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Introduction 

Multiset grammars (MGs) and multiset metagrammars 
(MMGs), introduced in [1, 2] and thoroughly described in 
[3], form a deeply integrated multigrammatical frame-
work (MGF) being a mathematical toolkit and a 
knowledge representation model, originating from the 
theory of multisets [4] and suitable for solution of a wide 
spectrum of complicated problems from systems analysis, 
operations research and digital economy areas. 

Investigating real capabilities of this relatively novel 
formalism, it would be reasonable to compare it by its de-
scriptive power with formal systems already known in the 
modern computer science. Such comparison was done in 
[1, 2, 3], where Petri nets, systems of vectors addition-
substitution, and augmented Post systems were consid-
ered, as well as various classes of problems of the opera-
tions research, which interconnections with the MGF 
were studied; namely, it was demonstrated how specific 
problems formulated by means of the classical operations 
research toolkit would be represented by application of 
the MGF. 

However, the aforementioned list would be definitely 
incomplete, if not to consider such widely applied and in-
tensively developed artificial intelligence (AI) tool as arti-
ficial neural networks (ANNs) which for short will be re-
ferred below as neural networks (NNs). 

This paper is dedicated to multigrammatical model-
ling of neural networks as a way of a comparative study 
of the MGF and NNs. Our approach is fully consistent 
with foundations of mathematical logic, where two clas-
ses of entities are considered – axiomatic systems (first 
order predicate calculus [5], Horn clauses [6, 7], gram-
mars [8, 9], Post systems [10], augmented Post systems 
[11 – 13] etc.) and devices, usually considered as compu-
tational models (Turing machines [14], Petri nets [15], 
systolic structures [16], cellular automata [17], etc.), and 
the last enable more or less controlled and /or parallelized 
application of inference rules to input data for achieving 
objectives. Artificial neural networks from the early times 
[18, 19] were announced as a mathematical model of a 

human brain and today are considered as a flexible com-
putational model with a massive parallelism, so a lot of 
comprehensive neural-based solutions of various classes 
of complicated practical problems were designed and 
continue to be on search: computer vision, speech recog-
nition, natural language understanding, radio signals pro-
cessing, robots control, healthcare etc. [20 – 27]. The 
most attractive feature of NNs is their relatively simple 
learning from training data sets (TDSs) [28 – 33]. By this 
feature NNs are much more convenient in application 
than inference-based engines demanding on preparation 
and maintenance of large knowledge bases by experi-
enced knowledge engineers. At the same time NNs are ra-
ther vulnerable to criticism on resilience to fluctuations in 
training data sets: to what extent would change a logic of 
a trained NN operation if some part of a training data set 
(in the simplest case, the only one training sample) would 
be replaced? And, at all, how representative is an applied 
TDS to create a neural-based device, applicable to any of 
situations which may occur in future, and would this de-
vice correctly operate in such situations? These and a lot 
of similar questions arise after acquisition of some expe-
rience in application of trained NNs, and not by the 
chance the most advanced scholars express their worry 
about possibility of the unpredicted behavior of an NN-
based AI [34, 35].  

To deal with the whole spectrum of issues associated 
with NNs deep learning and post-training application, it 
would be rational to consider artificial neural networks 
not alone but regarding already known objects of mathe-
matical logic and knowledge engineering, and some steps 
in this direction are already known: neural Turing ma-
chines as well as Chomsky grammars being a very pecu-
liar examples [36, 37]. The cited papers demonstrate how 
NNs may be applied to model classical objects and thus 
prove their universalism in the sense of the theoretical 
computer science. Our paper follows the inverse direction: 
how axiomatic systems (namely, MGs and MMGs) may 
be applied in order to model NNs. Such approach may 
open some new research opportunities unavailable on the 
current device-based groundwork of NNs, and in this quali-
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ty it may be assessed as some very modest contribution to 
primary logical foundations of neural networks.  

As it will be shown below in the sections 2 and 3, any 
feed-forward neural network (FNN) may be represented 
by a multiset grammar implementing the same mapping 
from a set of possible input collections to a set of possible 
output collections of this FNN, and any recurrent neural 
network (RNN) – by a sequence of MGs with one and the 
same scheme and kernels being sums of a multisets, rep-
resenting current steps inputs and previous steps feed-
backs. As even more inquisitive result, which is described 
in the section 4, logics of deep learning of any FNN may 
be also modelled on a regular basis by a set of multiset 
metagrammars with multiplicities-variables, representing 
domains of possible weights of connections between NN 
nodes, and any such MMG is induced by one training 
sample. So a set of possible collections of the aforemen-
tioned weights, corresponding the whole training data set, 
is a result of intersection of similar sets, corresponding 
separate training samples. The most interesting result of 
this paper, considered in the section 5, is representation of 
logics of deep learning of RNNs by a sequence of one 
MMG, corresponding to the first step (the first training 
sample), and n-1 MGs, corresponding to the second and 
following steps (training samples). A set of collections of 
weights satisfying a whole data set is obtained from a re-
sult of the first step by exclusion such collections, which 
do not correspond at least one of the following n-1 train-
ing samples. Finally, possible developments of the con-
sidered approach to multigrammatical modelling of NNs 
are discussed in the section 6. The Appendix contains a 
short introduction to the MGF. 

1. Multigrammatical representation  
of feed-forward neural networks 

Any artificial feed-forward neural network [30 – 33] 
may be represented by an acyclic weighted oriented graph 
which in turn may be represented as a ternary relation  

  ,G A A W    (1) 

where A is a set of nodes (neurons), and W is a set of pos-
sible weights of nodes connections (synapses), so 
ai, aj, wijG means that a connection (synapse) from ai to 
aj has a weight wij. Logics of operation of an FNN, along 
with its topology, is determined by a vector H which 
components hi are threshold values, so if a sum of 
weights of active input connections of a node ai is greater 
than hi then a node ai is activated, and its output connec-
tions obtain the value 1. Such feed-forward propagation is 
done until an output layer which connections represent a 
result of operation of an FNN G, H. So, in fact, this neural 
network implements mapping from a set of binary vectors 
of values of input connections to a set of binary vectors of 
values of output connections. Let us construct some mul-
tiset grammar S (G, H) = v0, R which would implement the 
same mapping. 

We shall include to a set of objects A of this MG as 
subsets a set A of nodes of an FNN G, H, a set Ain of its 
inputs and a set Aout of its outputs. Rules of this MG will 
be constructed as follows.  

