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Abstract 

This paper explores the integration of Residual Networks (ResNets) into the in-loop filtering 
(ILF) process of the Versatile Video Coding (VVC) standard, aiming to enhance video compres-
sion efficiency and video quality through the application of Deep Convolutional Neural Networks 
(DCNNs). The study introduces a novel architecture, the Residual Deep Convolutional Neural 
Network (RDCNN), designed to replace conventional VVC in-loop filtering modules, including 
Deblocking Filter (DBF), Sample Adaptive Offset (SAO), and Adaptive Loop Filter (ALF). By 
leveraging the Rate Distortion Optimization (RDO) technique, the RDCNN model is applied to 
every coding unit (CU) to optimize the balance between video quality and bitrate. The proposed 
methodology involves offline training with specific parameters using the TensorFlow-GPU plat-
form, followed by feature extraction and prediction of optimal filtering decisions for each video 
frame during the encoding process. The results demonstrate the effectiveness of the proposed 
RDCNN in significantly reducing the bitrate while maintaining high visual quality, outperforming 
existing methods in terms of compression efficiency and peak signal-to-noise ratio (PSNR) values 
across various video files (YUV color space). Specifically, the RDCNN achieved a YUV PSNR of 
41.2 dB and a BD-rate reduction of – 2.43 % for the Y component, – 6.96 % for the U component, 
and – 9.43 % for the V component. These results underscore the potential of deep learning tech-
niques, particularly ResNets, in addressing the complexities of video compression and enhancing 
the VVC standard. The evaluation across various YUV video files, including Stefan_cif, Soccer, 
Mobile, Harbour, Crew, and Bus, revealed consistently higher average YUV PSNR values com-
pared to both VTM 22.2 and other related methods. This indicates not only improved compression 
efficiency but also enhanced visual quality, crucial for diverse video processing tasks. 
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Introduction 

The implementation of lossy video compression often 
introduces undesired compression artifacts, which de-
grade visual quality during video decompression. To ad-
dress this, in-loop filtering has emerged as a critical tech-
nique during the encoding phase, enhancing video quality 
by reducing artifacts such as blocking and ringing. In-
loop filters applied at the encoder level can significantly 
improve motion estimation and motion compensation, ul-
timately boosting the overall quality of the video output. 

Traditional filtering methods, such as the Deblocking 
Filter (DBF), Sample Adaptive Offset (SAO), and Adap-
tive Loop Filter (ALF), have proven effective in reducing 
these artifacts, but they are limited by the non-stationarity 
of real-world video sequences. This has led to the explo-
ration of deep learning techniques, which have demon-
strated exceptional performance in tasks like noise reduc-
tion, artifact removal, and image enhancement. 

In this paper, we propose a novel approach that lever-
ages a deep convolutional neural network (CNN) archi-
tecture to enhance in-loop filtering within the Versatile 
Video Coding (VVC) standard. By incorporating deep 
learning, we aim to overcome the limitations of tradition-
al handcrafted filters and improve both compression effi-
ciency and visual quality. 

The rest of the paper is organized as follows: Section 
2 reviews related work, focusing on traditional and deep 
learning-based filtering methods. Section 3 presents the 
proposed methodology, while Section 4 details the neural 
network architecture. Section 5 discusses the experi-
mental results, and Section 6 provides the conclusions. 

