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Abstract 

This paper proposes a modern system for recognizing sunflower diseases based on Bidirec-
tional Encoder representation from Image Transformers (BEIT). The proposed system is capable 
of recognizing various sunflower diseases with high accuracy. The presented research results 
demonstrate the advantages of the proposed system compared to known methods and contempo-
rary neural networks. The proposed visual diagnostic system for sunflower diseases achieved 
99.57 % accuracy on the sunflower disease dataset, which is higher than that of known methods. 
The approach described in the work can serve as an auxiliary tool for farmers, assisting them in 
promptly identifying diseases and pests and taking timely measures to treat plants. This, in turn, 
helps in preserving and enhancing the yield. This work can have a significant impact on the de-
velopment of agriculture and the fight against the global food shortage problem.  
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Introduction 

According to the United Nations, the world popula-
tion is projected to increase by 2 billion people over the 
next 30 years [1]. The Food and Agriculture Organization 
of the United Nations estimates that between 691 million 
and 783 million people face hunger in 2022, and the 
number of people experiencing severe food insecurity is 
around 900 million. Compared to 2019, the number of 
undernourished people increased by 180 million, and the 
number of hungry people increased by 122 million [2]. 
Thus, the task of increasing the volume and quality of 
food products produced is relevant and requires research 
to be solved. One way to address this problem is to in-
crease the production of oilseeds such as soybeans, oil 
palm, sunflowers, and peanuts. These crops not only rep-
resent the most important sources of vegetable fat in the 
world's food supply but are also among the ten largest 
crops in terms of total calories [3]. Sunflowers are versa-
tile plants that can be grown in various climatic zones, 
ranging from temperate to subtropical regions. Sunflower 
meal, a byproduct of oil extraction, contains up to 50 % 
protein, numerous essential amino acids, vitamin B, min-
erals, and antioxidants, making it a nutritious food for 
both humans and livestock [4]. In addition, sunflower oil 
has a wide range of applications in cooking and is used as 
a component in the production of margarine, butter, 
bread, etc. [5]. In addition to the undeniable advantages 
of sunflowers in the food industry, they are also utilized 
in the production of cosmetics, paints, lubricants, bio-
diesel fuel, and medicines [6]. 

Pests and diseases that attack plants can lead to an av-
erage yield loss of 20 – 40 % [7]. Pesticides help prevent 
such threats, but the use of chemicals to treat fields has 
negative consequences, such as a decline in the biodiver-
sity of insects, birds, and animals [8], degradation in the 
quality of soil, water, and air, and can also pose risks to 
human health [9]. Phytosanitary standards for fields help 
ensure a large volume of healthy harvest without the use 
of chemicals. This approach is environmentally friendly, 
allowing farmers to apply necessary measures on time in 
the desired area of the field. Assessing the state of the 
fields, however, is a rather labor-intensive task that re-
quires special attention. Diseases and pests can exhibit 
various symptoms on different plants, either similar or 
combined, making it challenging to accurately diagnose 
them. It is not advisable to check the condition of each 
plant several times a season, especially if access to it is 
difficult. Modern computer vision technologies will help 
farmers solve this task. 

