;  is single 
adjustable value per layer that controls the uncertainty. 
Then, the uncertainties of weights are computed as:  

= ( ),w ii
u      (11) 

where (ꞏ) denotes the sigmoid function: (t) = et /(et + 1). 
Thus, the forward pass through BNN with our 

quantizer works as follows:  
1. Compute weight uncertainties uw

 (, ) using eq. (11).  
2. Compute weights using quantizer w =  (v, uw) 
using eq. (8).  
3. Compute dot-products in matrix multiplication or 
convolution z (x, w) using eq. (1).  
4. Compute batch normalization ˆ( )z z  using eq. (4).  
5. Compute uncertainty uz(x, w) using eq. (9) or (10).  
6. Finally, compute output ˆ= ( , )zy z u  using (8).  
Usually, there are multiple layers in a neural network. 

Thus, there are many adjustable parameters . We initially 
set their values to 8, so that uw is very close to 1. Then we 
gradually (linearly) decrease them during training. When the 
value of  in the layer reaches – 12, the layer is considered 
“frozen”, and it is converted to evaluation mode. Moreover, 
we set the “freezing” speed of different layers so that the 
upper layers of the network are “frozen” prior to the bottom 
layers and so that the bottom layers have some time to adapt. 
This is similar to the sequential quantization of a neural 
network demonstrated in [43]. 

2.2. STE as regularization 

One possible disadvantage of SBQ and our proposed 
Uncertainty Based Quantizer (UBQ) is that during 
training, some weights and activations may appear to be 
close to zero. The network may adapt so that those values 
are expected to be close to zero and during binarization, 
the quality will drop. To prevent this from happening, we 
introduce STE-regularization. 

After the output of a quantizer y = (x, u) is 
computed according to (8), a fixed part p[0, 1] of its 
output is randomly binarized according to (6). In the 
backward pass, the binarization is completely ignored, 
and the network is trained as if quantization was 
smooth. It means that the 1– p part of weights is trained 
using smooth quantization, while the p part is trained 
using STE. 

This approach can be viewed as an analog of dropout 
regularization [44], as it serves the same goal – 
preventing a network from adapting to certain features. 
Here, we use the term “regularization” in a broad sense – 
as a method of preventing a network from overfitting (not 
only to the traning data but to hidden representation as 
well). As dropout regularization prevents complex co-
adaptations of neurons in ANNs, our regularization 
prevents their adaptation to close-to-zero inputs, which 
only exist in the training stage. 

2.3. Alternative normalization 

As we mentioned above, binarizing the batch 
normalization layer may be a bit tricky. To simplify it we 
introduce the following procedure. 

We start with standard batch normalization (4). After 
a few epochs of training, we replace it with simpler 
normalization: 

2
ˆ = | |,i i

i

i

x b
x


 

  
 (12) 

where b is fixed (not learnable) integer bias,  is a 
trainable floating-point parameter,  is a small constant 
added for numerical stability, and finally 2 is a running 
mean for (x + b)2 (which is a sort of a biased variance). 

The transaction from that normalization to the trained 
BNN layer is extremely simple: b becomes the bias of the 
network, and the rest of the normalization is omitted 
because multiplication by positive value does not affect 
the sign function. 

The transaction from standard batch norm to our is as 
follows: 

2
2 2= , =| |, sign( )b

  
       


 

and the weights of the layer are element-wise multiplied 
by the corresponding value of sign (i). 

3. Experiments 

We evaluated STE, SBQ, and the proposed UBQ 
quantizers on MNIST handwritten digits [36] and 
CIFAR-10 images [38] datasets. These datasets pose 10-
class image classification problems. We train several 
neural networks to solve them and compare the 
recognition accuracies of the networks, trained by 
different methods. 

In our neural networks, all the layers except the first 
and the last one are binary. As we mentioned in Section 
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1.1, it is a common practice, that does not significantly 
affect the performance of ANN. That is why such 
networks can be seen as representative examples of 
BNNs used in practical computer vision tasks. 

Our networks take a digital image (as 3-dimentional 
real-valued array) as an input and compute real-valued 
class confidences for that image. 

3.1. Neural networks 

We used two families of networks in our work. First 
are small convolutional networks used for training on 
MNIST. Their architecture is presented in Fig. 2a. 
Convolutional layers conv1 and conv2 also have output 
stride 2. Convolutional layers and fully-connected layer 
fc1 are binary, while the last layer has real-valued 
weights (a common practice for better convergence). 

For CIFAR-10 we used VGG-like [37] models 
similar to Small VGG of LQ-Nets [41]. Their 
architecture is shown in Fig. 2b. In those models, an 
input of each convolutional layer is padded by one pixel 
to preserve size, and pool denotes the max-pooling 
layer. Once again, the last layer has real-valued weights, 
and convolutional layers conv1-conv5 are binary. But, 
here the first (conv0) layer has real-valued input and 
binary weights (BWN mode). 

