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Abstract 

Computed tomography (CT) is widely utilized for analyzing internal structures, but the 
limitations of traditional reconstruction algorithms, which often require a large number of 
projections, restrict their effectiveness in time-critical tasks or for biological objects studying. 
Recently Monitored reconstruction approach was proposed for reducing the requirement of dose 
load. In this paper, there were investigated the advantages of using post-processing neural 
networks within a monitored reconstruction approach. Three algorithms, namely FBP, 
FBPConvNet, and LRFR, are evaluated based on their mean count of projections required for the 
achievement of target reconstruction accuracy. A novel training method specifically designed for 
neural network algorithms within the Monitored reconstruction framework is proposed. It is shown 
that the use of the LRFR approach allows one to achieve both a reduction in the number of 
measured projections and an improvement in the reconstruction accuracy over a certain range of 
stopping rules. These findings highlight the significant potential of neural networks to be used in 
the Monitored reconstruction approach. 
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Introduction 

Computed tomography (CT) is a widely used medical 
imaging technique that provides detailed cross-sectional 
images of the internal structures of the human body. It 
plays a crucial role in the diagnosis, treatment planning, 
and monitoring of various medical conditions. CT scans 
are acquired by rotating an X-ray source and detector 
around the patient, capturing a series of X-ray projections 
from different angles. These projections are then 
mathematically reconstructed into a 3D image using 
specialized algorithms. 

Traditional CT reconstruction algorithms, such as 
filtered back projection (FBP) [31], have been the gold 
standard for many years. These algorithms assume ideal 
imaging conditions and make simplifying assumptions 
about the X-ray acquisition process. However, in 
practice, CT imaging is often subject to limitations such 
as limited data [3, 4, 5, 6], noise [7, 8, 9, 10], and more 
[11, 12, 13, 14]. These factors can significantly degrade 
the quality of reconstructed images, making accurate 
diagnosis and interpretation challenging. 

In recent years, there has been a growing interest in 
applying neural networks to improve the reconstruction 
quality in CT imaging. Neural network-based algorithms 
leverage the power of deep learning models to learn 
complex mappings between the acquired data and the 
desired high-quality images. These models have 
demonstrated remarkable success in various image 
processing tasks, including image denoising [15], super-
resolution [16], and inpainting [17]. By leveraging the 

representational learning capabilities of neural networks, 
CT reconstruction algorithms can effectively compensate 
for the limitations of traditional methods and produce 
high-quality images from limited [18] or noisy data [19]. 

However, one significant challenge in CT reconstruction 
revolves around the inherent trade-off between 
reconstruction quality and considerations such as dose 
absorption and projection measure time. Traditional 
algorithms, while capable of delivering high-quality results, 
often demand a large number of projections, leading to 
increased dose absorption by the patient [10] or prolonged 
experimental durations. The two most widely used methods 
of dose reduction are: lowering the applied dose for one 
projection (by reducing the exposure time, X-ray tube 
voltage, etc.) and reducing the number of projections to be 
measured. The first method leads to increased noise in the 
projections and the second to linear artifacts in the 
reconstruction image. Usually, the number of projections is 
reduced to a fixed number regardless of the object structure. 
However, the authors in [1] showed that there is a more 
optimal scanning scheme called "monitored reconstruction". 
This approach views CT experiments as ”anytime“ 
algorithms, allowing them to be stopped when a 
predetermined stop rule is satisfied. The authors propose a 
new paradigm for CT experimentation, where projections 
are collected iteratively, and the reconstruction process is 
halted when the trade-off between reconstruction quality and 
projection measure cost reaches near-optimal levels. 
Remarkably, this approach demonstrates a remarkable 
ability to minimize X-ray absorption and experiment time 
while preserving reconstruction quality to a great extent. 
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On the other hand, neural network-based approaches 
have demonstrated the potential to achieve superior 
reconstruction quality compared to the reconstruction 
algorithms used in [1]. Numerous papers have proposed 
neural network solutions to address the issue of a limited 
number of projection angles. These methods can 
generally be categorized into three groups: 

1. Postprocessing methods: These techniques enhance 
the quality of reconstructed images without requiring 
access to the projections. [22]  
2. Preprocessing methods: These approaches process 
projections before applying the reconstruction 
algorithm. [20]  
3. Neural network reconstructors: These algorithms 
take the projections as input and produce a 
reconstruction image as output. [21]  
While all the mentioned methods can significantly 

enhance the quality of reconstruction within the specific 
dataset they were trained on, postprocessing networks are 
currently the closest to real-world applications. 