Let 1{ , ..., }
i

i i
i mA a a A   be a subset of set of nodes of 

a considered FNN, connected with a node ai by his output 
connections; 1 , ..., i i

mw w  be weights of the aforementioned 
connections; and hi be an input threshold value of this 
node. We shall define for any such node a rule  

   1 1 , , ,
i i

i i i i
i i m mh a w a w a      (2) 

and this operation will be done for all nodes aA. Inputs 
will be represented by rules  

   1 1 ,i ja  a  (3) 

where ai is an input and aj is a node belonging to an input 
layer Ain

  A (in a general case one input may be connect-
ed to several nodes but a node may be connected with the 
only input). Outputs will be represented by rules 

   1 ,i i jh a  a  (4) 

where aj is an output and aiis a node belonging to an out-
put layer Aout

  A (we also allow that one node may be 
connected to several outputs but one output may be con-
nected to the only node). 

As it is acceptable in the MGF, values hi and i
jw  may 

be any rational numbers [3].  
Statement 1. Let Aout

 = {aj1,, ajl}  Aout be a set of 
outputs of an FNN G, H activated by a set of inputs 
Ain

 = {aj1,, ajm}  Ain, and S (G, H) =1*Ain, R where R is 
a set of rules defined by (2). Then 

{1*Aout}=V̄S(G, H)
 ⩀1*Aout. (5) 

Proof. As seen, a kernel of an MG S (G, H) is a multi-
set containing multiobjects 1ai, where aiAin. Following 
semantics of multisets generation, any rule with the left 
part {hi

  ai} at any generation step would be relevant to a 
current multiset containing a multiobject h  ai if and only 
if hi

  h. From the NNs theory point of view application of 
a relevant rule to a current MS is equivalent to activation 
of a neuron ai by an input which value h exceeds a 
threshold value hi of this neuron. From the other side, the 
aforementioned value would be a sum of multiplicities 
accumulated as a result of application of rules having 
multiobjects w  ai in their right parts. However, multisets 
generated by application of a scheme R would contain not 
only multiobjects which objects enter a set Aout, but also 
other multiobjects which multiplicities are not sufficient 
for relevancy (and thus application) of some one rule. 
From the other side, multiplicities of objects, entering a 
set Aout, may be greater than 1 due to possibility of multi-
ple application of one and the same rules in an MSs gen-
eration process (this is equivalent to multiple activation 
of one and the same node, and such feature is in a general 
case possible in a multigrammatical model of an NN). 
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However, due to the fact, that a scheme R of an MG v0, R 
includes no more than one rule with the left part containing 
a multiobject ai, a set V̄S(G, H) generated by this MG, will 
contain the only TMS. Hence, a set V̄S(G, H)

 ⩀1*Aout in any 
case will contain the only terminal multiset which multi-
objects are 1ai, where aiAout. Returning to a modelled 
neural network, it means that this TMS represents nothing 
but a set of activated output nodes of this NN, i.e. Aout. ■ 

This statement confirms that a constructed FMG 
implements the same mapping from a set of values of 
inputs to a set of values of outputs as an initial NN. 

Due to application of the most general basic graph 
representation of FNNs all the said is true for any 
particular case of such neural networks.  

Example 1. Consider the multi-layer perceptron de-
picted in Fig. 1. This FNN contains the input layer (nodes 
a1, a2, a3), the hidden layer (nodes b1, b2, b3, b4), and the 
output layer (nodes c1, c2).  

 
Fig. 1. Modelled multi-layer perceptron’s topology  

Tab. 1. Input layer of modelled multi-layer perceptron  

a1 
b1 b2 b3 b4 
1 3 2 4 

a2 
b1 b2 b3 b4 
1 5 1 1 

a3 
b1 b2 b3 b4 
2 1 3 4 

Tab. 2. Hidden layer of modelled multi-layer perceptron  

b1 
c1 c2 
3 2 

b2 
c1 c2 
1 1 

b3 
c1 c2 
2 4 

b4 
c1 c2 
3 1 

Tab. 3. Threshold values of modelled multi-layer perceptron  

a1 a2 a3 b1 b2 b3 b4 c1 c2 
1 1 1 4 3 3 4 15 6 

Weights of connections from the nodes entering the 
input layer to the nodes entering the hidden layer are pre-
sented in Table 1., the same data regarding the hidden 
and the output layers respectively – in Table 2., and the 
threshold values of all nodes – in Table 3. We use here 
integer values of weights for shortening a record; anyone 
who would desire to use rational numbers may apply 0. n 
instead of n (for example, 0.5 instead of 5). 

According to (2) – (4), this FNN may be represented 
by the scheme R containing following rules, which names 
are divided from their bodies by the delimiter “:”: 

   
   
   
   
   
   
   
   
   
 

1 1 1

2 2 2

3 3 3

4 1 1 2 3 4

5 2 1 2 3 4

6 3 1 2 3 4

7 1 1 2

8 2 1 2

9 3 1 2

10 4 1

: 1 1 ,

: 1 1 ,

: 1 1 ,

: 1 1 ,3 ,2 ,4 ,

: 1 1 ,5 ,1 ,1 ,

: 1 2 ,1 ,3 ,4 ,

: 4 3 ,2 ,

: 3 1 ,1 ,

: 3 2 ,4 ,

: 4 3

r a

r a

r a

r a b b b b

r a b b b b

r a b b b b

r b c c

r b c c

r b c c

r b c

  

  

  

     

     

     

   

   

   

  

a

a

a

 
   
   

2

11 1 4

12 2 5

,1 ,

: 15 1 ,

: 6 1 .

c

r c

r c



  

  

a

a

 

Let the input nodes a1 and a3 are activated. Then the 
multiset grammar  

   1 3, 1 ,1 , ,S G H R  a a  

is equivalent to this FNN. Consider generation of the set 
of terminal multisets by application of the scheme of this 
MG to its kernel: 

 

 

 

 

 

 

 

 

1

3

4

6

8

9

10

10

1 3

1 3

1 3

1 2 3 4 3

1 2 3 4

1 2 3 4 1 2

1 2 3 4 1 2

1 2 3 4 1 2

1 2 3

1 ,1

1 ,1

1 ,1

1 ,3 ,2 ,4 ,1

3 ,4 ,5 ,8

3 ,1 ,5 ,8 ,1 ,1

3 ,1 ,2 ,8 ,3 ,5

3 ,1 ,2 ,4 ,6 ,6

3 ,1 ,2 ,4

r

r

r

r

r

r

r

r

a

a a

b b b b a

b b b b

b b b b c c

b b b b c c

b b b b c c

b b b

  

