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Abstract 

Existing approaches to barcode detection have a number of disadvantages, including being tied 
to specific types of barcodes, computational complexity or low detection accuracy. In this paper, 
we propose YOLO-Barcode – a deep learning model inspired by the You Only Look Once 
approach that allows to achieve high detection accuracy with real-time performance on mobile 
devices. The proposed model copes well with a large number of densely spaced barcodes, as well 
as highly elongated one-dimensional barcodes. YOLO-Barcode not only successfully detects the 
huge variety of barcode types, but also classifies them. Comparing with the previous universal 
barcode detector DilatedModel based on semantic segmentation, the YOLO-Barcode is 4 times 
faster and achieves state-of-the-art accuracy on the ZVZ-real public dataset: 98.6 % versus 88.9 % 
by F1-score. The analysis of existing publicly available datasets reveals the absence of many real-
life scenarios of mobile barcode reading. To fill this gap, the new “SE-barcode” dataset is 
presented. The proposed model, used as a baseline, achieves a 92.11 % by F1-score on this dataset. 
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Introduction 

Today barcodes are used in various industries such as 
retail, logistics, travel, and healthcare. They offer a fast, 
accurate, and efficient method of tracking and managing 
information especially compared to other methods like 
manual data entry or RFID technology. Linear (1D) 
barcodes, such as the UPC and EAN codes, offer a simple 
representation of data using a series of parallel lines of 
different heights and thicknesses. Two-dimensional (2D) 

barcodes, such as QR and Data Matrix codes, store 
information in both horizontal and vertical dimensions 
and provide more capacity than linear ones. Warehouses, 
post offices and delivery services actively use mobile 
devices in their work, including for reading barcodes 
using a built-in camera (Fig. 1). Computer vision 
algorithms read all the barcodes in a photo at one time, 
while most scanners can only scan one barcode at a time 
(Fig. 1b), which is physically more difficult and takes 
longer. 

a)  b)  c  
Fig. 1. Examples of complex code detection cases: a) several barcodes of different types and shapes with projective distortions; 

b) densely spaced linear codes; c) "designed" code 

The problem of barcode detection on images obtained 
from mobile devices has become very actual over the last 
15 years. The vast majority of barcode detection 

approaches are based on classical image processing 
techniques. Some of them are “barcode-type 
independent”, which means that they rely only on 
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commonly shared barcode traits. The list of traits includes 
the high contrast of minimal logical barcode elements or 
“modules”, the presence of a quiet zone around the code 
and the absence of large monotonous regions inside the 
code. To simplify the problem of barcode detection, 
many types introduce special groups of modules named 
“finder patterns” into their structure (Fig. 2a). Therefore, 
there are approaches that try to identify these patterns on 
the image in order to detect and segment the code itself. 
Despite the fact that such algorithms perform rather well 
on high-quality images with a focus on a specific barcode 
type, in real life they are not so effective due to certain 
constraints. Nowadays, several barcodes of different types 
and scales can be used simultaneously in a small area 

(Fig. 2b), thus requiring to analyze the same image several 
times using the appropriate method for every type, which 
has a negative impact on performance. Moreover, barcodes 
may be partially damaged or printed on reflective surfaces, 
what complicates the task of their detection. In the case of 
barcode capture using a mobile device camera, the 
environmental conditions are often uncontrolled, leading to 
barcode images that may suffer from projective distortions, 
uneven lighting, and flares [1]. Another problem with these 
methods is the diversity of “designed” barcodes, which are 
increasingly used for marketing needs. They are 
characterized by the presence of decorative features in the 
code structure or they mimic some object and are commonly 
embedded into complex backgrounds (Fig. 2c, d).  

a)  b)  c)  d)  
Fig. 2. Real barcode usage samples: (a) “finder patterns” of QR code type, (b) many barcodes of different types in a small area, 

(c) “designed” code sample in complex background, (d) “designed” QR code generated via Stable Diffusion 

In recent years, approaches based on deep convolutional 
neural networks (D-CNN) have been significantly 
developed. According to evaluations on public datasets [2, 
3], they outperform algorithmic methods in the problem of 
barcode detection. D-CNN provide resistance to capturing 
conditions and at the same time can detect several barcodes 
with different patterns on a single image. 