To address this challenge, we propose a Neural 
monitored reconstruction approach improved by a post-
processing neural network for CT reconstruction. The key 
idea is to combine a monitored reconstruction approach 
with algorithms of neural network reconstruction. The 
new approach provides an early stopping mechanism 
based on the confidence of the neural network predictions 
and a balance between reconstruction speed, quality, and 
dose absorbed by the patient. 

In this study, we aim to investigate the effectiveness 
of our anytime reconstruction approach compared to 
traditional algorithms and existing neural network-based 
methods. We will evaluate the reconstruction quality by 
projection count through experiments on the CT dataset 
“Low Dose CT Grand Challenge” [2]. This dataset was 
specifically designed to test neural network 
reconstructive algorithms in the presence of noise in the 

projections. It contains high-dose reconstruction images 
and the results of this study have the potential to 
significantly advance the field of CT imaging by 
providing improved reconstruction capabilities that can 
be tailored to specific clinical requirements. 

The structure of the article is presented as follows. 
Section 2 contains a description of the monitored 
reconstruction approach. Section 3 contains a description 
of the proposed approach for combining neural network 
reconstruction and monitored reconstruction. Section 4 
includes the results of the conducted experiments and 
comparisons. Section 5 contains a condemnation of the 
results obtained and the shortcomings of the proposed 
approach, as well as ideas for further research. Section 6 
contains the conclusion. 

1. Monitored reconstruction  

Fig. 1 contains FBP reconstruction images by varying 
counts of projections simulated from high-dose 
reconstructions from Low Dose CT Grand Challenge. 
High dose reconstruction was ground truth in Fig. 1. 
Fig. 3 shows the dependence between mean squared error 
(MSE) to measured projection count for 25 random 
objects from the Low Dose CT Grand Challenge dataset 
at different numbers of measured projections which also 
simulated (see section 2 for detailed experiment 
description). As can be seen in Fig. 2 and Fig. 3, for each 
fixed number of measured projections, the reconstruction 
error varies widely from object to object. Assume we 
require a reconstruction MSE of 0.01 for subsequent 
analysis. In an always-fixed number of projections to be 
measured, we would need to collect 107 projections per 
experiment to achieve the desired accuracy in only 90 
percent of the experiments shown in Fig. 3. If we were 
able to stop the measurement process just at the moment 
of achieving the desired accuracy of the reconstruction, 
we would collect on average only 66 projections. 

 
Fig. 1. Partial reconstruction images were created by the FBP algorithm from different counts of measured projections 
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Fig.  2. Graph of relationship between the number of measured projections and the mean-square error between the reconstructed 

images and ideal reconstructions for two objects shown in Fig. 1  

 
Fig. 3. Distribution of the reconstruction mean squared error from 

the number of measured projections for 25 randomly selected 
objects from the Low Doce CT Grand Challenge dataset 

The paper [1] explores the notion of the CT scanning 
procedure as an anytime/anydose algorithm. An anytime 
algorithm is one capable of being terminated at any point, 
yielding an approximate result whose precision correlates 
with the number of calculations executed. Such 
algorithms find application in support systems and 
computer vision, where they facilitate a trade-off between 
quality and the time expended to attain that quality. In 
contrast, an anydose algorithm shares similarities with 
anytime algorithms but halts at a specified X-ray dose 
applied to the object. 

Consider a scenario where the physical properties of 
the X-ray tomograph remain constant throughout the 
measurement process. These properties include detector 
resolution, X-ray tube voltage, and the object being 
measured, among others. The object being measured in 
this physical experiment is denoted as . During the 
measurement protocol, we observe a set of projections 
X = (X1, X2,…) obtained through the X-ray detector. 

The algorithm involves iteratively measuring 
projections. Let (x1, x2,…, xn) denote a subset of n 
measured projections at the n-th step of the anytime 
algorithm. The resulting reconstruction from these n 
projections is denoted as Rn (x1, x2,…, xn). Examples of 
partial reconstructions can be found in Fig. 1. The 

primary concept behind the monitored reconstruction 
algorithm is to determine the optimal point to stop 
collecting new projections, considering the trade-off 
between the cost of measuring new projections and the 
improvement in reconstruction quality. The cost of the 
projection may refer to both the measurement time and 
the X-ray dose transmitted to the object. 