  

  

     

    

      

      

      

   

a a

a

 

 
 

10

12

4 1 2

1 2 3 1 2

1 2 3 1 2 5

,6 ,6

3 ,1 ,2 ,9 ,7

3 ,1 ,2 ,9 ,1 ,1

r

r

b c c

b b b c c

b b b c c

  

     

     a

 

  1 2 3 1 2 53 ,1 ,2 ,9 ,1 ,1b b b c c     a ⩀ 

     4 5 4 51* , 0 ,1 .  a a a a  

As seen, the output a5 of the considered FNN, activat-
ed by inputs a1 and a3, will be activated as a response.■ 

We have applied the only sequence of rules because 
the order of their selection at any current step of genera-
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tion is immaterial. A concerned reader may apply any 
other sequence to confirm the identity of obtained results. 

Let us consider now the most general and powerful 
class of NNs, namely, recurrent neural networks. 

2. Multigrammatical representation of recurrent neural 
networks 

Any artificial recurrent neural network may be repre-
sented by an weighted oriented graph which has at least 
one cycle, i.e. a sequence of connections starting and fin-
ishing at some node of this graph [31, 32, 33]. Topology of 
any such network similarly to FNNs may be represented as 
a ternary relation (1), but an attempt to apply the same 
technique of multigrammatical representation of neural 
networks as above would fail because dynamics of RNN 
operation presumes not a single input-output step (finite 
impulse response, FIR) but “upon a time” operation includ-
ing a sequence of such steps (infinite impulse response, 
IIR) in such a way that outputs of some neurons being a re-
sult of a previous step serve as inputs of neurons of an NN 
at the current step, and thus such outputs work as some 
kind of memory. To model such operation, we shall pro-
pose below some more sophisticated technique. 

Consider a rule    1 1 , ,
i i

i i i i
i i m mh a w a w a     , where 

some i
ja  is an object representing a node belonging to 

some of previous layers already passed inside a current 
step of forward propagation initiated by activation of in-
put nodes of a network. If we would try to model opera-
tion of such network without any changes regarding the 
FNN case, then we would obtain a cyclic multiset gram-
mar generating in a general case an infinite set of re-
sponses given one input set. To avoid such senseless re-
sult we shall replace every object i

ja  entering the right 
part of some rule and possessing a described above fea-
ture by a new object i

ja  distinguished from i
ja  and from 

all other objects. A set of such new objects called feed-
back objects will be denoted A+.  

A multiset grammar  , ,inS G H v R , which is, due 
to the aforementioned transformation, acyclic and non-
alternating, enables generation of a response vout of a 
network at a current step in accordance with the State-
ment 1. At the same time objects, being elements of a set 
A+ and entering a set 

, ,
inv RV  

enable transfer of information, obtained at a current step, 
to the next step of operation of a considered NN, and this 
is implemented by application of a new MG 

 ' , , ,G H
inS v v R  (6) 

where inv  is an input coming at the next step, and  

  ,inv Rv V  ⩀ * .N A  (7) 

(By this technique we can select from a set of TMSs 
generated by an MG vin, R all multiobjects which objects 

enter a set A+ because, let us remind, for any multiplicity 
n min{n, N }= n). We shall call a multiset v+ a feedback. 
As seen from (6) – (7), a generation step modelling the 
next step of operation of a considered NN starts from a 
kernel including new input information as well as infor-
mation obtained at the previous step; the last may be ap-
plied as soon as multiobjects, representing nodes belong-
ing to a recurrently activated layer, would appear in a 
generated multiset with multiplicities sufficient for appli-
cation of proper rules (thus, for activation of correspond-
ing nodes). Naturally, in a general case a number of such 
recurrently activated layers may be greater than one.  

Now, generalizing (6) – (7), we may write equations 
determining a result of the i-th step of operation of a con-
sidered NN. It is obtained by application of an MG 

  1, , ,i i
i inS G H v v R

   (8) 

so 

   ,i

i
out S G Hv V ⩀ 1* .outA  (9) 

   ,i

i
S G Hv V  ⩀ * .N A  (10) 

As seen, 1iv 
  in (8) really works as a memory, ena-

bling transfer of results, obtained at previous steps, to a 
current step.  

Statement 2. An infinite impulse response of any arti-
ficial recurrent neural network G, H may be represented 
by application of a sequence of multiset grammars deter-
mined by (8) – (10). ■ 

A special proof of this statement is redundant because 
of the detailed description of logics of construction of the 
aforementioned sequence. 

Example 2. Consider the recurrent neural network 
depicted in Fig. 2. This NN contains the input layer 
(nodes a1, a2, a3, two hidden layers (the first – nodes 
b1, b2, b3 – and the second – nodes c1, c2), as well as the 
output layer (nodes d1, d2).  

 
Fig. 2. Modelled recurrent neural network’s topology 

Tab. 4. Input layer of modelled recurrent neural network  

a1 
b1 b2 b3 
3 2 1 

a2 
b1 b2 b3 
1 4 3 

a3 
b1 b2 b3 
2 1 4 



Multigrammatical modelling of neural networks Sheremet I.A.  

Компьютерная оптика, 2024, том 48, №4   DOI: 10.18287/2412-6179-CO-1436 623 

Tab. 5. The first hidden layer of modelled recurrent neural 
network  

b1 
c1 c2 
1 3 

b2 
c1 c2 
2 2 

b3 
c1 c2 
4 1 

Tab. 6. The second hidden layer of modelled recurrent neural 
network  

c1 
d1 d2 b1 b2 b3 
1 2 3 2 4 

c2 
d1 d2 b1 b2 b3 
2 3 1 1 3 

Tab. 7. Threshold values of modelled recurrent neural network  

a1 a2 a3 b1 b2 b3 c1 c2 d1 d2 
1 1 1 3 4 5 8 4 11 9 

As seen, this NN is recurrent because outputs of the 
nodes c1, c2 of the second hidden layer are connected to 
the nodes b1, b2, b3 of the first hidden layer. Weights of 
connections from the nodes entering the input layer to the 
nodes entering the first hidden layer are presented in Ta-
ble 4., similar information regarding the second hidden 
layer and the output layer – in Tab. 6, and the threshold 
values of all nodes – in Tab. 7.  