In this paper, we propose YOLO-Barcode - a compact 
and computationally efficient anchor-based D-CNN for the 
problem of barcode detection and classification. This 
proposed model effectively handles with a large quantity of 
closely positioned barcodes, including long-shaped linear 
barcodes. The YOLO-Barcode was tested on four public 
datasets. The first one is ZVZ – a public dataset containing 
both real and synthetic images of 18 different barcode types. 
Others are WWU Muenster BarcodeDB, ArTe-Lab 1D 
Medium, and ParcelBar. These datasets contain images with 
linear codes only. In addition, an analysis was made of 
existing public datasets of barcodes with ground truth. It 
showed that not all real-life scenarios are present in them. To 
fill this gap, we present SE-barcode - novel dataset of 
synthesized barcodes in real-life scenes. This dataset consists 
of 1813 images with different types of barcodes with 
varying shapes, scales, and number of barcodes per image. 
By creating this dataset, we provide a new benchmark for 
barcode detection, which will help to estimate an ability of 
the detectors in solving hard real-life problems. 

1. Related work 

The pioneering methods for detecting barcodes 
captured via mobile device cameras were based on 

different combinations of classical digital image 
processing techniques. They typically include 
binarization [2, 4], morphological filtering [4 – 8], edges, 
and lines extraction [2, 3, 7]. For mobile devices, it is 
essential to reduce the computational complexity of the 
used methods. Choosing an appropriate binarization 
method can drastically simplify all the subsequent stages 
of image analysis, but that choice is not a trivial task. As 
for barcodes, many specialized methods have already 
been developed [8, 9, 10, 11]. Moreover, the performance 
of the binarization method depends heavily on its 
parameters fine tuning. Morphological methods also 
suffer from this problem: one needs not only to choose 
the sequence of filters but also select the proper shape of 
the structural elements. To overcome this issue and be 
able process barcodes of different scales, some iterative 
schemes were proposed [13]. The major drawback of 
such methods is their performance in terms of speed. 
Edge and line detectors are sensitive to image quality and 
barcode scale which often leads to problems on blurred or 
low-contrast images [14]. 

Barcode type-dependent detection methods are great, 
but only when someone can guarantee the absence of 
other types, thus severely limiting their usage. 

Eventually, these methods require manual parameters 
tuning and generally cannot deal with barcodes in 
different scales with appropriate performance. Another 
disadvantage of such methods is their limited 
understanding of context – usually they rely on 
knowledge of barcode structure. That can lead to 
detection errors in cases of complex background. Finally, 
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false detection is another issue of these methods. Every 
wrongly detected region with a barcode candidate forces 
to analyze it for every allowed barcode type, thus 
severely slowing the whole code processing. 
Unfortunately, the false detection rate is not commonly 
presented in the studies related to classic methods. 
Another approach to this problem is to use methods based 
on training procedures that eliminate manual fine-tuning. 

Machine learning approaches, particularly deep 
convolutional neural networks, have been widely used in 
barcode detection tasks over the last years and provide 
significant advantages over classical algorithms. Most 
existing methods consider barcode detection as an object 
detection task. Among all the D-CNN methods, “You 
Only Look Once” or YOLO [15] is one of the most 
applied approach [16]. The main advantage of YOLO-
based models is that they find all objects in the entire 
image by applying a network to it only once. Coupled 
with the fact that YOLOv4 [17] and YOLOv5 [18] have 
been significantly optimized since the first version, 
YOLO-based networks became the best solution for use 
on mobile devices. In the paper [19] a model is shown 
that combined YOLOv1 as a detector and CNN for angle 
prediction of the found barcodes for better decoding. This 
model is able to detect both 1D and QR barcodes and 
shows good results on the Muenster BarcodeDB, but 
have low computational effectiveness and requires 
training two separate neural networks. In the paper [20] a 
modified method for QR codes detection based on the 
YOLO model was proposed. YOLO model was used as a 
QR code pattern finder. Paper [21] describes a model 
based on ThinYOLOv4 [21], which allows to detect 
barcodes and separate them into 1D and 2D barcodes by 
applying a simple classifier to each found bounding box. 
This method is significantly faster compared to method 
proposed In the paper [19] and shows solid performance 
on the author’s private test dataset; however, it has not 
been tested on publicly available datasets. 