Formally, the objective of the monitored algorithm is 
to minimize the loss function for partial reconstruction: 

1 1 1( ,..., ) = ( ( ,..., ), ) ( ,..., ).n n n n n nL x x R x x c x x    (1) 

Here, Ln represents the loss function for the n-th 
partial reconstruction, Rn denotes the reconstruction at 
step n,  (Rn

 (x1, x2,…, xn), ) is a function that quantifies 
the error between the partial reconstruction and the 
known object , and cn

 (x1, x2,…, xn) is the cost function 
associated with the measured subset of projections 
(x1,…, xn). The cost function can be defined, for example, 
in terms of measurement time or the amount of X-ray 
dose absorbed by the object. The paper discusses the 
properties of the loss function and proposes a 
reconstruction error function that facilitates early 
stopping. Multiple stopping rules are introduced to 
minimize the loss function at each step. In this paper, the 
adopted early stopping rule is defined as: 

1 2 < ,n nR R c    (2) 

where c denotes a predetermined constant that quantifies 
the cost of measuring projection. The cost for the nth 
reconstruction is expressed as cn

 = cꞏn. Furthermore, we 
define the error of the nth reconstruction,  (Rn, ), as the 
Euclidean distance between Rn and the optimal 
reconstruction RT:  (Rn, ) = ||Rn

 – RT||2. This study 
explores various strategies for ordering the corners that 
are to be assembled. For the purposes of this paper, we 
will assume that the projections from the entire set of 
possible projections are assembled at random angles, 
without loss of generality. The approach is implemented 
as an anytime algorithm, which is detailed in the pseudo-
code provided in Algorithm 1. 

1: Input: A set of projections that can be measured X, 
projection cost c, reconstruction algorithm A 
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2:Output: Partial reconstruction Rn (x1, x2,…, xn) 
3: Initialize n  1 
4: Collect initial subset of projections (x1) from X 
5: R 1

  Perform initial partial reconstruction  
6: while stopping criterion not met do 
7: n  n + 1 
8: Measure new projection xn from X 
9: Rn  Perform partial reconstruction from 
A(x1, x2,…, xn) 
10: if ||Rn – RT||2 < c then 
11: Break                ► Early stopping condition 
12: end if 
13: if (x1,… , xn) contains all elements from X then 
14: Break  
15: end if 
16: end while 

17: Return Rn (x1, x2,…, xn)  

2. Anytime modeling 

In this paper, simulated projections will be calculated 
using the Radon transform. As phantoms, full-dose 
reconstructions from the publicly available Low Dose CT 
Grand Challenge dataset [2, 23, 24, 25] will be utilized. 
The images in this dataset have dimensions of 512 by 512 
pixels, and it comprises approximately 16 000 human 
reconstruction images, including the torso, thorax, and 
human head CT reconstruction images. For experimental 
setup, 75 % of the images from this dataset will be 
allocated for neural network training, 100 images for the 
test dataset for testing anytime algorithm with or without 
neural networks, and the remaining images for the 
validation dataset for neural networks. 

 
Fig. 4. Anytime algorithm 

The space of all possible projections will be defined 
as a set of 360 projections spread across an angular range 
from 0 to 180 degrees. Within each iteration of the 
anytime algorithm, the projections will be ordered in a 
randomly determined order that remains constant 
throughout different partial reconstructions at the same 
step. Therefore, two distinct partial reconstructions at the 

same step of the anytime algorithm will be built from sets 
of projections measured at identical angles. 

To calculate the projections, the Radon transform was 
applied to a two-dimensional phantom. The Radon 
transform was used from the ASTRA Toolbox library 
[26]. A parallel beam scheme was used with 768 detector 
cells, and the ’cuda’ version of the Radon transform. The 
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size of the detector cell and the ideal image pixel were 
equivalent. 

