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Abstract 

We concern the problem of laser beam diffraction by a phase object with and without radiation 
absorption. In terms of a plane optical wave passing through the object, we solve the scalar 
Helmholtz wave equation in the first Rytov approximation and discuss the consequences of the 
equation obtained in such an approximation. By taking into account the wave diffraction 
spreading, numerous features of the phase object visualization in the field of coherent laser 
radiation are predicted. We reveal the fundamental relationships between the Fourier spectra of the 
object dielectric permittivity and diffracted wave characteristics described in terms of the wave 
intensity and phase shift in free space. The findings are of a general nature and can be useful in 
optical imaging of various objects. 
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Introduction 

The need for precise optical diagnostics of phase 
objects at microscales often arises in various research and 
applied problems. Phase objects can appear as plasma 
formations [1, 2, 3, 4], shock waves [5], biological cells 
and tissues [6], turbulent gas flows [7], as well as exotic 
condensed media [8, 9], etc. The most efficient way to 
examine a phase object is to analyze its interaction with 
incident coherent laser radiation, which is closely related 
to the diffraction modeling. Diffraction of laser radiation 
by the investigated phase object can be described by 
simulating the Maxwell’s equations [10] or the scalar 
Helmholtz wave equation [11] employing the expansion 
of the wave field into analytical basis functions [12, 13] 
or asymptotic approximations, such as the geometrical 
optics approximation [14] or the first Born and Rytov 
approximations which form a single family of asymptotic 
approximations [15]. The applicability of these 
approximations and the accuracy of the data provided are 
still being investigated to improve the methods of 
transmission electron [16] and optical microscopy [17, 
18, 19, 20, 21, 22, 23]. To date, these approximations 
have proven themselves to be valuable tools in processing 
the phase object images obtained when the object is 
exposed to coherent laser radiation employing a single-
angle or tomography imaging [24, 25]. The recent studies 
in [26], which were aimed at developing high-
performance numerical methods to analyze diffraction of 
laser radiation by plasma microstructures, indicated that 
the first Rytov approximation turns out to be 
advantageous to obtain reliable quantitative data on the 
optical characteristics of the studied phase objects. There 
were also prerequisites to the fact that the first Rytov 

approximation is capable of predicting a number of 
fundamental features of the phase object visualization in 
the field of coherent laser radiation. Surprisingly, in spite 
of the long history of research in this field (involving the 
physics of the interaction of laser radiation with matter, 
diffraction optics, mathematical image processing, and 
integral equation theory) the fundamental consequences 
of the first Rytov approximation have not been revealed 
yet. The knowledge of such consequences is important 
since they can provide a basis for elaborating new 
techniques to diagnose rapidly evolving (e.g., during 
nanoseconds and subnanoseconds) small-sized phase 
objects taking into account the diffraction effects, which 
accompany the propagation of laser radiation through the 
object. Studies in this field also can significantly increase 
the efficiency of the phase object imaging by optical lens 
systems. 

In this study, following simple theoretical 
considerations, we systematically analyze all the 
consequences of the direct diffraction problem solved in 
the first Rytov approximation. The discovered features of 
the phase object visualization in the field of coherent 
laser radiation are analyzed for their broad applications in 
diagnosing phase objects on short temporal and small 
spatial scales. 

1. Problem statement 

Let us consider the diffraction of a plane optical wave 
0 exp( )I ikx , with intensity I0, wave number k = 2 / , 

and wavelength  in Fig. 1a by a phase object, which can 
be approximated in the assumption of axial symmetry. In 
experiments, such objects are rarely observed, but the 
assumption of axial symmetry is widely employed to gain 
insights into the phase object characteristics. We will 
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consider the changes in intensity I(x, ) and phase shift 
(x, ) (here  is the two dimensional variable 
introduced for variables y and z) of the diffracted wave in 
the object output plane with the coordinate of x = 2R. 
Outside the object, there is an infinite medium with a 

uniform dielectric permittivity equal to unity. In this 
medium, behind the object, the propagation of the 
diffracted wave continues (e.g., up to a CCD matrix in the 
case of lensless diffraction imaging or up to the object 
plane of a lens system). 