In the paper [22] barcodes detection problem is 
considered as instance segmentation task. The authors 
proposed DilatedModel – lightweight model based on 
dilated convolutions, which achieved strong results on the 
Muenster BarcodeDB dataset and state-of-the-art result 
on the ArTe-Lab 1D Medium dataset. This approach not 
only detects but also classifies barcodes using a single 
network. In the paper [23] two-stage method for detecting 
barcodes in high-resolution images is suggested. This 
method is based on a modified Region Proposal Network 
(RPN) and a newly proposed Y-Net segmentation 
network with additional post-processing for creating 
bounding box for each segmented barcode mask. The 
implementation of such approach outperforms existing 
detection methods on the Muenster BarcodeDB, ArTe-
Lab 1D Medium and the synthetic dataset published by 
the authors. However, this method requires a training of 
two separate networks, does not classify barcodes and 
was not tested on a competitive dataset with several 

barcodes on real images. In the paper [24] a method for 
synthetic data generation and a new ZVZ-dataset, which 
contains 920 real images with different barcode types, 
were proposed. The authors used the ZVZ-dataset to 
evaluate the U-Net model based on the ResNet18 
backbone and their own lightweight DilatedModel 
architecture and provided strong baseline results. 

The widespread use of mobile devices with various 
computational power requires the creation of both a 
computationally efficient and universal model for 
detecting barcodes of various scales, shapes and types. At 
the same time, the preliminary classification of barcodes 
facilitates their decoding and greatly reduces the 
recognition time spent on one frame. Despite the fact that 
modern mobile devices use relatively powerful hardware, 
their lifespan is limited by the battery. Thus, there is a 
need for optimized detection models whose 
computational complexity will be minimal at high 
performance. In this paper, we consider barcode detection 
as an object detection task and propose a new deep 
learning model based on the YOLO approach. The 
proposed model is capable to predict not only the 
bounding box but also the class of the barcode. It 
performs well with long-shaped objects, has 4 times 
fewer operations than DilatedModel [22] and shows state-
of-the-art quality on ZVZ dataset. 

2. Suggested method 

YOLO-Barcode is based on the YOLO approach. In 
this approach, the input image is divided by a fixed S×S 
grid. Each cell in this grid is responsible for predicting 
the bounding box of the object whose center falls within 
it. Each bounding box predicts confidence, (x, y) 
coordinates of the box’s center and its width and height. 
Each grid cell in the proposed model can also predict an 
object class, namely the barcode type. Total loss for the 
detection part is defined by equation:  

2

=0 =0
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where obj
ijI  and noobj

ijI  are indicator functions that denotes 
object presence in cell (i, j), S is a size of grid and A is a 
number of anchors. Lobj, Lnoobj, Lxy and Lwh are taken from 
paper [25]:  
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There, c is the predicted confidence for the object, 
(x, y) – predicted coordinates of the object center which 
are related to cell, w and h are offsets predicted relative to 
chosen anchor. The values ˆˆ ˆ ˆ, , ,s sx y w h  are taken from 
ground truth (GT). The hyperparameters noobj, xy and 
wh should be adjusted manually according to the training 
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data, chosen anchors and grid size. Anchors are pre-
defined bounding boxes with different aspect ratios and 
sizes. During labels generation stage, the most suitable 
anchor for each object is usually assigned using the 
Intersection Over Union (IOU) score. Since IOU does not 
directly take into account the aspect ratio of the object, 
which is essential for different types of barcodes, we used 
the geometric method, which was proposed in YOLOv7 
approach [26]. This method considers the most suitable 
anchor in terms of maximum of minimum between the 
normalized ratios of the widths and heights of the object 
and the anchor. For the classification part we applied 
softmax on the last n channels of output tensor and used 
cross-entropy as a loss, where n is the number of classes. 