According to (6) – (10), this RNN may be represented 
by the scheme R containing following rules (here for 
simplification of a record we shall use bi for denotation of 
feedback objects): 

   
   
   
   
   
   
   
   
   
 

1 1 1

2 2 2

3 3 3

4 1 1 2 3

5 2 1 2 3

6 3 1 2 3

7 1 1 2

8 2 1 2

9 3 1 2

10 1 1 2 1 2

: 1 1 ,

: 1 1 ,

: 1 1 ,

: 1 3 ,2 ,1 ,

: 1 1 ,4 ,3 ,

: 1 2 ,1 ,4 ,

: 3 1 ,3 ,

: 4 2 ,2 ,

: 5 4 ,1 ,

: 8 1 ,2 ,3 ,2

r a

r a

r a

r a b b b

r a b b b

r a b b b

r b c c

r b c c

r b c c

r c d d

  

  

  

    

    

    

   

   

   

     

a

a

a

b b 
   
   
   

3

11 2 1 2 1 2 3

12 1 4

13 2 5

,4 ,

: 4 2 ,3 ,1 ,1 ,3 ,

: 12 1 ,

: 11 1 .

r c d d

r d

r d



      

  

  

b

b b b

a

a

 

Let the input nodes a2 and a3 are activated at the first 
step of the RNN operation. Then the multiset grammar  

   1 2 3, 1 ,1 , }S G H R  a a , 

models this first step enabling generation of the set of 
terminal multisets by application of the scheme of this 
MG to its kernel: 

 

 

 

 

 

 

 

 

2

3

5

6

7

9

10

11

2 3

2 3

2 3

1 2 3 3

2 3 1 2

2 3 1 2

2 3 1 2

2 3 1 2 1 2 1 2 3

2 3 1 1 2

1 ,1

1 ,1

1 ,1

1 ,4 ,3 ,1

5 ,7 ,4 ,1

1 ,7 ,6 ,3

1 ,2 ,10 , 4

1 ,2 , 2 , 4 ,1 ,2 ,3 , 2 ,4

1 ,2 , 2 ,3 ,5 ,4

r

r

r

r

r

r

r

r

a

a a

b b b a

b b c c

b b c c

b b c c

b b c c d d

b b c d d

  

  

  

    

    

    

    

         

    

a a

a

b b b

 
 

12

1 2 3

2 3 1 1 2 1 2 3 4

,3 ,7

1 ,2 , 2 ,1 ,5 ,4 ,3 ,7 ,1 .

r

b b c d d

   

        

b b b

b b b a

 

So, according to (9) – (10), 

 1
4 5 1 ,0 ,outv   a a  

 1
1 2 34 ,3 ,7 .v    b b b  

As seen, the output a4 of the considered recurrent NN, 
activated by inputs a2 and a3, will be activated as a re-
sponse after the first step of its operation, and the feed-
back of the first step will be {4  b1, 3  b2, 7  b3}. 

Now let at the second step of the RNN operation the 
input nodes a1 and a2 be activated. Then the multiset 
grammar  

   2 1 2 1 2 3, 1 ,1 ,4 ,3 ,7 , ,S G H b b b R     a a   

models this second step enabling generation of the set of 
terminal multisets by application of the scheme of this 
MG to its kernel: 

 
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 

 

 

 

1

2
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1 ,7 ,5 ,8
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2 ,9 ,11 ,2 ,6

2 ,5 ,11 ,4 ,8

r

r

r

r

r

r

r

b b b

a b b b

a a b b b

a b b b
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b b b c

     

     

     

    

   

     

     

    

a a

a

 

 

 

 

8

9

9
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2
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1 2 3 1 2
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2 ,1 ,1 ,14 ,12

r

r

r

r

c

b b b c c

b b b c c

b b b c c



     

     
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 

 

 

11

11

11

1 2 3 1 2 1 2 1 2 3

1 2 3 1 2 1 2 1 2 3

1 2 3 1 2 1 2 1 2 3

1 2 3 1 1 1 2

2 ,1 ,1 ,6 ,12 ,1 ,2 ,3 ,2 ,4

2 ,1 ,1 ,6 ,8 ,3 ,5 ,4 ,3 ,7

2 ,1 ,1 ,6 ,4 ,5 ,8 ,5 ,4 ,10

2 ,1 ,1 ,6 ,7 ,6 ,5 ,13

r

r

r

b b b c c d d

b b b c c d d

b b b c c d d

b b b c d

          

          

          

       

b b b

b b b

b b b

b b b 3 5,1 ,a

 

so 

  2
4 50 ,1 ,outv   a a  

 2
1 2 36 ,5 ,13 .v    b b b  

As seen, the output a5 of the considered recurrent NN, 
activated by inputs a1 and a2, will be activated as a re-
sponse after the second step of its operation. The feed-
back of the second step will be {6  b1, 5  b2, 13  b3}. All 
following steps are executed in the same manner.■ 

Now we shall consider key issues of multigrammati-
cal modelling of NNs deep learning. A basic tool for this 
topic will be multiset metagrammars. Let us begin from 
feed-forward neural networks. 

3. Multigrammatical modelling of feed-forward neural 
networks deep learning  

We shall consider deep learning issues on the back-
ground of the above introduced representation of an NN 
as a couple G, H. Namely, instead of a weight we shall 
mark any connection by a unique variable, and a task will 
be, starting from a training data set (TDS) being a set of 
training samples input, output, to assign to these variables 
such weights which would satisfy this TDS, i.e. all train-
ing samples entering this set.  

We shall represent a trained FNN by a scheme R of a 
multiset metagrammar including metarules  

   1 1 , , .
i i

i i i i
i i m mh a a a        (11) 

where i
j  , i =1,..., mi, is a variable which domain is 

0, i
jN   , and i

jN  is a maximal possible weight of a con-
nection from an output of a node ai to an input of a node 

i
ja  (by this we assume that in a general case any connec-

tion may have its own maximal possible weight). In the be-
low considerations we shall operate a total set {1,..., M} 
of variables entering a scheme R and identified by lower 
indices (M = |G| is a number of edges of a graph G, i.e. a 
number of weights of connections in a modelled NN). Until 
it will be considered a general case, we assume, that 
threshold values of nodes are constants hi. 