Nowadays, neural networks are widely used for image 
recognition, and the field of agriculture also requires sim-
ilar technologies to enable comprehensive monitoring of 
fields from any location worldwide. Many scientists have 
long been developing systems capable of recognizing 
plant diseases and pests. We found several researches 
where authors utilized modern methods to recognize a da-
taset of sunflower diseases [10]. The work [11] employed 
a transfer learning and cross-validation approach in con-
junction with modern neural architectures such as 
AlexNet, VGG16, InceptionV3, MobileNetV3, and Effi-
cientNet. This approach enabled the achievement of a 
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processing accuracy of 97.9 % on a dataset of sunflower 
diseases. Using the clustering and segmentation algo-
rithms, as well as the Random Forest Algorithm classifi-
er, an accuracy of 95 % was achieved [12]. Segmentation 
and clustering algorithms improved the value of this indi-
cator to 97.88 % when utilizing the ResNet50 architecture 
[13]. Compact architectures, such as TeenyNet [14], have 
also demonstrated the ability to recognize sunflower dis-
eases with an accuracy of 98.94 % in most cases. Extend-
ing the YOLOv5 architecture using the Improved Dwarf 
Mongoose Optimization Algorithm achieves a high accu-
racy of 95 % [15]. When using pyramidal squeezed atten-
tion, YOLOv5 is able to achieve an accuracy of 95.27 % 
[16]. Recently, the popularity of algorithms based on vis-
ual transformers (ViT) for solving the problem of pattern 
recognition in images has increased. ViT and its deriva-
tives, such as SE-ViT hybrid networks, are capable of 
achieving an accuracy of 97.26 % [17]. Despite active re-
search on Transformers and their implementation in vari-
ous applications, they have not yet become widespread 
for solving specific practical problems. 

The paper presents a neural network system for rec-
ognizing sunflower diseases from photographs. The pro-
posed system incorporates the latest Transformer archi-
tecture, specifically designed for precise detection of im-
age features. During the preprocessing stage, the dataset 
is augmented with techniques such as normalization, 
standardization, horizontal and vertical flipping, center 
cropping, and image rotation. During the training stage of 
the BEIT neural network architecture, a modified cross-
entropy loss function is utilized. This function incorpo-
rates individually calculated weights for each class within 
the dataset. By employing this adjustment to the loss func-
tion, we can reduce the impact of imbalanced data and pre-
vent the classification outcomes from being skewed to-
wards classes with a high volume of images. The proposed 
complex has high accuracy, superior to known methods, 
due to the utilization of a bidirectional image encoder ar-
chitecture and a modified cross-entropy loss function. The 
experimental results confirm the effectiveness of the pro-
posed method compared to existing ones. 

The rest of the work is organized as follows. The first 
and second sections present the background of the Bidi-
rectional Encoder representation from Image Transform-
ers model and a description of the proposed system. The 
third section presents the results of BEIT disease recogni-
tion and compares it with state-of-the-art approaches 
based on convolutional neural networks and well-known 
works. This is followed by Conclusion. 

1. Presentation of a database of images 
of sunflower diseases 

In 2022, a dataset on sunflower diseases was intro-
duced, comprising 2358 original and updated images of 
various parts of sunflowers from Bangladesh [10]. One of 
the problems that sunflowers can face is gray mold. The 
fungus that causes gray mold attacks any part of flower-

ing plants, preventing sunflower buds from opening and 
causing discoloration of mature flowers. As a result, the 
sunflower inflorescence begins to rot and die within 7–10 
days. Another disease that can affect the growth and yield 
of sunflowers is leaf scarring caused by the fungus Septo-
ria helianthi. This is a common plant disease that, alt-
hough not posing a serious threat on its own, can be 
harmful when combined with other diseases. Scars dam-
age tissues and can result in leaf wilting [18]. Another 
common sunflower disease is downy mildew, caused by 
the obligate parasite Plasmopara halstedii. This disease 
occurs in almost all countries where sunflowers are culti-
vated. In case of uncontrolled disease, yield losses can 
reach 3.5 % of the total, but if control measures are not 
taken, the probability of total yield loss is 100 % [18]. 
Thus, these diseases pose a significant threat to sunflower 
cultivation, making their control and prevention crucial 
for the crop's safety. 