1. Related work 

In the realm of multimedia applications, the challenge 
of maintaining optimal video quality is an enduring con-
cern, particularly due to the rapid advancements in vari-
ous domains such as video gaming, computer vision, and 
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video streaming. The inherent complexities associated 
with modern video content necessitate the development 
of robust compression techniques, as lossy video com-
pression frequently introduces artifacts that adversely af-
fect visual quality. Traditional in-loop filtering methods 
have been instrumental in addressing the challenges 
posed by lossy compression and the emergence of com-
pression artifacts, thereby enhancing the visual experi-
ence during video decompression. Among these methods, 
the Deblocking Filter (DBF), Sample Adaptive Offset 
(SAO), and Adaptive Loop Filter (ALF) have been exten-
sively implemented [1, 2, 3, 4]. The DBF effectively mit-
igates block border artifacts that arise from lossy coding, 
while the quantization process can induce loss of high-
frequency components, resulting in ringing artifacts and 
boundary distortions. In contrast, the SAO method allevi-
ates these ringing effects by introducing adaptive offsets 
to sample progressions, whereas the ALF employs a 
Wiener-based adaptive filtering approach to minimize the 
mean squared error between the original and decoded 
samples. Despite the efficacy of these handcrafted filters, 
which are grounded in established signal processing prin-
ciples, their effectiveness is often constrained by the non-
stationarity inherent in real-world video sequences. 

1.1. Advances in Deep Learning for Video Compression 

In recent years, deep learning methodologies have 
gained prominence, demonstrating remarkable effective-
ness in addressing these challenges through advanced 
techniques such as noise reduction, resolution enhance-
ment, and artifact elimination [5, 6]. For instance, Dong 
et al. [7] utilized a four-layer convolutional neural net-
work (CNN) to significantly reduce compression artifacts 
in JPEG-encoded images. Similarly, Dai et al. [8] intro-
duced the Variable-Filter-Size Residue-Learning Convo-
lutional Neural Network (VRCNN) for post-processing 
within the HEVC standard, reporting an impressive 5% 
average bitrate reduction in comparison to the HEVC 
baseline. Lin et al. [9] further advanced artifact elimina-
tion through the implementation of a deeper network ar-
chitecture and the incorporation of partitioning infor-
mation. Other notable contributions to this field include 
the work of D. Ma, F. Zhang, and D. Bull [10], who pro-
posed the Multi-Level Feature Review Residual Dense 
Blocks Network (MFRNet) for in-loop filtering (ILF) and 
post-processing (PP) tasks, thereby enhancing codec effi-
ciency through the innovative use of residual dense 
blocks. Moreover, Chen et al. [11] developed a dense re-
sidual CNN (DRN) specifically designed for Versatile 
Video Coding (VVC), focusing on the improvement of 
coding performance and the minimization of artifacts 
through the implementation of dense shortcuts, residual 
learning, and bottleneck layers. A CNN-LSTM (Long 
Short-Term Memory) network hybrid deep learning mod-
el was presented by the authors S. Bouaafia, R. Khemiri, 
F. E. Sayadi, M. Atri, and N. Liouane [12] for the pur-
pose of predicting HEVC CU inter-mode partitions. At 