Let a TDS be  1 1, , , , ,n n
in out in out T A A A A  where  i

inA  is 
a set of input nodes activating a considered trained FNN 
whilst i

outA  is a set of its output nodes activated as a re-
sponse of this network to an input i

inA . We shall put in 
compliance with a training sample ,i i

in outA A  a multiset 
metagrammar  

 , 1* , , ,i
i inS G H R F A  (12) 

where 

 
1

0 .
G

k k

k

F N


 
     
 
  (13) 

As everywhere above, a kernel of this MMG is a mul-
tiset containing multiobjects of the form 1  a each such 
MO corresponding to one activated input of a considered 
trained NN. A filter of this MMG is a set of variables dec-
larations 0  k

  Nk each defining a domain [0, Nk] of a 
variable k. 

Evidently, a collection of weights of connections of 
this NN represented by a multiset 

 1 1, , , M Mw n n v        where  

 , ,
iS G Hv V   

satisfies a training sample , ,i i
in outA A  if  

 ,iS G HV ⩀  1* 1* .i
out outA A  (14) 

In this case a whole set Wi of multisets, representing 
collections of weights of connections of a considered 
trained NN, satisfying a training sample , ,i i

in outA A  is 
nothing but 

 ,ii S G HW V ⩀ * .N Γ  (15) 

Now the task is to select from this set all TMSs which 
satisfy not only this one training sample but all training 
data set T. Evidently, a set WT of collections of weights 
of connections of a trained NN satisfying all TDS, i.e. all 
training samples 1 1, , , ,n n

in out in outA A A A , would be a result 
of intersection of all sets W1,…, Wn: 

1

n

i

i

W


TW  (16) 

Let us note once more, that a multiset 
 1 1, , M Mn n      TW  defines that the 1-th, …, the M-
th connections of a trained NN would have weights 

1, ,  Mn n   respectively. In a general case there may be 
|WT|  1 collections of weights satisfying a TDS. At the 
same time it is possible that WT

 =  {}, that means a TDS 
is contradictory regarding a considered FNN, and some 
additional technique would be developed and applied to 
such case. 

Until now it was presumed that threshold values of 
nodes were constants hi. However, generalization of this 
case on a priori unknown threshold values is quite simple. 
It is sufficient to represent a trained NN by a scheme R of 
a multiset metagrammar including metarules  

   0 1 1 , , .
i i

i i i i i
i m ma a a         (17) 

where variables i
j , i =1,..., m, have the same sense as in 

(11) whilst 0  i is a variable which domain is 00, iN   , and 
0
iN  is a maximal possible threshold value of an i-th node. 

All the rest considerations are the same as above. 
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Statement 3. A result of deep learning of any feed-
forward neural network G, H by a training data set 

 1 1, , , ,  n n
in out in out T A A A A may be represented by a set 

WT determined by (16).■ 
A proof of this statement is unnecessary due to the 

above detailed description of accumulation of a set WT. 
All the said was associated with feed-forward neu-

ral networks. Let us consider now a general case of re-
current NNs. 

4. Multigrammatical modelling of recurrent neural 
networks deep learning  

We shall assume that a complete training data set 
 1 1, , , ,n n

in out in out T A A A A , where n is a number of steps 
of operation of a trained recurrent neural network, is ap-
plied to it in such a way that the i-th training sample is 
associated with the i-th step of operation of this RNN. In 
order to make a proposed technique of modelling deep 
learning of RNNs more natural, compact and understand-
able we shall use not analytic, as above, but algorithmic 
representation of its logic. The last will be represented by 
a function RNNDL (Recurrent Neural Network Deep 
Learning) which inputs are a TDS T, a set R of metarules 
representing a trained RNN, and a filter F containing dec-
larations of multiplicities-variables having place in the 
aforementioned metarules. An output of this function is a 
set WT of satisfying a TDS T multiset-represented collec-
tions of weights of connections of a trained NN, i.e. satis-
fying all training samples 1 1, , , ,n n

in out in outA A A A  entering 
this TDS.  

We shall use in the text of the function RNNDL a fil-
ter Fi (in line 3 F1 as a particular case), which is defined 
as follows: 

    1 0
i i
out out

i

a a

F a a
  

   
          

   
 

A A A

F  (18) 

As may be seen, such filter enables selection of ter-
minal multisets satisfying a set i

out A  of activated outputs 
determined by the i-th training sample (we use a  1 not 
a = 1 because of the possibility of multiple activations of 
outputs, which was discussed above in the section 3).  

Also we shall use following variables in the text of 
the function RNNDL:  

 v which current value is a terminal multiset gener-
ated by an MMG 1

11* , ,in RA F ; 
 R which current value is a set of rules created by 

substitution of values of variables, entering a set v, 
to metarules entering a set R; 

 v+ which current value is a feedback created as a 
result of the current step (in line 5 – from the first 
to the second step, and in line 9 – from the i-th to 
the i + 1-th, where i = 2,..., n –1); 

 v which current value is a terminal multiset gener-
ated by a filtering multiset grammar 
1 * , ,i

in ivA R F . 
The text of the function RNNDL is as follows. 

1 RNNDL: function (T, R, F) returns (WT); 

2                WT
 : = {}; 

3                do 1
11* , , ;

in Rv V A F  

4                     R : = R¤(v  N*Г); 

5                     v+: = v  N*A+; 

6                     do i  [2, n];  

7                          if 1* , , ;i
iin vV

  A R Fv  

8                                then v+: = v  N*A+; 

9                               else goto v#; 

10                   end i; 

11                   WT
 : {v  N*Г}; 

12              v#:; 

13              end v;  

14              return (WT);  

15              end RNNDL 

Let us comment this text in short. 
At the very beginning (line 2) the variable WT re-

ceives the initial value {}. Accumulation of a multiset-
represented set of collections of weights of connections 
of a trained NN is done inside the loop (lines 3 – 17) on 
the variable v which values, as it was mentioned above, 
are terminal multisets generated by application of a mul-
tiset metagrammar 1

11* , ,in RA F . Its kernel 11*  inA is a multi-
set representation of a set of inputs activating a trained 
RNN at the first step of training; its scheme R includes 
metarules like (17) representing this RNN; and its filter F1 
determines terminal multisets, satisfying a set of activated 
outputs 1

outA  belonging to the first training sample. Ac-
cording to (14), every current value of the variable v in-
cludes a multiset  1 1, , M Mn n      representing a col-
lection of weights of RNN connections satisfying a filter 
F1. (Evidently, in a general case a number of TMSs enter-
ing a set 1

11* , ,in RV A F  may be greater than 1). Because the 
aforementioned collection of weights must satisfy all 
training samples, a sequence of operations is executed in-
side the inner loop (lines 6 – 10) on the variable i, which 
values are numbers of training steps (from the second to 
the n-th). These operations enable check whether a cur-
rent collection of weights, induced by a current value of 
the variable v, satisfies the current i-th training sample. A 
collection is included to the set WT (line 11) only in the 
case when results of all executed checks are successful. 
Otherwise the external loop on values of the variable v 
continues (this is done by the jump operator goto v#, line 
9); thus, a current “unsuccessful” collection of weights is 
not included to WT.  