The authors of [10] presented two versions of the da-
taset: 1668 original photographs and 2358 original and 
augmented images. To supplement the dataset, the au-
thors utilized various augmentations, including image ro-
tation, cropping the central fragment of the image, and 
more. In our work, we utilized an augmented dataset that 
was further expanded through various techniques, includ-
ing normalization, standardization, resizing, cropping of 
the central fragment, rotating images by 180°, and dis-
playing them vertically and horizontally. Examples of 
images from the four categories of the dataset are pre-
sented in Figure 1, and the distribution of the data is visu-
alized in Figure 2. The image database was not further 
balanced. 

a)  b)  

c)  d)  
Fig. 1. Classes in the set of images of sunflower diseases [10]: 

a) downy mildew, b) fresh leaf, c) gray mold, d) leaf scars 

2. Bidirectional Encoder representation  
from Image Transformers description 

The input image x is encoded using BEIT to create 
contextualized vector representations. Their peculiarity 
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lies in the fact that the vector of each feature depends on 
the context, as is the case with polysemous words in natu-
ral language. BEIT is pre-trained using a masked image 
modeling (MIM) task in a self-supervised learning mode. 
MIM uses two representations for each image (labels and 
visual features, or tokens) to reconstruct masked image 
fragments based on encoding vectors. The image is divid-
ed into 14 equal sections, called patches; some of them 
are masked and then transferred to the Transformer. The 
model learns to restore features of the original image in 
masked areas. The image xÎW×H×C is divided into 
N = WH / R2 sections xrÎN×(R2C), where N is number of 
sections, C is the number of channels, (W, H) is the size 
of the input image, and (R, R) is the size of each patch. 
Image fragments 1{ }r N

i ix  , where xr is a patch and i is its 
number, iÎ[1, …, N], are smoothed into vectors and then 
linearly projected as word embeddings in BERT [19]. 
The raw pixels of the fragments are used as input fea-
tures. So, for 224×224 image, there are 14×14 fragments 
of 16×16 size. Tokenization is the process of dividing da-
ta into parts, which are then embedded in a vector space. 
For images, splitting into fragments followed by encod-
ing is applicable. So, each image is tokenized into a 
14×14 grid. The number of image fragments after split-
ting it and the number of visual tokens is the same. The 
image tokenizer receives a sequence of discrete tokens 
representing the image. Thus, image fragment 1{ }r N

i ix   of 
the image xÎW×H×C is represented by N tokens 
y = [y1, …, yN]ÎEw×h, where E = {1, …, |E|} is a vocabu-
lary of discrete indices of size |E| = 8192. When visually 
examining tokens, two modules are used: a tokenizer and 
a decoder. The tokenizer p(y|x) maps image pixels x to 
discrete tokens y according to a dictionary. The decoder 
q(y|x) reconstructs the input image x based on the visual 
tokens y. Thus, the recovery problem is represented as 
yp(y|x)[log q(y|x)]. Since tokens are discrete, model 
training is non-differentiable. To train the model parame-
ters, the Softmax function is used [20].  

 
Fig. 2. Data balance in the sunflower disease image dataset 

BEIT, like other Transformers, utilizes the self-
attention-based architecture of the standard Transformer, 
which was developed for text data recognition [21]. As 
mentioned earlier, the input to the Transformer is repre-
sented by a sequence of image patches 1{ }r N

i ix  , linearly 
projected to produce the embeddings r

iEx , EÎW×H×C. 

Embeddings are representations of objects, such as imag-
es, intended to be used by machine learning models. They 
are vectors created by a neural network to capture mean-
ingful data about each object. Next, a special token [S] 
and standard trained 1D embeddings EposÎN×D for frag-
ment embeddings are added to the input sequence. Input 
vectors  0 [ , , , ]r r

i N posSV e Ex Ex E    are fed to the Trans-
former. The encoder contains L layers of Transformer 
blocks Vl = Transformer(Vl–1), where l = 1, …, L. The output 
vectors of the last layer   1[ , , , ]L L L L

NSV v v v   are used as 
encoded representations for image fragments, where L

iv  is 
the vector of the i-th image fragment (Figure 3).  