 
Fig. 1. (a) Schematic illustration of plane wave diffraction by a phase object. (b) Electron density ne, dielectric permittivity , 
and refractive index nref of a plasma cylinder at 532 nm considered as a diffracting medium. (c) and (d) Simulated 2D maps 
describing the intensity and phase shift of the diffracted wave for its forward and inverse directions of propagation. (e)–(g) 

Considered relative positions of the object output plane and plane of interest. (h)–(j) Intensity and phase shift distributions obtained 
in the considered planes of interest 

Mathematically, wave diffraction by the object can be 
described by solving the following equations [11]  
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where f y and f z are the spatial frequencies related to the 
coordinates y and z, and f  appears as the two-

dimensional variable introduced for f y and f z. For 
convenience let us introduce auxiliary function 

 1 1 0= ln ( , ) /I x I   understood as a wave level. 
Dielectric permittivity (x, ) = 1 + ̃(x, ) of the object is 
considered in terms of fluctuations relative to the 
environment. The part of the object dielectric permittivity 
̃(x, ) can depend on the radiation wavelength and be 
complex. So, hereinafter, function ̃(x, ) is understood as 
the disperse part of (x, ), but we exclude any other 
nonlinear effects (see, e.g., in [27]) during the wave 
passage through the object. From equation (1) phase shift 
and intensity of the diffracted wave are found as 
1 = Im (–1(1)) and I1 = I0× exp [2× Re (–1(1)], where 
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symbol –1 means the inverse Fourier transform. The 
criteria for the applicability of equations (1)–(4) are the 
following. First, characteristic scale l ̃  ̃ / | ̃ | (here we 
have = / / /x y zh x h y h z        

  
) of the changes in 

the dielectric permittivity of the object is assumed to 
significantly exceed wavelength  of the probing 
radiation. Second, dispersion ̃ of function ̃ is assumed 
to satisfy condition 

2 2 2
1 1| | = 1/ | |

V
V dV k         

 
  

(function Ф1 is given by equation (4), and 
/ /y z      

  
). Here we have  
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(symbol < … > means averaging), and  

= 1/
V

V dV   , 

which is the mean value introduced for function ̃ given 
in the volume V. In other words, smooth changes in the 
characteristics of the medium are assumed on scales of 
the order of the wavelength of the probing radiation. 
Parameter x is the distance at which the diffracted wave is 
considered behind the object. For this distance inequality 

2 2( ) / ( / )x x l l
     is assumed to be satisfied 

allowing for a parabolic form of the Helmholtz wave 
equation [28]. Equation (1) takes into account the 
diffraction spreading of the wave during the propagation 
through the object and behind its output plane and also 
allows one to describe the propagation of the wave 
behind the object at distances satisfying the condition of 
the applicability of the first Rytov approximation. 

Equation (1), while being obtained by solving the 
Helmholtz wave equation in the first Rytov 
approximation, points to a number of fundamental 
patterns of the diffracted wave behavior. Assuming the 
axial symmetry of the phase object, let us consider 
independently the cases of the object without and with 
radiation absorption. In the first case the disperse part of 
the object dielectric permittivity is real together with its 
spectrum, and equation (1) can be written as follows 
1(x, f ) = T(x, f ) + iH(x, f ), where  
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Functions H = ( 1) and T = ( 1) denote the two-
dimensional Fourier spectra of the wave phase shift and 
level distributions, which are defined behind the object in 
a certain YZ plane with the coordinate of x. Let us move 
the origin of the coordinate system in Fig. 1(a) to the 
object center and introduce parameter x̃ = x – R and new 
integration variable x = x – R. In the new coordinate 
system the integrands in equations (5) and (6) can be 
expressed as 


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and the integration is performed from – R to R, since 
function (x, f ) outside the object region equals to zero. 
Let us take into account the fact that function (x, f ) is 
even with respect to the point x = 0, whereas function 

2sin( )f x   is odd. Consequently, the integrals (5) and 
(6) can be simplified to the following form  
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For convenience, the integral transformation in 
equations (7) and (8) can be denoted as function 

 2

0
( ) = cos ( , )

R
f x f x f dx       . 