It would be useful some additional clarifying com-
ments to this general description. 

As it was already said, a set of rules denoted R is cre-
ated by substitution of values of variables entering a set v 
to metarules entering a set R (line 4). This operation is 
denoted ¤ and is defined as follows:  
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 1 1 1 ¤ , , , ,M M MR n n R n n       ,   (19) 

where operation  is defined by (A.27), and, evidently, if 

 1 1, , M Mn n v      ,   (20) 

then 

 1 1, ,  *M Mn n v       N Γ .   (21) 

Since a multiset v includes a multiset v+ being a feed-
back, the next operator (line 5) enables selection of this 
submultiset by intersection of v and N*A+, where, re-
mind, A+ is a set of feedback objects. 

Every step of a loop on training samples (lines 6 – 10) 
from the second to the n-th includes the only conditional 
(if-then-else) operator. If a set 1* , ,i

iin vV
A R F  is non-empty 

(this means that a generated terminal multiset v includes a 
set of multiobject representations of activated outputs co-
inciding a set of outputs of a training sample i

out A ) then a 
new feedback v+ to be used at the next step of the loop is 
created (line 8) by selecting from the MS v multiobjects 
containing feedback objects (this is done by intersection 
of MSs v and N*A+). Otherwise (i.e. no one TMS is gen-
erated because a set of multiobject representations of ac-
tivated outputs summarized with a feedback v+ do not re-
spond a set of outputs of a training sample i

out A ) a loop 
on numbers of training steps for the current multiset v is 
broken by the goto v# operator, and this jump enables 
continuation of the loop on the values of the variable v. If 
the loop on numbers of training steps (or, just the same, 
training samples) is successfully finished, this means that 
the current set of variables values (weights of connections 
of the trained RNN) satisfies the TDS and thus would be 
included to the resulting set WT (line 12). After finishing 
the loop on v a final value of this variable is returned (line 
14). Evidently, if no one successful execution of the loop 
on numbers of training steps had place, then WT would 
remain the empty set. 

Statement 4. A result of deep learning of any recur-
rent neural network G, H by a training data set 

 1 1, , , ,  n n
in out in out T A A A A may be represented by a set 

WT created by application of the function RNNDL.■ 
A proof of this statement is redundant due to the 

above detailed description of the function RNNDL. 
 So the case of RNNs deep learning is also covered 

without principal difficulties by the proper application of 
the multigrammatical framework.  

5. Discussion 

There are at least three possible directions of the MGF 
application to modelling not only artificial but biological 
neural networks (BNNs) with capturing some new fea-
tures. The first one may cover physical growth of a brain 
from a baby to an adult and concomitant increasing of 
cognitive abilities of a human being which may be mod-
elled by application of self-generating multiset grammars 

[3]. The second is based on a possibility of combining in 
MG rules ordinary for artificial NNs topological-weights 
information with information on resources needed for 
brain operation and circulating inside a brain. The third 
is rather close to the second and concerns studying resili-
ence of BNNs to possible destructive impacts, blocking 
some parts of a brain or/and depriving it some of neces-
sary resources. Techniques developed for this task re-
garding resilience of sociotechnological systems [3,38] 
looks quite relevant for the beginning of this research. 

Investigation of the aforementioned opportunities as well 
as further expansion of techniques of NNs multigrammatical 
modelling on a greater number of classes of neural networks 
will be a subject of future publications on this topic. No 
doubt, the three mentioned directions would be extremely 
useful for the development and enhancement of the MGF it-
self. And, naturally, the most advancing seem attempts of 
NN-based implementation of the MGF. 

The author is grateful to Acad. Victor Soifer and Prof. 
Fred Roberts for a long-term support, as well as to the re-
viewer whose useful advices have definitely contributed 
to the quality of the final version of the presented paper. 

Acronyms 

AI artificial intelligence 
ANN artificial neural network 
APS augmented Post system  
BC boundary condition 
BNN biological neural network 
CBC chain boundary condition 
 IIR infinite impulse response 
FIR finite impulse response 
FMG filtering multiset grammar 
FNN feed-forward neural network 
MG multiset grammar 
MGF multigrammatical framework 
MMG multiset metagrammar 
MO multiobject 
MS multiset 
MV multiplicity-variable 
NN neural network 
RNN recurrent neural network 
RNNDL recurrent neural network deep learning 
STMS set of terminal multisets 
TDS training data set 
TMS terminal multiset 
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Appendix A. Filtering multiset grammars and multiset metagrammars  

A multiset (MS) is defined as a collection of multiobjects (MOs) consisting of indistinguishable elements (objects) 
[3,4]. A multiobject containing n objects a is denoted n  a, and n is called a multiplicity of an object a. (Below we shall 
use small symbols “a”, “b”, “c” etc. with or without lower indices for objects denotation; multisets will be denoted by 
small “v” with or without indices, as well). 

A record 

 1 1, , m mv n a n a     (A.1) 

means that an MS v contains n1 objects a1, …, nm objects am. We shall use a symbol “” for denotation that an object or 
an multiobject enters a multiset v, so ai

  v means that an object ai enters an MS v as well as ni
  ai

  v means that a mul-
tiobject ni

  ai enters this MS. From the substantial point of view a set {a1,..., am} and a multiset {1 a1,..., 1 am} are 
equivalent, as well as an object a and a multiobject 1a. The empty multiset and the empty set both are denoted as {}. 
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If a multiplicity of an object a is zero, it is equivalent to an absence of a in a multiset v, what is written, as usual, a v. If 
an MS v is determined by (A.1), then a set (v) ={a1,…, am} is called a basis of a multiset v. 

Here in this paper we shall use two known relations (inclusion  and strict inclusion ) and five known operations 
on multisets [3] – addition +, subtraction –, multiplication by a constant *, join  and intersection  – as well as two 
new operations, which will be applied below to multigrammatical modelling of neural networks.  