 
Fig. 3. Coding of fragments and the operational principle 

of masked image modeling head 

To process image fragments, the MIM approach from 
[22] was used, which involves masking image fragments. 
A mask is applied to a certain percentage of image patch-
es, completely hiding visual features, followed by the 
prediction of the corresponding visual tokens. The input 
image x is divided into N fragments 1{ }r N

i ix  . Let's to-
kenize it into N visual tokens 1{ }r N

i ix  . Following [22], 
40% of the image fragments are masked and denoted as 
Î{1, …, N}0.4N. The masked patches are then replaced 
by a trained embedding e[]ÎD. Damaged image frag-
ments  1 1{ : } { : }  r N N

i i ix x i e i    
  are fed to 

the L-layer converter. The latent vectors 1{ }r N
i ix  , that is, the 

image patches by considering each token along with its 
neighbors, are considered as encoded representations gen-
erated by the model (Figure 4). For each masked patch po-
sition in the image 1{ : }L N

i iv i  , a Softmax classifier is 
used to predict the corresponding visual tokens 

   | L
MIM y c i cq y x Softmax v b  W , where x is the 

damaged image masked according to , WcÎ|E|×D) and 
bcÎ|E|. The goal of preliminary training is to maximize the 
logarithmic probability of correctly identifying visual to-
kens yi, while considering the damaged areas of the image: 

 log |MIM i

x i

max q y x
 

 
 
 

  


 

, (1) 

where 𝒟 is the training dataset,  represents randomly 
masked image fragments, and x is the distorted image. 

The image patch masking algorithm at position  
uses block masking. Each block has a minimum of 16 
fragments. The aspect ratio of this block is chosen ran-
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domly. This algorithm is repeated until the number of 
masked patches is sufficient, specifically 0.4N, where N 
represents the total number of image patches, and 0.4 is 
the masking coefficient (equivalent to 40 % of the total). 
Recovering pixels from masked areas for pre-training 
forces the model to focus on nearby dependencies and de-
tails [20] (Figure 4). 

The attention layer receives three input vectors, called 
key, request, and value. The input sequence of vectors is 

passed to the encoder, which produces an encoded repre-
sentation for each token, capturing its value and position. 
This value is passed to all three parameters: query, key, 
and value, including the attention score for each attribute. 
As it passes through all the encoders in the stack, each at-
tention module also contributes its own attention scores 
to each token's representation. The concept of attention 
involves multiple layers of attention that occur simulta-
neously. 

 
Fig. 4. Splitting an image into fragments and masking 

3. Proposed based on BEIT system  
for sunflower diseases recognition 

This section presents the parameters for training and test-
ing the developed system and then presents the results of the 
work, assessed by various metrics. Pre-training of the BEIT 
model is similar to variational learning of an autoencoder. 
Let x be the original image, x̃ the masked image, and z the 
visual tokens. From the log-likelihood proof p(x|x̃), recover-
ing the original image from its corrupted version: 

 

 
 

   

,

ψ~ |
,

θ

log ( | )

( log ( | )]

| ]

[

, | )[ ,

i i

i i

i i

x x

i iy p x
x x

KL i i

p x x

q x y

D p x q x











 


















y

y y  

 (2) 

where   ψ~ | [log ( | )]
i i i iy p x q x y


 y  – visual reconstruction of 

the token, p(y|x) – image tokenizer, q(y|x̃) – decoding of 
the original image with consideration of input tokens, 
p(z|x̃) – restoration of tokens based on the masked im-
age. Model training is performed in two stages. At the

 first stage, an image tokenizer is obtained, and the recon-
struction loss   ψ~ | [log ( | )]

i i i iy p x q x y


 y  is minimized 

with a uniform prior (2). At the second stage, the a priori 
value of q is studied. The values p and q are constants. 
If p(y|xi) is simplified to a single-point distribution with 

the most probable tokens  aˆ  m x |i i
y

y arg p y x , then 

equation (2) will take the form: 

 
   ψ θ~ |

,

( [log | ˆ( )] | ),
i i

i i

i i i iy p x
x x

q x y q y x










y   (3) 

where log q(ŷi|x̂i) is the masked image modeling and the 
BEIT pre-training target (Figure 5).The BEIT architecture 
is based on a 12-layer Transformer with a hidden vector 
size of 768 and 12 attention heads. The default input 
patch size is 16×16. The authors of the BEIT architecture 
fully adopted the image tokenizer [20]. Since Transform-
er architectures exhibit low recognition accuracy when 
trained on small datasets, the solution is transfer learning 
[23]. BEIT is pretrained on the ImageNet-1K training set, 
which includes approximately 1.2 million images. An in-
put image size of 224×224 is standard for BEIT. 