Additionally, the noise was modeled on the values 
after the radon transform. The projection values ai 
obtained after the Radon transformation was used to 
generate a random variable using the following formula: 
ai '

 = ai
 + ai*normal (0, s), where ai ' is the resulting 

projection values, normal(0, s) – a random variable 
distributed according to the normal distribution with 
standard deviation s. In the framework of this work, the 
value s = 0.001 was used. 

3. Neural network monitored reconstruction 

Neural networks have exhibited impressive success in 
various image-processing tasks, including image 
reconstruction. In the field of CT imaging, neural network-
based reconstruction algorithms offer the potential to surpass 
the limitations of traditional methods, delivering superior 
performance in terms of speed and quality. 

Neural network methods for tomographic 
reconstruction are mainly built on two approaches. In the 
first approach, a neural network takes a set of measured 
projections as input and outputs a reconstruction (neural 
network reconstructors). In the second approach, the 
neural network takes as input a reconstruction image 
obtained by the classical method and improves it. This 
paper covers only the networks of the second approach, 
which were trained in the original works to improve the 
FBP reconstruction result. Two neural networks will be 
examined: FBPConvNet [28] and LRFR [29]. 

The first neural network, FBPConvNet, is a U-Net 
[28] applied to the few-view tomography problem. 
Mathematically, the operation of the neural network can 
be described as follows: 

= ( ).n n nR R NN R   (3) 

Here, Rn represents the improved reconstruction, and 
NN() denotes the function describing the transformation 
of the input image by the neural network. FBPConvNet 
takes a few-view reconstruction as input and calculates an 
additive component based on it, thereby enhancing the 
accuracy of the reconstruction. While this algorithm has 
demonstrated significant improvements in the accuracy of 
the few-view reconstruction, it has also exhibited 
instability when faced with changing angles or noise [30]. 
Nevertheless, FBPConvNet serves as a prominent 
benchmark for comparison in neural network-based 
tomographic reconstruction studies [29, 30, 21]. 

LRFR [29] is an enhancement of the FBPConvNet 
algorithm. It proposes an interpolation method for missing 
projections in few-view tomography tasks. Additionally, 
without departing from the reconstruction image space, it 
introduces an adjustment that avoids distorting the values of 
the original projections residing in the zero space of the 
Radon transform. This possibility is based on the central 
section theorem, which states that the frequency space of the 

reconstruction image contains the Fourier values of the 
projection image. The proposed algorithm has exhibited 
significant improvements in reconstruction accuracy while 
also increasing noise resilience. 

This paper focuses solely on post-processing 
algorithms, considering the time required for training 
neural network algorithms. In both proposed approaches, 
the neural networks were trained on a fixed set of 
projection angles. However, anytime reconstruction 
involves performing reconstructions with a continually 
increasing number of angles. This work does not explore 
the generalization of the neural network post-processing 
model to a wide range of low-view reconstructions. 

Consequently, the entire angular range of 360 angles 
was divided into 20 iterations of the anytime algorithm, 
with 18 projections collected for each new iteration. For 
each of these 20 iterations, a specific dataset of few-view 
reconstructions was prepared, and FBPConvNet and 
LRFR networks were trained on each dataset 
individually. Thus, a distinct neural network was utilized 
for each iteration of the anytime reconstruction, resulting 
in a total of 20 FBPConvNet networks and 20 LRFR 
networks being trained. These trained networks were 
used as reconstruction algorithms in the anytime 
algorithm (see Algorithm 1). 

4. Results 

To research the effectiveness of the reconstruction 
methods, we executed a range of experiments with 
varying projection measurement costs c, set between 10 –

 2 and 10 – 4. In these experiments, we fixed the cost c and 
conducted 100 anydose experiments. The outcomes, 
including the average number and standard deviation of 
measured projections, Mean Squared Error (MSE), 
Structural Similarity Index (SSIM), and the anydose loss 
function values, are summarized in Tab. 1 and 2. 

The evaluation encompassed a comparison of the 
following algorithms: Filtered Back Projection (FBP), 
FBPConvNet, and Learned Residual Fourier 
Reconstruction (LRFR). 

The data presented in the tables illustrate that the 
neural network-based algorithms (FBPConvNet and 
LRFR) exhibited enhanced reconstruction quality (by 
SSIM and MSE). This is further evidenced by the mean 
anytime loss metrics, which reflect the MSE of the 
reconstructions for each algorithm. Notably, the neural 
network algorithms demonstrated a marked improvement 
over the conventional FBP algorithm, as evidenced by 
their significantly reduced mean anytime losses, 
underscoring their superior performance in this context. 