 Operation of multiset creation from a set is similar to the operation of multiplication of a multiset by a constant, but 
one of its operands is a set not multiset, so we shall denote this operation by the same symbol *. It would be clear what 
namely operation is applied from what namely operand is used – a set or a multiset. (Such way of operations denotation 
is common for modern programming languages). Semantics of multisets creation is as follows: 

     1 1 1 1, , * * , , , , .m m m ma a n n a a n a n a        (A.2) 

Evidently, for any set A and any integer number n it is true  (n*A) = A. 
Example 1. 

     , ,  * 3 3* , , 3 ,3 ,3 . a b c a b c a b c      ■ 

Operation of intersection of a set of multisets by a set is denoted and is defined as follows: 

 1, , nv v ⩀  1 , , .nv v v v v     (A.3) 

This operation is very convenient for selecting sub-multisets from multisets. Due to definition of multisets intersec-
tion [3] as  

   

  
 

   

min  ,
n a v

n a v

a v v

v v n n a





 

 




   


 (A.4) 

it is quite simple to select objects, entering a set x, from a multiset v by applying 

(1* ),v x  (A.5) 

or, taking into account priority of operations (multiplication has a greater priority than intersection), without brackets 

(1* ).v x  (A.6) 

In this case, due to min{n,1} = n for any non-zero integer multiplicity n, a result will be {1  a1,..., 1am}, where 

     1, , .ma a v x      (A.7) 

From the other side, not more difficult is to select multiobjects, which objects enter some predefined set, along with 
their multiplicities. For this purpose a constant N representing some maximal value, which is greater than any multiplic-
ity in a concrete implementation of the multiset algebra, may be used. In this case 

 *v x N   (A.8) 

would be applied, and due to min{n, N}= n for any multiplicity n, a result will be {n1
  a1,..., nm am}  , where 

x ={a1,..., am}. 
Example 2. To check whether objects a and b enter multisets belonging to a set  

{{2 ,3 },{4 ,8 }},V a c b c      

operation V ⩀ 1*{a, b} may be used, and the result will be {{1  a}, {1  b}}. 
To select from this set of multisets their submultisets, which basis is {a, c}, it is sufficient to apply operation 

v ⩀ N*{a, c}, obtaining {{2  a}, {3  c}}. ■ 
A multiset grammar is a couple S = v0, R, where a multiset v0 is named a kernel, and a finite set of rules R is named 

a scheme. A set of all objects used in a kernel and a scheme of an MG S is denoted AS.  
A rule r  R is a construction 

,v v   (A.9) 

where multisets v and v are named respectively the left part (v  {}) and the right part of a rule r, and “” is a divider.  
If v v , then a result of application of a rule r to a multiset v  is a multiset 
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' v v v v    (A.10) 

Speaking informally, (10) defines, that if the left part of a rule, i.e. a multiset v, is included to an MS v , then v is re-
placed by the right part of this rule, i.e. a multiset v. In this case a rule r is called relevant to a multiset .v  A result of 
application of a rule r to a multiset v  is denoted as 

' ,
r

v v  (A.11) 

and it is said, that an MS 'v  is generated from an MS v  by application of a rule r. 
A set of multisets, generated by application of a multigrammar S = v0, R, or, just the same, determined by this mul-

tigrammar, is recursively created as follows: 

   00 ,V v  (A.12) 

   
 

' '
1

   

   ,
i

r

i i
v V r R

V V v v v
 

        
    (A.13) 

 .SV V   (A.14) 

As seen, a set SV  includes all multisets, which may be generated from an MS 0v  by the sequential application of 
rules r R , and SV  is a fixed point of a sequence  

     0  1  , , , , ,iV V V   

so 

 
0

.S i
i

V V




  (A.15) 

In a general case a set VS may be infinite. 
If an MS 'v  may be generated from an MS v  by application of some sequence (chain) of rules entering a scheme R, 

it is denoted as 

' ,
R

v v  (A.16) 

and, if so, then 

0  .
R

SV v v v
 

  
 

 (A.17) 

A multiset Sv V  is called a terminal multiset (TMS), if no one rule rR is relevant to this multiset, i.e. 

      .v v R v v      (A.18) 

A set of terminal multisets (STMS), determined by a multiset grammar S, is denoted SV . Any STMS is a subset of a 
set of all multisets defined by an MG S: 

.S SV V  (A.19) 

Example 3. Let the MG S = v0, R, where the kernel is 

      0 3 ,4 ,2 ,v rur usd eur     

and the scheme R ={r1, r2}, where, in turn, the rule r1 is  

     3 4 ,eur usd     

and the rule r2 is 

       2 ,3 2 .usd rur eur     
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As seen, the initial collection of currencies includes 3 Russian Rubles, 4 US Dollars, and 2 Euros; the scheme of this 
MG represents actual regulations for currencies exchange (3 Euros may be exchanged to 4 US Dollars, 2 US Dollars 
and 3 Russian Rubles may be exchanged to 2 Euros). 

In accordance with definitions (1) – (9), 

         
         
         

0

1 0

2 1

2 ,4 ,3 ,

2 ,4 ,

6 ,1 .S

V eur usd rur

V V usd eur

V V usd eur V

   

   

    

  

As seen, this MG enables generation of all possible collections of Euros, US dollars, and Russian rubles, which may 
be obtained from the initial collection v0 by sequential currency exchanges, which parameters are fixed by regulations 
represented by the rules r1 and r2. A set of terminal multisets  SV generated by this MG contains the only TMS {1(eur), 
6(usd)}.■ 

Filtering multiset grammars (FMGs) are such extension of MGs, which semantics presumes two sequential opera-
tions – generation of a set of terminal multisets by application of a scheme to a kernel (step 1), and selection from it 
such TMSs, that satisfy some restrictions (conditions), expressed by a so called filter (step 2). 

A filter is a set of conditions, and a multiset satisfies a filter if it satisfies all conditions entering it. Conditions may 
be boundary and optimizing. Here in this paper we shall use only boundary conditions (BCs). 

A boundary condition is recorded as an or na, where  {>, <, , , =}. A multiset v satisfies a BC an, if mav and 
mn is true, and satisfies a BC na, if mav and nm is true (in both cases av is equivalent to 0av). In a general case 
so called chain boundary conditions (CBCs) recorded as nan  may be applied, any of such BCs being equivalent to 
two boundary conditions: na and an. A result of application of a filter F to a set of multisets V is denoted V  F. 