 
Fig. 5. General view of the BEIT architecture 

Thus, the input image is divided into 14×14 fragments 
and an equal number of visual tokens. About 40% of im-
age fragments are masked, which is approximately 75 
patches. Training on the dataset [10] took 270 steps or 5 
epochs, with a batch size of 32. The Adam optimizer [24] 
was used, which demonstrated improved accuracy fol-
lowing initial training. The Adam optimizer parameters 
1 and 2 are the initial decay rates utilized in estimating 
the first and second moments of the gradient, which are 
exponentially multiplied at the conclusion of each train-
ing step. Tuning these parameters is necessary to smooth 
the path to convergence and also to provide momentum to 

overcome a local minimum or saddle point. The values 
1 = 0.9, 2 = 0.999 were chosen empirically as the most 
suitable for solving the problem of image recognition. 
The learning rate is a neural network tuning parameter that 
instructs the optimizer on how far to adjust the weights in 
the direction opposite to the gradient for each learning step. 
With a high learning rate, there is a high probability of not 
achieving convergence in the vicinity of the global mini-
mum; with a low learning rate, the likelihood of conver-
gence and achieving high learning accuracy is higher, but it 
will require a significant amount of time. The learning rate 
is chosen to be low and equal to 5e–5.  
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For the image classification task, a basic linear classi-
fier was utilized. Specifically, the mean values of the pre-
dictions are combined and inputted into the Softmax clas-
sifier. Class probabilities are calculated as 

   1

NL
i ci

Softmax avg v W


, 

where L
iv  represents the final encoding vector of the i-th 

image patch, WcÎD×C is the matrix of parameters, and C 
is the number of labels. 

A saliency map was also compiled (Figure 6), illus-
trating the areas of the image that the neural network fo-
cuses on to search for features. The creation of such maps 
is analogous to a segmentation algorithm; it allows for 
exploring the main elements without focusing on irrele-
vant features. This map shows that BEIT is clearly fo-
cused on those parts of the image where signs of the dis-
ease are highly likely to be recognized.  

 
Fig. 6. Saliency map for images from the sunflower disease 
database: a) image of the “downy mildew” class; b) image 

of the “fresh leaf” class; c) image of the “gray mold” class; 
d) image of the “leaf scars” class 

4. Cross-entropy loss function modified 
by weight coefficients 

The problem of optimization-minimization of struc-
tural risks using machine learning is presented as follows: 

    
1

1
min ,

K

i
f

i

N C f x M f
K




    (4) 

where K is the number of examples in the training set; C 
is the error function with a variable vector ; M – regular-
ization element, reflecting the complexity of the model; 
  0 is a balance between empirical risk and the com-
plexity of the neural network model. 

During the training process, the neural network re-
ceives output data indicating its confidence that the data 
belongs to a specific class [25]. Then, the resulting pre-
dictions are compared with the true labels, and the differ-
ence between them is calculated using a loss function 
[26]. The Softmax Cce cross-entropy function is used for 
multi-class classification: 

  
1 1

1
log , ,

N K
n

ce i i

n i

C l h x n
K


 