The YOLO-Barcode consists of 31 layers, the 
architecture is presented in Fig. 3. The ReLU was used as 
an activation function. We use a 512×512 grayscale 
image as input to improve the classification of small 
barcodes of different types but similar shapes. Due to the 
depth of the neural network, some low-level features can 
be lost, so to preserve them the architecture consists of a 
bottom-top part and top-down pathway part with lateral 
connections. Combining feature maps from different 
levels enhances the detector’s ability to capture multi-
scale information, contextual understanding, and 
robustness to scale variations [24]. In Tab. 1 we compare 
different D-CNN architectures used for barcode detection 
in terms of performance.  

 
Fig. 3. YOLO-Barcode architecture 

Tab. 1. Comparison of D-CNN models used for barcode detection in terms of performance 

Model Input size (px) Parameters (M)  Performance (GFLOP) 
Tiny YOLO v3 416×416 8.55 5.16 
Tiny YOLO v4 416×416 6.06 6.1 
DilatedModel [22]  512×512 0.04 1.9 
YOLO-Barcode 512×512 0.14 0.46 

 

In real-time recognition systems, the speed of a neural 
network holds greater significance than its size. The size 
of the neural network mostly affects initialization time, 
while its inference time affects the total processing time 
of each frame. Since the initialization of a neural network 
occurs only once, the ongoing processing speed is crucial 
for efficient and timely recognition, particularly when 
dealing with a huge amount of data.  

3. Experimental setup 

Our experiments are based on the ZVZ-dataset [24], 
which consists of two parts: ZVZ-real and ZVZ-synth. 
ZVZ-real is the dataset of 971 real images with 1214 
barcodes in total, the maximum number of barcodes per 
image is 7. ZVZ-real is divided into 512 training images, 
102 validation images and 306 test images. There are 18 
different types of barcodes in total: QRCode, Aztec, 
DataMatrix, MaxiCode, PDF417, Non-postal-1D-

Barcodes (Code128, Patch, Industrial25, EAN8, EAN13, 
Interleaved25, Standard2of5, Code32, UCC128, 
FullASCIICode, MATRIX25, Code39, IATA25, UPCA, 
UPCE, CODABAR, Code93, 2-Digit), and Postal-1D-
Barcodes (Postnet, AustraliaPost, Kix, IntelligentMail, 
Royal-MailCode, JapanPost). ZVZ-synth is a synthesized 
dataset consisting of 30 thousand 512×512 samples of 
document images with barcodes. Some examples from 
ZVZ are shown in (Fig. 4). For experiments on real data, 
we used the train part of ZVZ-real and randomly chosen 
2000 images from ZVZ-synth. Training images were 
grayscaled and resized to 512×512 input resolution, 
maintaining aspect ratio. To avoid an overfitting and 
increase the variety of train data, real-time augmentation 
[28] was used. During augmentation, first we apply 
mosaic augmentation with a grid 2×2 or 3×3 to 15 % of 
images. It was guaranteed that each inserted image would 
have no more than two barcodes. Then, 95 % of the data 
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was augmented with projective and lighting distortions, 
blur and noise, which were applied in random order. Each 

projective distortion was guaranteed to leave all the 
barcode corners within the image. 

a)  b)  c  
Fig. 4. Examples from ZVZ dataset: (a) from ZVZ-synth, (b) from ZVZ-real with small PDF-417 on the complex background, 

(c) from ZVZ-real with big linear barcode on the simple background 

We train our model for 5000 epochs with a learning 
rate of 0.0005, a momentum of 0.9 and a batch size of 64. 
Stochastic gradient descent (SGD) was chosen as an 
optimization algorithm. We used the k-mean procedure 
on the training data to get the following anchor boxes 
(width and height relative to input size): [0.2, 0.05], 
[0.05, 0.2] and [0.1, 0.1]. The coefficients in the YOLO 
loss function were xy

 = 1.0, wh
 = 2.0 and noobj

 = 0.45. In 
total, 7 classes are predicted as in [24]: QRCode, Aztec, 
DataMatrix, MaxiCode, PDF417, Non-postal-1D-
Barcodes and Postal-1D-Barcodes. 