2. Equation analysis when there is no absorption 

Let us analyze obtained equations (7) and (8). These 
equations allow one to describe the wave propagation 
both inside the object and behind its output plane in free 
space, with the diffraction spreading of the wave in the 
periphery taken into account. Equation (1) constitutes the 
solution of the scalar Helmholtz equation, which was 
looked for taking into account the boundary condition 
1(x = 0, f ) = 0 [28]. This condition corresponds to the 
start of the wave propagation through the object. Let us 
consider the wave, when it has passed through the entire 
object and further propagates in free space. The wave 
propagation in free space in equations (7) and (8) is 
characterized by the trigonometric factors outside the 
integrals. When we operate with the data measured in an 
experiment, the initial conditions in the form of the phase 
shift and intensity spectra are given in a certain plane 
with the coordinate of x̃. The exact distance from this 
plane to the object output plane can be unknown. 
Moreover, even the exact position the object can be 
unknown, but the main thing is that the level and phase 
shift spectra of the diffracted wave are defined in the 
plane behind the object. 

Let us now consider the plane with the defined level 
and phase shift spectra characterizing the brightness and 
phase patterns of the object and vary the values of x̃ in 
equations (7) and (8) assuming that the variable takes 
values x̃ < R. In other words, we consider the further 
changes in the shape of the level and phase shift spectra 
of the wave in free space assuming no object on the wave 
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path. How should the wave propagation be understood in 
this case? If we were in the object output plane with the 
coordinate of x̃ = R, then the transition to values x̃ < 0 
could be interpreted as an artificial inversion of the 
propagation direction of the diffracted wave from this 
plane. In the absence of the object, the diffracted wave 
from the object output plane passes through the former 
region of the object including its former center with the 
coordinate of x̃ = 0 and then propagates somehow in free 
space (x̃ < – R). Actually, such a consideration is 
applicable to any plane behind the object output plane. 

Following this reasoning, one can find that the 
following relations are fulfilled  

 ( , ) = ( , ),H x f H x f   (9) 
 ( , ) = ( , ),T x f T x f    (10) 

 2

0
(0, ) = cos ( , ) ,

R
H f k x f x f dx       (11) 

(0, ) = 0.T f  (12) 

From a theoretical point of view, this means that 
within the framework of the first Rytov approximation 
the shape of the phase shift spectrum coincides on both 
sides of the object’s symmetry plane, whereas in the 
symmetry plane itself the phase shift spectrum has a 
characteristic inflection point along the longitudinal 
coordinate and completely coincides with the spectral 
transform of function ̃(x, ). In other words, the 
symmetry plane appears as the surface of localization of 
the object phase pattern, when the object is exposed to a 
plane wave. In the symmetry plane the level spectrum 
equals to zero, i.e., the intensity distribution is 
indistinguishable from the incident plane wave intensity, 
and the object is invisible. However, the contrast of the 
object brightness pattern increases on both sides of the 
symmetry plane, as we move away from it. Moreover, 
when passing through the symmetry plane of the object 
(its center), there is an inversion of the contrast along the 
longitudinal coordinate. These regularities are known in 
photographic optics in the presence of the defocusing 
effect, but they have not been explicitly shown as a 
fundamental consequence of the wave diffraction 
equation (1) obtained in the first Rytov approximation. 

Note that expressions (7) and (8) have the same kernel 
of the integral transformation and establish the unified 
relation, which relates the phase shift spectrum to the 
level spectrum for each longitudinal coordinate x̃ of the 
diffracted wave propagation  

   2( , ) / ( , ) = tan .T x f H x f x f    (13) 

The relation is satisfied for all x̃, for which the 
employment of the first Rytov approximation is 
permissible, see the details in the study [28]. The 
limitations imposed on equation (13) are individual for 
each specific phase object and can only be clarified in 
detail in terms of numerical simulations. However, if the 

relation governed by equation (13) is satisfied, then 
opportunities open up for simplifying laser diagnostics of 
the investigated phase object. For example, it is sufficient 
to register only the intensity or phase shift distribution in 
a certain plane behind the object, since the spectrum of 
the wave level related to the intensity changes is 
expressed through the phase shift spectrum in accordance 
with (13). This eliminates in experiments the need to 
create complicated laser interferometry systems for 
registering the object phase patterns, which are crucial for 
solving the inverse diffraction problems and 
reconstructing the object optical characteristics. Relation 
(13) also explains the principle by which the well-known 
Gerchberg-Saxton method [30, 31, 32] is implemented, 
when lensless diffraction methods are employed to 
reconstruct the phase shift from the intensity distributions 
of the diffracted wave detected in the far-field region. At 
the same time, relation (13) points to the fundamental 
limitations of its applicability, when there is radiation 
absorption in the object. 