    (5) 

where N is the number of categories in the training data-
base, n

il  is the true label for training case i from category 

n, xi is the input of training case i, his the neural network 
model with weights . If there is a significant imbalance 
of data in the training set, the classifier will tend to priori-
tize the categories with the highest number of samples 
[27]. In the case of sunflower diseases, some diseases 
may appear similar, leading to incorrect diagnoses by the 
neural network [28]. To solve this problem, the optimal 
solution is to use unequal misclassification costs, which 
are defined as a cost matrix or weighting coefficients 
[29]. The cost of such errors is considered a penalty coef-
ficient, which is introduced during training to penalize the 
neural network for incorrect classifications [30]. Thus, 
the classifier focuses on the data according to its distribu-
tion, which enhances a more comprehensive analysis. The 
calculation of the cost of training, denoted as dn, is in-
versely proportional to the frequency of categories in the 
database and follows the formula: 

1

n K

ini

K
d

N p





, (6) 

where N = 4 represents the number of disease categories; 
pin – indicates that image i belongs to category n. Modifying 
the loss function by incorporating weighting coefficients en-
ables the minimization of the impact of unbalanced data and 
helps prevent bias in classification results. A modification of 
the cross-entropy loss function using the weighting coeffi-
cients '

ceC  can be represented as follows: 

  '

1 1

1
log ,

N K
n

ce c i i

n i

C d l h x n
K


 

    , (7) 

where dn is the weighting factor for category n. 

5. Results of proposed system realization 

The paper proposes a BEIT-based pattern recognition 
system for sunflower disease images. The architectures 
were trained on the dataset [10] using an HP LAPTOP-
V45HU232 device with an Intel(R) Core(TM) i5-1035G1 
processor. CPU 1.00 GHz in use. In the work, the data 
was divided as follows: 72 % of the set was used for 
training, 8 % for validation, and 20 % for testing. In [15], 
[31] the data division followed a classical approach, with 
80% allocated to the training set and 20 % to the test set. 
In [11], 70 % of the image set was used for training, 15 % 
for validation, and 15 % for testing. The authors of [13] 
used 75 % of the dataset for training, 15 % for validation, 
and 10 % for testing. In [14], 80 % of the dataset was used 
for training, 10 % for validation, and 10 % for testing. 
Some authors used the original dataset consisting of 1668 
images. In our work, we initially used a dataset that was 
supplemented by its authors with the help of augmenta-
tions. Data describing the division of the dataset in work 
[16] was not accessible due to restricted access.  

During the training process, images of sunflower dis-
eases from the training set were input into the developed 
system based on BEIT. The system output was passed 
through a Softmax layer to calculate the probabilistic dis-
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tribution of predicted labels for the 4 classes in the da-
taset. Next, the results were compared with the ground 
truth, and the error value was calculated using a modified 
cross-entropy loss function. The calculated weighting co-
efficients for each class to modify the cross-entropy loss 
function are presented in Table 2. The proposed method 
for modifying the cross-entropy loss function is superior 
to the built-in functionality for calculating losses because 
the weight is calculated individually for each class, con-
sidering the number of images in the sample. 

Tab. 1. Division of the sunflower disease dataset [10] into 
training, validation, and test samples in the compared works 

Method  Train, % Validation, % Test, % 
Proposed 72 8 20 

[11] 70 15 15 
[13] 75 15 15 
[14] 80 10 10 
[15] 80 0 20 
[16] n/a n/a n/a 
[31] 80 0 20 

Tab. 2. Weight coefficients used to modify the cross-entropy loss 
function in a proposed system 

Class Weight coefficient 
Downy mildew 1.0508 

Fresh leaf 0.9538 
Gray mold 1.3191 
Leaf scars 0.9538 

To assess the recognition accuracy of the image data-
base, various criteria and metrics were used. F1-score is 
calculated as: 

 1 2 / 2 scoreF TP TP FP FN   , (8) 

where TP represents a true positive result, FP is a false 
positive result, and FN is a false negative recognition 
result. The F1 range is [0, 1], where 1 indicates 100 % 
recognition accuracy, and 0 indicates no correctly rec-
ognized images. The Matthews Correlation Coefficient 
(MCC) belongs to the range [– 1, 1] and has the form: 

    
TP TN FP FN

MCC
TP FP TP FN TN FP TN FN

  