For experiments on synthetic data, we used the train 
part of ZVZ-synth, which consists of 27 thousand images. 
We used the same preprocessing and augmentation as for 
real data excluding mosaic one. The model was trained 
for 500 epochs with the same parameters as for real data.  

4. Results 
4.1. Evaluation on ZVZ-real and ZVZ-synth 

As metrics we used object-based precision, recall, and 
F-measure [22, 24]. To filter out the bounding boxes 
found by our detector, we fixed a confidence threshold of 
0.5 and used non-maximum suppression with a threshold 
of 0.3 to remove duplicate responses for the same object. 
As in [22, 24], all metrics above are computed for the 
detected object and do not take into account the barcode 
class. To evaluate the classification of the detected 
objects by type, we used the accuracy metric (number of 
correctly guessed objects divided by the number of 
correctly detected objects). Thus, classification errors 
only affect classification accuracy. The results for the 
ZVZ-real dataset are shown in Tab. 2.  

Tab. 2. Results obtained on the ZVZ-real. FULL states for entire real dataset (train + validation + test). 
P = precision, R = recall, F = F1-score, Acc - classification accuracy 

Model Pretrained on 
  

FULL TEST 
P R F Acc P R F Acc 

ResNet18U-Net [24]   ImageNet  90.5 97.2 93.7 n/a 83.0 95.9 88.9 n/a 
ResNet18U-Net [24]   -  87.8 94.8 91.2 n/a 80.9 91.5 85.8 n/a 
DilatedModel [24]   ZVZ-synth  81.2 96.4 88.1 n/a 73.0 95.1 82.7 n/a 
DilatedModel [24]   -  79.9 94.4 86.6 n/a 73.1 93.2 82.0 n/a 
YOLO-Barcode   -  98.0 98.4 98.2 85.1 98.3 98.8 98.6 85.2 

 

Fig. 5 demonstrates the performance of YOLO-
Barcode in the difficult test cases from ZVZ-real 
(magenta denotes ground truth, green – correct detection 
result, red – false positive answer). 

We also evaluated the model trained on the ZVZ-
synth train part on the ZVZ-synth validation part. ZVZ-
synth has a large number of barcodes printed at different 
angles; however the proposed model was trained to 
predict bounding boxes for objects without slope.  

Therefore, we compared YOLO-Barcode detections 
with ground truth quadrangles (*) and with bounding 
boxes for ground truth quadrangles (**). For evaluation 
we used the same thresholds as for the model trained on 
real data. The results are shown in Tab. 3.  

Examples of detections on ZVZ-synth are shown in 
Fig. 6. The most frequent error is that of two very close 
barcodes, only one is detected. In this case, the second 
one has much lower confidence and does not pass the 
confidence threshold. 

4.2. Evaluation on other public datasets 

We evaluated YOLO-Barcode trained on ZVZ-real 
and ZVZ-synth on popular barcode detection 
benchmarks – WWU Muenster BarcodeDB [2], ArTe-
Lab Medium Barcode Dataset [3] and ParcelBar [29]. 
The Muenster dataset consists of 595 real images with 
ground truth. Barcodes on most of the images are 
linear, large and centered; there are also images with 
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several barcodes. The ArTeLab dataset consists of 365 
images with ground truth, each image contains only 
one large linear barcode. There are images of damaged 
or deformed barcodes, as well as barcodes with glare. 
Since only segment masks were provided as the 
ground truth for the ArTeLab dataset, we converted 
them into bounding boxes. The ParcelBar dataset 
consists of 844 images with bounding boxes as ground 
truth. It contains post-box barcodes captured on mobile 

camera. Each image includes either one or several 
barcode tags. This dataset differs from the previous 
ones in greater variability of barcodes scales, complex 
backgrounds and different image distortions. Since 
there were some ground truth errors and 2D barcodes 
were not marked, we re-marked this dataset. For 
evaluation we chose a confidence threshold of 0.4 and 
used non-maximum suppression with a 0.3 threshold. 
The results are shown in Tab. 4. 

a)  b)  c)  
Fig 5. Detection results of YOLO-Barcode on images with: (a) many long-shaped barcodes, (b) three barcodes of different types, 