Example 2. Let us consider the set of multisets 

    
    

      

1 ,6 ,

4 ,3 , ,

7 ,1 ,5

eur usd

V usd rur

eur usd rur

  
     
 

    

 

and the filter 

    5, 3F usd rur   . 

Then 

                    5 3 4 ,3 , 7 ,1 ,5 .V F V usd V rur usd rur eur usd rur              ■ 

A filtering multiset grammar is a triple S = vo, R, F, where v0 and R are, as above, a kernel and a scheme, while F is a 
filter, including conditions, defining multisets, which would be selected from a set of TMSs, generated by an MG v0, R, i.e. 

0 , .s v RV V F   (A.20) 

Verbally, sV  is a subset of 
0 ,v RV , which includes only such elements of this set, which satisfy a filter F.  

Example 3. Let us consider the FMG S = vo, R, F, where the kernel vo and the scheme R are the same as in the Ex-
ample 1, and the filter 

    2 , 3 .F eur usd    

Applying this filter to the set of terminal multisets 
0 ,  v RV generated by the MG v0, R, one solves a task of selecting 

such collections, obtained by proper exchange chains, which would contain not less than 2 Euros and not less than 3 US 
Dollars. 

According to (20), 

 0 ,s v RV V F    , 

that means no one collection satisfies the filter F. ■ 
A multiset metagrammar S is a triple v0, R, F, where v0 and F are, as above, a kernel and a filter respectively, and 

a scheme R contains, along with rules, also metarules.  
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A metarule has the same form as a rule 

1 1 1 1{ , , } { ' ', , ' '},m m n na a a a            (A.21) 

but any i, j may be not only a positive integer number, as in MGs, but also a variable   Г, where Г is an universum 
of variables. If i or j is a variable, then it is called a multiplicity-variable (MV). As seen, a rule is a partial case of a 
metarule, which all multiplicities '

1 1, , , , , 'm n       are constants.  
A filter F of an MMG S = v0, R, F is a set of boundary conditions, as in FMGs. At the same time F includes chain 

boundary conditions of a form 

.n n     (A.22) 

There is one and only one CBC (A.22) for every variable  having place in at least one metarule entering a scheme 
R. This CBC is called a variable declaration and determines a set of possible values (domain) of this variable.  

If F includes a subfilter  

 ' '
1 1 1,  ,  l l lF n n n n       Γ  (A.23) 

containing all variables declarations, then every tuple 1, , ln n , such that ' '
1 1 1,  ,  ,  ,l l ln n n n n n         , enables creation 

of one filtering multigrammar by substitution of 1, , ln n  to all metarules, entering a scheme R, instead of multiplici-
ties-variables. Rules, entering R, are transferred to a new scheme denoted 

1, , lR n n  (A.24) 

without any transformations. Every such FMG generates a set of terminal multisets by application of a filter 
F F  Γ   = F – FГ, which contains all “usual” conditions, which do not include variables.  

Finally, an MMG S = v0, R, F determines a set of terminal multisets sV  in such a way: 

*

,s s

s S

V V


 
  
 
   (A.25) 

 
' '

1 1 1

0 1 1
*

, , 1

, , ,
,

, ,l l l

l l

n n n n n n l

v n n
S

R n n       

          
  

   (A.26) 

1 1, , { , ,  | },l lR n n r n n r R      (A.27) 

,F F  Γ  (A.28) 

 '
1

,
l

j j j

j

F n n


   Γ  (A.29) 

where 1 ,…,  l  are auxiliary objects, used in such a way, that a multiobject j jn   , 1, , ,  j l  represents a value jn  
of a variable j. As seen, due to (A.25) – (A.29) an MMG S = v0, R, F generates terminal multisets of a form 

 1 1 1j 1 j, , , , , ,
k k li i i i ln a n a n n         (A.30) 

and this feature is useful for multigrammatical modelling of deep learning neural networks.  
As seen, MGs are a multiset-operating analogue of classic string-operating grammars introduced by N. Chomsky [9] 

whilst MMGs due to use of variables are some analogue of Horn clauses operating atomic formulas of the first-order 
predicate logic [6, 7], as well as Post systems [10] and their generalization – augmented Post systems (APSs) [11, 12, 
13] – operating strings. A principal feature distinguishing MMGs from Horn clauses, Post systems and APSs is that in 
the last three an area of actuality of any variable is a specific clause or production (S-production) to which this variable 
belongs, whilst in MMGs this area is an entire scheme (a set of rules). 

Let us illustrate the definition (A.25) – (A.29) by the following example. 
Example 4. Consider the MMG S = v0, R, F, where v0

 ={1  a}, and R contains three metarules, including multiplici-
ties-variables x and y: 

   
   
   

1

2

3

:   1 2 , ,

:   1 ,1 ,

:   1 , ,

r a b x c

r b c y d

r b y c y d

   

   

   

 

whilst the filter F contains the following conditions: 
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2,

1,

1 2,

0 1,

c

d

x

y



 
 

 

the last two CBCs being the declarations of the variables x and y. 
According to (A.25) – (A.29), the scheme S determines four FMGs: 

 
 
 
 

1

2

3

4

1 ,1 ,   1,0,

1 ,1 ,1 ,   1,1,

1 ,2 ,   2,0,

1 ,2 ,1 ,   2,1,

S a x R

S a x y R

S a x R

S a x y R

  

   

  

   









 

and the filter  = {c < 2, d 1}. 
As seen, 

           1  1,0 1 2 ,1 , 1 ,1 , 1 ,R R a b c b c b              

    
      

1

2

1 , 1 ,1 ,

1,1  1 2 ,1 , 1 ,1 1 ,

SV x c x

R R a b c b c d

   

          
 

    
           

2

3

1 ,1 ,1 , 1 ,1 ,1 ,

2,1 1 2 ,2 , 1 ,1 ,  1 ,

SV b x y d x y

R R a b c b c b

      

            
 

      
       

3

4

2 , 1 , 2 , 2 , 2 ,

2,1 1 2 , 2 , 1 ,1 1 ,

SV x c x c x

R R a b c b c d

     

         
 

  4
2 ,2 ,1 .SV d x y     

According to (A.25), 

   
     
     

   
      

1 2 3 4

1 , 1 ,1 , 1 ,1 ,1 ,

2, 1 1 ,1 ,1 , 2 , 1 , 2 ,

2 , 2 , 2 , 2 ,1

2, 1 1 ,1 ,1 , 2 ,2 ,1 .

S S S S S

x c x b x y
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