   
,(9) 

where TN is the true negative recognition result. Specific-
ity is used to evaluate the model's ability to predict the 
true negative labels of each category: 

 /Sp TN TN FP  . (10) 

To evaluate the work, an assessment of the accuracy of 
solving the pattern recognition problem after training the 
neural network is used. Accuracy A is a measure that cal-
culates the proportion of correctly classified images out 
of the total number of objects in the dataset: 

 /A TP TP TN  . (11) 

Table 3 presents the image recognition accuracy val-
ues of various architectures, training loss, and data for 

comparison with known methods. According to the re-
sults obtained and presented in the table, the proposed 
approach based on the Transformers architecture outper-
forms known architectures by 2.76 – 17.66 % in accuracy, 
0.0264 in the F1-score metric, and 0.0267 in the Specific-
ity metric, surpassing known architectures. 

Figure 7 shows the confusion matrices of the pro-
posed method and established approaches. Difficulties 
arose in recognizing categories leaf scars and downy mil-
dew, which is associated with the visual similarity of 
these diseases, as can be seen in Figure 1. The other two 
categories, gray mold and healthy leaves, were recog-
nized without errors. Based on the results obtained, we 
can conclude that the diseased plant was identified in 
100% of cases. In comparison with known methods, the 
proposed system enabled the correct classification of a 
greater number of images of sunflower diseases. 

The recognition results of the proposed sunflower dis-
ease image database system demonstrate the advantage of 
utilizing the Bidirectional Encoder representation from 
Image Transformers architecture. The proposed system 
demonstrated higher accuracy compared to existing 
methods and outperformed contemporary deep convolu-
tional neural networks by 2.76 – 17.66 % in terms of ac-
curacy. Based on the results obtained, we can conclude 
that the utilization of the proposed system, which is based 
on the Transformers architecture, can significantly en-
hance the accuracy of recognizing and classifying sun-
flower diseases from their images. 

 
Fig. 7. Confusion matrix of the proposed and known methods: 
a) method [14]; b) method [11]; c) ResNet101 architecture; 

d) proposed method 

6. Conclusion  

In the presented work, an image recognition system for 
sunflower diseases was proposed based on the Bidirectional 
Encoder representation from Image Transformers architec-
ture. BEIT outperformed state-of-the-art deep neural net-
work architectures such as ResNet101, InceptionV3, and 
DenseNet201 in classification accuracy by 2.76 – 17.66 %. 
The high accuracy of image database recognition demon-
strates the advantage of utilizing the system described in the 
work in the field of crop production. The proposed system 
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will assist farmers and food producers in promptly identify-
ing sunflower diseases across large planting areas and taking 
timely measures to treat plants. This will help reduce crop 
losses. A promising direction for further research is to ex-

pand the proposed approach based on Visual and Image 
Transformers for the recognition and classification of a 
broader range of photographs depicting sunflower diseases 
or other sets of images of plant diseases. 

Tab. 3. Accuracy of recognizing a dataset of sunflower diseases [10], obtained as a result of using the proposed method and known 
approaches with various architectures and methods 

Method/Architecture  Accuracy F1-score MCC Specificity 
Proposed 0.9957 0.9959 0.9943 0.9958 

[14] 0.9894 - - - 
[13] 0.9788 - - - 
[11] 0.9760 0.9760 - - 

Resnet101 0.9681 0.9695 0.9574 0.9691 
EfficientnetB3 0.9638 0.9625 0.9523 0.9604 
InceptionV3 0.9638 0.9264 0.9037 0.9293 

MobileNetV3 0.9617 0.9635 0.9500 0.9648 
Resnet50 0.9580 0.9609 0.9467 0.9592 

[16] 0.9527 - - - 
[15] 0.9500 - - - 

Densenet121 0.9426 0.9449 0.9231 0.9455 
[31] 0.9300 0.9300 0.9000 - 

Resnet34 0.9234 0.9254 0.8993 0.9255 
Densenet201 0.8191 0.0913 0.6999 0.0671 
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