It is worth mentioning that in our work both MNIST 
CNNs and CIFAR-10 VGGs do not have layers with both 
real-valued input and weights, thus they can run in 
multiplication-free mode (if we do not consider sign 
inversion a multiplication). The major amount of 
computations of such networks lies within convolutional 
layers thus they are computationally efficient. 

a)  

b)  
Fig. 2. Architectures of the considered networks 

The number of neurons in tree CNNs and tree VGGs is 
presented in Tab. 1 and 2 respectively. Tab. 3 represents the 
number of learnable parameters in all the networks. 

Tab. 1. The number of neurons in MNIST CNNs  

  conv1 conv2 fc1 
cnn1  16 32 64 
cnn2  32 64 128 
cnn3  64 128 128 

Tab. 2. The number of neurons in CIFAR-10 CNNs 

  conv0 conv1 conv2 conv3 conv4 conv5 
vgg/16  32 32 64 64 128 128 
vgg/4  64 64 128 128 256 256 
vgg  128 128 256 256 512 512 

Tab. 3. The number of trainable parameters in the networks 

cnn1 cnn2 cnn3 vgg/16 vgg/4 vgg 
52.7K 208K 561K 308K 1.19M 4.66M 

3.2. Experimental setup 
3.2.1. MNIST 

MNIST is a dataset of handwritten digits represented 
as single-channel images with a resolution of 28×28. 
During training, we applied random rotations of up to 9 
degrees and random shifts by  2 as augmentations. We 
also binarized the input by applying a threshold of 0.22 
(considering pixel values in [0, 1] interval). 

We trained our networks for 200 epochs using the 
Adam optimizer [45] with a batch size of 100 and varying 
learning rates. 

For the SBQ quantizer, we exponentially increased 
the parameter  from 1 at the beginning to 1000 as 
suggested in the original paper [28]. 

For UBQ, we trained the network for 30 epochs and 
then replaced batch normalization as described in Section 
2.3. After that, we gradually decreased the  values in the 
layers so that the conv1, conv2, and fc layers were frozen 

at epochs 132, 158, and 173, respectively. For cnn2 and 
cnn3, the epochs for freezing were 149, 168, and 173. 
During the experiments with various learning rates, p was 
set to 0.2. During the experiments with various values of 
p, the learning rate was set to 10– 3. 

3.3. CIFAR-10 

For CIFAR-10, which consists of 3-channel 32×32 
images in 10 classes, we used simpler augmentations: 
random horizontal flips and random shifts by  4 
pixels. We trained all the networks using the Adam 
optimizer with a learning rate of 10– 3 for all methods, 
for 500 epochs, with a batch size of 256. The settings 
for SBQ were the same as in the MNIST experiments. 
For UBQ, batch normalization was replaced at the 50th 
epoch. The frozen epochs for all the networks were 
320, 365, 388, 410, 455, and 478 for the convolutional 
layers conv0 – conv5, respectively. The parameter p 
was set to 0.1. 

3.4. Experimental results 

We conducted 5 experiments (training a BNN from 
scratch each time) for each neural network and 
parameter setting. 

Tab. 4 represents a series of experiments with our 
quantizer with different values of the parameter p (the 
part of the STE-binarized values in the quantizer). We 
can see that increasing p to some point helps to improve 
the accuracy of the result. However, a very high value of 
p results in lower accuracy. The latter is likely a result of 
the less stable training process caused by STE. Thus we 
recommend setting p in the range of 0.1 – 0.2. 

Tab. 5 represents a series of experiments with all the 
quantizers and different learning rates. We report the 
highest , median, and the lowest accuracies for each 

experiment. We can see that higher learning rates result 
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in better accuracies. That is likely a result of using the 
Adam optimizer, which attentively decreases the learning 
rate for the weights with often gradient direction change 
(which happens in BNNs, especially with STE quantizer, 
at the end of the training process), thus eliminating the 
need to decrease the learning rate manually. 