3. Numerical simulation and verification 

The discussed regularities in the diffracted wave 
characteristics are of a fundamental nature, but it is 
important to evaluate them on a particular example. Let 
us assume a phase object in Fig. 1a to be represented in 
the form of a plasma cylinder (filament, which appears as 
a single element of the electric spark microstructure [29]) 
20 m in diameter (2R), which is exposed to a plane 
wave at 532 nm. The filament properties, which are 
plasma electron density ne, dielectric permittivity , and 
refractive index nref, are given in Fig. 1b. The electron 
density profile is taken to be ne(y) = A(1 + cos(y / R)) / 2, 
where A = 5×1019 cm– 3 is the dimension factor, and has 
axial symmetry in x = R. With the considered properties 
of the plasma the latter appears as a purely phase object, 
i.e. there is no the radiation absorption. The filament’s 
dielectric permittivity is determined as 2 2= 1 /pe   , 
where 2 1/ 2= (4 / )pe e ee n m   (e and me are the electron 
charge and mass) and  are the plasma and radiation 
frequencies, as well as we have 2 2= /pe   . By 
simulating equations (1) – (4) for different values of x̃, we 
obtained in Figs. 1c and 1d the 2D maps describing the 
intensity and phase shift of the diffracted wave traveling 
in the forward and inverse directions of its propagation. 
For a number of the planes of interest in Figs. 1e–g we 
plotted the distributions of the wave intensity and phase 
shift in Figs. 1h–j. It is seen that wave diffraction by the 
filament is accompanied by the intensity and phase shift 
fluctuations on micron-sized scales falling within a 
diffraction cone, the apex of which coincides with the 
object region. When the wave travels in the forward 
direction of propagation, the central part of the diffraction 
pattern is characterized by a decrease in the wave 
intensity, since the plasma acts like a ’negative lens’. 
Opposite to this, for the case of the inverse direction of 
propagation, the wave diffraction pattern in its center is 
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characterized by an increase in the wave the intensity, i.e. 
for such a consideration of the wave propagation the 
plasma acts like a ’positive lens’. So, when proceeding 
from the right to the left sides of the object output plane, 
the inversion of the contrast of the object brightness 
pattern occurs. In each case of the diffracted wave 
propagation the phase shift has a similar behaviour, and 
its maximum value is reached in the vicinity of the object 
center. Herein one can also distinguish a sharp drop in the 
contrast of the object brightness pattern, i.e. the object 
becomes invisible, and the object’s phase pattern turns 
out to be localized directly in the object center, i.e., is 
registered as correctly as possible. The mentioned facts 
are in good agreement with the results predicted by 
relations (9 – 12). 

Finally, let us note an important point regarding the 
stability of the numerical solution of the direct diffraction 
problem described by equations (9 – 12). We investigated 
the problem on the example of modeling diffraction of a 
laser beam passing through plasma microstructures, 
previously considered in [26]. It was found that small 
artifacts (e.g., noise) artificially introduced into the 
characteristics of the diffracted wave significantly affects 
the picture of the wave front behind the object. In this 
regard, the above-described regularities in the wave 
diffracted by an ideal axisymmetric phase object are 
limited in their application, but can still serve as useful 
tools in numerical and experimental studies. Notably, a 
number of fundamental patterns of the diffracted wave 
behavior are preserved even in the case of a complex-
structured phase object. These are, e.g., the drop in the 
object brightness pattern and the local inversion of the 
intensity fluctuations, when passing through the resultant 
center of the object. This fact was observed in the 
experiments carried out in [26]. 