The analysis reveals that FBPConvNet exhibits the 
best results at higher projection costs. However, it is 
important to note that beyond a certain threshold of the 
number of steps in the anytime algorithm, the 
performance of FBPConvNet becomes less consistent. 
This is evident as the second norm of the disparity 
between individual FBPConvNet reconstructions 
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frequently surpasses the predetermined cost. As a result 
of this inconsistency, there is a significant increase in the 

reconstruction time when using FBPConvNet, in contrast 
to the more stable LRFR algorithm. 

Tab. 1. Table of the results of simulated monitored reconstructions on 100 randomly selected test objects, where A represents FBP,  
B represents FBPConvNet, and C represents LRFR algorithms 

c Measured projection count MSE SSIM 
 A B C A B C A B C 

10 – 2.0 5411 360 374 0.060 0.006 0.008 0.24 0.65 0.65 
10 – 2.2 6311 386 4312 0.052 0.006 0.007 0.26 0.66 0.67 
10 – 2.4 7515 4413 5117 0.044 0.005 0.006 0.28 0.67 0.68 
10 – 2.6 8618 6026 6317 0.036 0.005 0.005 0.30 0.68 0.70 
10 – 2.8 10522 8740 7818 0.027 0.004 0.004 0.34 0.71 0.71 
10 – 3.0 12728 13353 9526 0.021 0.003 0.004 0.37 0.74 0.72 
10 – 3.2 15538 18765 12339 0.016 0.003 0.003 0.40 0.77 0.74 
10 – 3.4 19444 25883 16454 0.011 0.002 0.003 0.43 0.80 0.77 
10 – 3.6 23748 32764 22070 0.008 0.002 0.002 0.45 0.83 0.80 
10 – 3.8 27856 35718 28167 0.006 0.002 0.002 0.48 0.84 0.83 
10 – 4.0 32250 3600 33151 0.005 0.002 0.002 0.49 0.84 0.86 

 

Tab. 2. Table of Loss values from the table 1, where A 
represents FBP, B represents FBPConvNet, and C represents 

LRFR algorithms 

c Loss 
 A B C 

10 – 2.0 0.090 0.026 0.029 
10 – 2.2 0.074 0.019 0.022 
10 – 2.4 0.060 0.015 0.017 
10 – 2.6 0.048 0.013 0.014 
10 – 2.8 0.036 0.012 0.011 
10 – 3.0 0.028 0.011 0.009 
10 – 3.2 0.021 0.009 0.008 
10 – 3.4 0.016 0.008 0.006 
10 – 3.6 0.012 0.006 0.005 
10 – 3.8 0.009 0.005 0.004 
10 – 4.0 0.006 0.004 0.003 

This observation is critical as it highlights a trade-off 
between initial performance and long-term stability. 
While FBPConvNet shows promising results at the 
outset, particularly at higher projection costs, its tendency 
to exceed the set cost in prolonged processing phases 
leads to increased computational time. In contrast, LRFR 
maintains a more consistent performance, avoiding 
dramatic escalations in measurement time and dose. 

In our analysis, Fig. 7, 8 offer detailed insights. In 
Fig. 7, each point represents the number of projections 
used during the anytime experiment against the 
corresponding final reconstruction error. These figures 
demonstrate that neural network models consistently 
outperformed the FBP algorithm in accuracy across all 
experiments. However, it’s important to note that many 
experiments using FBPConvNet produced less optimal 
results, as indicated by the scattered points on the plots. 
This dispersion suggests instability in reconstructions 
using FBPConvNet meshes, highlighting challenges in 
dealing with constantly changing reconstructions. These 
less successful trials did not significantly enhance overall 
accuracy, as shown in the figures . 

Neural networks were trained using the following 
parameters: AdamW optimizer, batch size of 2, gradient 

vector normalization of 1, and learning rate of 1e-3 for 
FBPConvNet and 1e-4 for LRFR. The training process 
employed the early stopping rule, which halted training if 
the validation loss function did not improve for three 
consecutive epochs. Each epoch consisted of 
approximately 8800 batches. To mitigate strong 
overfitting, few-view reconstructions, and projection 
noise were generated dynamically during training. 