Tab. 4. The results using the UBQ on MNIST with varying p. 
The median accuracy over 5 experiments, % 

p 
 BNN 

0.02 0.05 0.1 0.2 0.5 

 cnn1  97.60 97.98 98.08 98.10 98.05 
 cnn2  98.68 98.75 98.78 98.72 98.65 
 cnn3  98.88 98.97 99.00 99.02 99.00 

Tab. 5. The results on MNIST with varying learning rate. The highest  (upper), the median (middle), and the lowest (lower) 

obtained accuracy, % 

BNN 
lr  

 Quant. 
10– 4 2ꞏ10– 4 5ꞏ10– 4 10– 3 2ꞏ10– 3 

cnn1 

 STE  
97.67

86.29
96.29  

98.04

92.70
95.76  

98.00

95.99
97.50  

97.99

95.99
97.50  

97.91

92.23
97.69  

 SBQ  
95.49

87.32
89.19  

97.06

88.86
96.88  

97.07

88.70
96.26  

97.26

94.09
96.42  

93.30

90.98
91.89  

 UBQ (ours)  
97.52

97.02
97.26  

97.76

97.43
97.60  

98.17

97.79
97.93  

98.33

98.02
98.07  

98.35

97.99
98.10  

cnn2 

 STE  
98.66

96.39
98.19  

98.58

97.23
98.04  

98.88

97.96
98.72  

98.98

97.81
98.70  

98.88

98.49
98.78  

 SBQ  
97.14

88.28
96.25  

97.65

96.69
97.31  

98.38

97.28
97.93  

98.48

98.27
98.40  

98.13

97.89
98.07  

 UBQ (ours)  
98.51

98.27
98.33  

98.61

98.41
98.50  

98.77

98.58
98.66  

98.89

98.76
98.82  

98.95

98.79
98.86  

cnn3 

 STE  
98.79

98.64
98.76  

98.96

98.62
98.86  

99.14

98.82
99.00  

99.22

98.49
98.95  

99.08

99.00
99.05  

 SBQ  
97.75

96.78
97.56  

98.25

96.64
97.96  

98.96

98.66
98.81  

99.02

98.75
98.99  

98.99

98.63
98.84  

 UBQ (ours)  
98.87

98.57
98.69  

98.92

98.68
98.82  

99.02

98.85
98.94  

99.03

98.84
98.99  

99.15

98.84
98.99  

 

Tab. 6 demonstrates the results of the three considered 
quantizers on the CIFAR-10 dataset. We also report the 
highest  , median, and the lowest accuracies. From 

Tables 5 and 6, we can see that the proposed method 
noticeably outperforms both STE and SBQ for smaller 
networks (cnn1-2, vgg / 16, and vgg / 4). For larger 
networks, it shows results comparable (or maybe slightly 
lower than STE). Generally, we believe that the latter is a 
result of the experiment setup: we trained all the networks 

for a fixed number of epochs (500 for CIFAR-10). STE 
increased its score during the whole training, while SBQ 
and our OBQ methods increased the accuracy in the 
beginning and then started to decrease it when the 
networks were binarized. It can be seen on training plots 
(see Fig. 3), showing the median score and score range 
during training. So more training at the high weight 
uncertainty stage may have helped our method to achieve 
higher than STE results. 

Tab. 6. The results on CIFAR-10. The lowest (left) , the median (middle), and the highest  (right) obtained accuracy % 

Quant  
 BNN 

STE SBQ UBQ (ours) 

 vggb16  60.36 67.9665.41  32.99 41.4039.11  70.47 70.9370.70  

 vggb4  69.70 78.0974.56  59.83 67.2163.12  75.70 77.1676.35  

 vgg  78.85 82.0581.22  73.68 76.1675.43  79.76 80.4180.05  
 

Tabl. 5 – 6 as well as Fig. 3 also suggest that our 
method is the most stable one, as the deviation between 
the highest and the lowest accuracies in 5 experiments is 
lower for our method. 

Conclusion 

In this paper, we have introduced a novel quantizer 
called UBQ (Uncertainty-based quantizer) for binary 

neural networks. UBQ combines the advantages of both 
STE and SBQ, resulting in stable training and high-
quality BNNs even with a low number of trainable 
parameters. We have also proposed a training method that 
involves gradual network freezing and batch 
normalization replacement, which is suitable for UBQ 
and facilitates a smooth transition from training mode to 
execution mode for BNNs. 
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a)  b)  
Fig. 3. Training curves of the considered quantizers on CIFAR-10. (a) VGG / 16 (b) VGG 

To evaluate the performance of UBQ, we conducted 
experiments on the MNIST and CIFAR-10 datasets. We 
trained six different convolutional neural networks with 
binary layers to solve image classification tasks, using 
UBQ, STE and SBQ methods. After that, we compared 
the recognition accuracies. The results demonstrate that 
UBQ outperforms both methods for smaller networks and 
achieves comparable results to STE for larger networks. 

In terms of future work, there are several directions that 
can be explored. This includes adapting UBQ parameters 
(such as freezing time and p) for different tasks and neural 
networks, experimenting with dynamic weight uncertainty 
(which is currently manually controlled in UBQ), and 
applying UBQ ideas to other quantized networks, such as 
ternary networks. Additionally, it would be interesting to 
evaluate UBQ against other BNN training algorithms and on 
a broader variety of tasks. 
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