4. Equation analysis in the case of radiation absorption  

If radiation absorption occurs in the object, the 
dispersion part of the object dielectric permittivity and its 
spectrum take the form of ̃(x̃, ) = ̃1(x̃, ) + i̃2(x̃, ) and 
(x, f ) = 1(x, f ) + i2(x, f ), respectively. By 
substituting functions 1(x, f ) and 2(x, f ) into 
equation (1), we obtain the corresponding equations 
describing the phase shift and intensity spectra  
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f x f x f dx        
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 2
2 2

0
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f x f x f dx        

are introduced. 
In the presence of radiation absorption the diffraction 

pattern turns out to be more complex. It becomes possible 
to fully reconstruct complex dielectric permittivity 
function ̃(x̃, ) = ̃1(x̃, ) + i̃2(x̃, ) only from the results 
of simultaneous registration of the intensity and phase 
shift of the diffracted wave. The diffraction pattern 
described by equations (14) and (15) is asymmetric with 
respect to the symmetry plane with the coordinate of 
x̃ = 0. There is no inversion of the contrast of the object 
brightness pattern, and the distributions of the phase shift 
and intensity are not similar to the distributions on both 
sides of the object’s plane of symmetry. In the plane of 
symmetry itself the following relations are fulfilled  

1(0, ) = (0, ),H f k f   (16) 

2(0, ) = (0, ).T f k f    (17) 

It can be seen that the phase shift spectrum describes 
real component ̃1(x̃, ) of the object dielectric 
permitivity, and the inverted intensity spectrum describes 
complex part ̃2(x̃, ). At the same time it is impossible to 
construct any relatively simple analytical relation, which 
can relate the spectra of the phase shift and intensity in 
free space. 

Modeling of equations (7), (8) and (14), (15) allows 
one to evaluate radiation absorption in the object by 
analyzing simultaneously the behavior of the two-
dimensional spectra of the intensity and phase shift of the 
diffracted wave in the object’s plane of symmetry and 
around its vicinity. When analyzing the experimental 
data, one can first consider a model without absorption 
and check the validity of relations (9 – 12). If they are 
unsatisfied, then further consider a model with absorption 
and analyze the validity of relations (16) and (17). To a 
large extent, this approach saves time and makes the data 
processing task less resource-intensive. It should be noted 
that the fundamental regularities in the behavior of the 
diffracted wave, predicted by relations (9 – 12) and (16) 
and (17), allow one to implement a method for localizing 
a phase object in space, even when a single angle of laser 
probing is employed. Such a method was previously 
proposed in [26, 33], when localizing plasma 
microstructures in space using spectral convolution 
describing the propagation of the angular spectrum of the 
wave in free space [34]. The efficiency of the method, 
however, went far beyond the case of only axisymmetric 
phase objects and allowed the creation of the method to 
localize even complex-structured phase objects in space. 

Equation (7) establishes an unambiguous connection 
between phase shift spectrum H(x̃, f ) and spectral 
representation (x̃, f ) of dispersion part ̃(x̃, f ) of the 
object dielectric permittivity. Equation (7) can be 
analytically inverted within the framework of solving the 
inverse problem, i.e. function ̃(x̃, f ) can be expressed in 
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terms of H(x̃, f ) taking into account the specific plane, in 
which the phase shift spectrum is determined. With such 
an approach function ̃(x̃, f ) can be retrieved taking into 
account the diffraction effects, which accompany the 
propagation of the probing wave through the object and 
are enhanced in free space behind the object output plane 
[26]. Here the accuracy of ̃(x̃, f ) reconstruction is much 
higher than that achieved when solving the inverse 
diffraction problem in the geometrical optics 
approximation (associated with solving of the inverted 
Abel integral equation) [35]. Similarly, it is possible to 
construct the solution of the inverse diffraction problem 
for wave level spectrum T(x̃, f ), i.e. by using the data on 
the wave intensity changes. Owing to this, one can 
significantly simplify the implementation of laser 
diagnosing techniques for studying phase objects in 
experiments, since there is no need to organize a 
complicated interferometry system and obtain the object 
phase patterns. The solution of the inverse diffraction 
problem can also be derived for the case when radiation 
absorption occurs in the phase object. In the case at hand, 
the solution is obtained separately for the real and 
imaginary parts of function ̃(x̃, f ) based on equations 
(16) and (17). 

Conclusion 

Thus, the findings of this study can serve as a 
promising basis for the development of new methods for 
laser diagnostics of phase objects and processing their 
images. This includes the creation of highly-efficient 
approaches to imaging phase objects within nano- and 
microscales on subnanosecond and nanosecond 
timescales, while preserving a high spatial accuracy of 
the object localization and reconstruction of its optical 
characteristics. The findings are of a general nature and 
can be useful to elaborate new methods of imaging of 
various objects in the terahertz, radio and X-ray 
wavelength ranges. 
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