 (c) two small barcodes on the complex background 

Tab. 3. Results obtained on ZVZ-synth validation part  

 Model   Pretrained on  P R F Acc 
ResNet18U-Net [24]   ImageNet  97.1 96.3 96.7 n/a 
ResNet18U-Net [24]   -  97.0 95.6 96.4 n/a 
DilatedModel [24]   -  88.6 94.7 91.5 n/a 
YOLO-Barcode (*)   -  92.3 91.5 91.86 79.9 
YOLO-Barcode (**)   -  98.7 97.8 98.3 80.5 

a)  b)  c)  
Fig 6. Detection results of YOLO-Barcode on ZVZ-synth: (a) typical false negative error, (b) typical false positive error 

on the complex background, (c) correct result on image with many barcodes of different types and sizes 

Tab. 4. Results obtained on the popular benchmarks for barcode detection. 
P = precision, R = recall, Acc – classification accuracy. (*) + classfication, (**) EAN13 only 

Model Trained on 
  

Muenster ArTeLab ParcelBar 
P R Acc P R Acc P R 

DilatedModel(*) [22]   Private dataset [22]  80.5 98.7 n/a 83.9 99.7 n/a n/a n/a 
DilatedModel(**) [22]   Private dataset [22]  75.9 100.0 n/a 83.9 99.7 n/a n/a n/a 
YOLO-Barcode   ZVZ  88.1 99.2 99.71 84.6 97.8 99.7 91.03 93.2 
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The proposed model shows worthy results on WWU 
Muenster and slightly worse results on ArTeLab in terms 
of recall. It is related to the presence of partially covered 
barcodes. Also there are some GT errors in both 
benchmarks (Fig. 7).  

4.3. SE-barcode dataset 

Analyzing existing public datasets, we noticed a 
significant absence of images containing a large number 
of barcodes of different types, as well as a lack of images 
with very small barcodes. Such situations are widely 
common in various industries, such as retail and logistics, 
where it is very important that all codes are correctly 
detected and decoded. To fill the gap, we present the SE-

barcode dataset. It consists of 1813 images with ground 
truth. Some sample images from the SE-barcode dataset 
are shown in Fig. 8. The dataset is available for download 
at ftp://smartengines.com/yolo-barcode. 

It contains very small barcodes, faded and designed 
barcodes, and barcodes with different projective 
distoritions on complex background. For synthesis, we 
collected real images and replaced all barcodes with 
synthetic ones. The dataset consists of commonly used 
barcode types: UPCA, Code128, Code39, EAN13, 
UPCE, EAN8, ITF, DataMatrix, QR, Aztec and PDF417. 

Comparison of the proposed synthesized dataset 
with the other public datasets is presented on Fig. 9 
and Tab. 5. 

a)  b)  c)  d)  
Fig. 7. Detection results of the YOLO-Barcode on Muenster, ArTeLab and ParcelBar datasets. (a) ParcelBar, small barcodes on the 
complex background, (b) ArTeLab, big barcodes on the simple background, incorrect GT, (c) MuensterDB, partially closed barcode, 
(d) ArTeLab, many long-shaped barcodes, incorrect GT. Magenta denotes ground truth, green – correct detection result, red – false 

positive answer 

a)  b)  c)  
Fig.8. Examples from SE-barcode dataset: (a) many small codes of the same type,  

(b) codes of different types and shapes, (c) “designed” code 

Tab. 5. Comparison of all datasets by the number of barcodes per image 

Number of 
objects  

  Dataset 
1 2 3– 5 6– 10 >11 

ZVZ-real [24]  738 135 33 15 0 
MuensterDB [2] 595 0 0 0 0 
ArTeLab [3]  364 1 0 0 0 
ParcelBar [29]  530 257 56 1 0 
SE-barcode  1033 531 169 61 19 

 

a)  b)  
Fig. 9. Distributions of (a) objects shapes and (b) objects areas in public barcode datasets. 

Red denotes SE-barcode dataset, green – ZVZ, blue – ParcelBar, purple – ArTeLab, orange – Muenster 



YOLO-Barcode: towards universal real-time barcode detection on mobile devices Ershova D.M. et al. 