FBPConvNet networks were trained for 5 to 9 epochs, 
while LRFR training required 3 to 4 epochs for 
convergence. 

The training was conducted on a computer equipped 
with two Nvidia video cards: Titan Xp and GTX 1080. 
The distributed data-parallel algorithm implemented in 
the PyTorch Lightning [27] library was utilized to 
distribute a batch of 2 images between the two video 
cards. The training time per epoch ranged from 30 to 60 
minutes for FBPConvNet and from 40 minutes to 150 
minutes for LRFR. 

Fig. 5 showcases examples of partial reconstructions 
obtained from the same projections using both the FBP 
algorithm and the trained neural networks. The figure 
clearly illustrates that the neural network reconstruction 
algorithms closely approach the ideal reconstruction 
image. In this paper, the specific values of the 
reconstruction quality metrics for each of the 40 neural 
networks are not provided, as the cumulative effect will 
be evident within the context of anytime reconstruction 
with a neural network. 

Once all neural networks were trained, they were 
employed as reconstruction algorithms for the respective 
stages of anytime reconstruction. Fig. 6 illustrates the mean 
squared error (MSE) reconstruction errors for the partial 
reconstructions of four different objects from the test dataset. 
The results clearly demonstrate that the accuracy of neural 
network reconstruction surpasses that of classical algorithms 
by approximately an order of magnitude. However, it should 
be noted that neural network anytime algorithms no longer 
exhibit monotonic convergence of MSE. 
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Fig. 5. Partial reconstructions generated using different projection counts by the FBP, FBPConvNet, and LRFR reconstruction 

algorithms 

To provide a detailed analysis of the obtained 
results, Fig. 7, 8 have been included for c = 0.5*10 – 3. 
These figures present a multitude of data points, each 
offering insights into the reconstructions carried out at 
different stages. In Fig. 7, each point corresponds to 
the number of projections taken during a specific time 
interval of the experiment, along with the final 
reconstruction error. Fig. 8, on the other hand, displays 
each point as the ratio of the number of received 
projections to the value of the anytime loss function, 
as defined in formula (1). As can be observed, a 
significant number of FBPConvNet breakpoints are 
located near the maximum allowed number of 
projections (360 projections), which again shows the 
instability of the results of this network for low 
projection cost values. And as can be seen from the 
figures, such failed experiments did not lead to a 
significant increase in accuracy. 

5. Discussion 

The present study employed an approach that, upon 
reflection, can be considered inefficient due to the 
requirement of training a separate neural network for 
each fixed set of projection angles. This approach not 
only demands substantial computational resources for 
training but also restricts the flexibility to modify the 
selected sequence of angles in the anytime algorithm after 
training. It is important to acknowledge that there can be 
existing or more efficient neural approaches that can 
achieve high-quality reconstructions with any projection 
angles set using a single neural network. 

For instance, postprocessing neural networks, such as 
FBPConvNet, offer a viable alternative that only 
necessitates a change in the training methodology. 
Additionally, other approaches, such as equally 
distributed sequences of projection angles or selecting 
angles based on their information content, were not 
explored in this study. These alternative approaches could 
serve as a tangential extension to the current research, 
offering potential avenues for further exploration and 
development. 

 
Fig. 6. Mean squared errors of partial reconstruction provided 

by FBP, LRFR, FBPConvNet with different projection count  

 
Fig. 7. Point cloud showing the result of anytime 

reconstructions with c = 0.5*10 – 3 for 100 different objects 
using the FBP, FBPConvNet, LRFR reconstruction algorithms. 
The position of each point describes the number of measured 

projections up to the mean squared error of final reconstruction 

Conclusion 

This paper addressed the problem of enhancing the 
anytime reconstruction method using neural network 
models. The findings demonstrated that neural network 
algorithms can significantly improve the accuracy of 
reconstructions by nearly an order of magnitude, while 
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also moderately reducing the number of projections 
necessary for the reconstruction process. However, it is 
important to note that not all neural network algorithms 
are suitable for integration into the anytime 
reconstruction framework. Specifically, weakly robust 
algorithms like FBPConvNet may inadvertently lead to 
an increase in X-ray dose, despite the advancements in 
reconstruction accuracy. 
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