Компьютерная оптика, 2024, том 48, №4   DOI: 10.18287/2412-6179-CO-1424 599 

We evaluated YOLO-Barcode trained on ZVZ-real 
and ZVZ-synth on SE-barcode dataset with confidence 
threshold 0.4 and non-maximum suppression threshold 
0.3. Detection result were compared with bounding boxes 
of barcodes. Results are shown in Tab. 6. 

Typical precision errors are associated with false 
detections on various textures resembling barcodes. 
Typical recall error is a missing one barcode that is 
surrounded by a large number (more than 6) of other 
barcodes.  

Tab. 6. Results obtained on SE-barcode dataset 

 Model   Trained on  P R F 
YOLO-Barcode   ZVZ  91.83 92.4 92.11 

5. Performance 

To demonstrate the performance of YOLO-
Barcode, we measured the running time on the desktop 
and mobile processors. Running time is averaged over 
100 images. As the desktop processor, AMD Ryzen 
Threadripper PRO 5975WX was used. As the mobile 
processors, we used Apple A12 (Apple iPhone XR, 
2018) and Apple A16 (Apple iPhone 14 Pro Max, 
2022). The proposed model demonstrates the real-time 
detection rate on all the processors in the experiment. 
The results are presented in Tab. 7. 

Tab. 7. YOLO-Barcode performance result 

 CPU   Time (ms) 
AMD Ryzen Threadripper PRO 5975WX  27 
Apple A12  32 
Apple A16  20 

Conclusion 

In this paper, we presented the YOLO-Barcode - 
YOLO-based model for detecting barcodes of any types, 
shapes and scales, and their classification based on type. 
The proposed model is computationally efficient and can 
be applied on mobile devices for real-time barcode 
detection. It is approximately 4 times faster than 
DilatedModel [22], previous universal barcode detector 
for mobile devices based on semantic segmentation. We 
demonstrated that a YOLO-based approach is well suited 
for barcodes detection in hard scenes, which includes 
long-shaped and small barcodes. YOLO-Barcode can also 
correctly separate densely spaced barcodes, which are a 
bad case for the DilatedModel. The use of a deep learning 
model also ensures that the approach is easily scalable in 
the case of new types of barcodes appearing. To estimate 
quality, we used four public datasets: ZVZ, Muenster, 
ArTeLab and ParcelBar. The proposed model 
demonstrates high accuracy on all of them, and achieves 
state-of-the-art quality for the ZVZ-real dataset. To 
address the limitations of existing public datasets, we 
introduced the SE-barcode dataset, which contains 
images with hard real-life cases such as small barcodes or 
a large number of barcodes in a single image. The dataset 
is available for download at ftp://smartengines.com/yolo-

barcode. According to evaluation results on this dataset, 
the proposed model confirms solid performance in 
various capture conditions. The SE-barcode benchmark 
serves as a valuable resource for advancing barcode 
detection technology. 

It is important to note the low number of false 
positives, which is coupled with the ability to determine 
barcode types. This fact leads to an acceleration of frame 
processing time. The performance of the proposed model 
was measured on the Apple iPhone XR, Apple iPhone 14 
Pro Max and Ryzen Threadripper PRO 5975WX – the 
estimated time was 32 ms, 20 ms and 27 ms respectively. 
The model size is equal to 580 KB and suits well for 
mobile devices. 

The accuracy of the YOLO-Barcode on public 
datasets exceeds 97 % in terms of recall. In order to 
further improve the accuracy of barcode detection, it is 
necessary to develop new datasets that sufficiently reflect 
complex real-world cases. The preparation of such a 
dataset can be a topic for future work. Another direction 
for further research is the reduction of the resulting 
detector’s size. Despite the superiority in accuracy and 
performance over the DilatedModel, proposed model 
contains approximately 4.24 times more weights. The 
size of 580 KB is small enough for a deep learning 
model, but may still be too big for some mobile 
applications. Weights quantization for low-precision 
calculations or knowledge distillation may be a solution 
to create a lighter detector, but this requires further study, 
including how exactly such methods affect accuracy. 
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