the same time that it successfully improves rate-distortion 
(RD) performance, this model, which was trained on a 
huge HEVC inter-mode database, also reduces complexi-
ty. On a more particular level, Bouaafia, Khemiri, Sayadi, 
and Atri [13] proposed two machine learning-based rapid 
CU partition methods with the intention of reducing the 
complexity of encoding in inter-mode HEVC. The utili-
zation of the deep CNN and online Support Vector Ma-
chine (SVM) methods results in a significant reduction in 
the complexity and duration of the encoding process. In 
addition, Bouaafia, Khemiri, Maraoui, and Sayadi [14] 
have made contributions by introducing a CNN-LSTM 
learning method to simplify HEVC. These individuals 
have made additional contributions. Through the utiliza-
tion of this technique, the complexity of the encoding 
process is diminished, while the effects on the Bit Error 
Rate (BER) and Bjøntegaard Delta-Peak Signal-to-Noise 
Ratio (BD-PSNR) are decreased. In addition, Amna, 
Imen, Ezahra, and Mohamed [15] published a method for 
future video coding (FVC) that makes use of a deep CNN 
model. This method is known as rapid quad-tree (QT) 
partitioning. Both the intra-mode encoding time and the 
bitrate escalation performance have seen significant im-
provements as a result of this strategy. The effectiveness 
of the Quadtree-Binary tree (QTBT) block partition mod-
ule in FVC can be improved through the utilization of 
this technique. Hsu, Lu, Hsieh, and Wang [16] presented 
a solution for HEVC Intra Frame Coding that is based on 
a deep convolutional neural network and is extremely ef-
fective. When contrasted with Simple Convolutional 
Neural Network (S-CNN), this method demonstrates that 
the encoding procedures are completed more quickly. In 
addition, the in-loop filtering method that was proposed 
by Pan, Yi, Zhang, Jeon, and Kwong [17] for HEVC by 
utilizing Enhanced Deep Convolutional Neural Networks 
(EDCNN) is also very efficient. By utilizing this method, 
the PSNR as well as the Rejection Detection (RD) are 
both greatly improved. Additionally, the WSE-DCNN 
approach was initially proposed by Bouaafia, Messaoud, 
Khemiri, and Sayadi [18] for the purpose of VVC in-loop 
filtering. By utilizing this strategy, The Bjontegaard Del-
ta-Rate (BD-rate) decreased while simultaneously the 
BD-PSNR was enhanced. Zhang, Wang, Huang, Jiang, 
and Wang [19] developed an effective CU partition de-
termination approach for VVC. This method was devel-
oped with the use of an enhanced DAG-SVM model. A 
new in-loop filter for video coding was presented by Li 
and Ji [20], who utilized a lightweight multi attention re-
cursive residual CNN at the time of their presentation. 
The primary objective of this filter is to find solutions to 
the issues that arise as a result of highly intricate parame-
ters and the necessity for a large number of models to 
cope with a wide range of quantization parameters (QPs). 
The solution that has been provided incorporates QPs, 
Frame Type (FT), and Temporal Layer (TL) into a single 
cohesive model. This results in considerable reductions in 
the bit error rate (BER) in all-intra as well as random-
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access configurations. A deep learning approach was cre-
ated by the authors of the study by Kuanar et al. [21] in 
order to execute SAO filtering operations in HEVC. The 
SSIM, BD-BR, and BD-PSNR measurements have all 
shown that this approach has showed exceptional perfor-
mance. Numerous studies have demonstrated the potential of 
deep learning to increase the efficiency of video coding, par-
ticularly in reducing bitrates when compared to traditional 
approaches such as HEVC. Deep Neural Networks (DNNs) 
have become a powerful tool in video compression by dy-
namically adjusting to input data and learning optimal filter-
ing strategies for compression tasks. In particular, DNNs en-
able precise artifact reduction and pattern recognition, offer-
ing notable improvements in both compression efficiency 
and video quality [22]. In the context of this work, DNNs 
are leveraged to enhance the in-loop filtering process in Ver-
satile Video Coding (VVC), where their ability to optimize 
parameters through extensive training significantly improves 
video quality and reduces bitrate. 

The key to this approach is the meticulous tuning of 
model parameters, which ensures optimal learning and en-
hances performance. This tuning minimizes manual inter-
vention, allowing the network to automatically learn com-
plex filtering tasks and make data-driven decisions. Addi-
tionally, transfer learning techniques, where knowledge 
learned from one domain is applied to another, enhance the 
model’s adaptability and extend its applicability across dif-
ferent video datasets [23], [24]. The findings of these studies 
indicate that deep learning and machine learning have had a 
significant influence on video coding, particularly with re-
gard to the enhancement of video quality and the introduc-
tion of new levels of complexity. The proposed methods, 
which make use of CNN structures, had shown good results 
in terms of lowering the complexity of the encoding process 
and improving the quality of the video in accordance with 
the HEVC and VVC standards. 

In Tab. 1, we have encapsulated the key insights dis-
tilled from prior research. 

Tab. 1. Summary of Related Work 

Reference Methodology/Model Application Performance Metrics 

[10] 
MFRNet: Multi-level feature review re-

sidual dense blocks (MFRBs) 
In-loop filtering and post-

processing in video compression 
Compression efficiency, Visual 

quality 

[11] 
Dense residual convolutional neural 

network (DRN) 
In-loop filtering in VVC 

Coding performance, Artifact 
reduction 

[12] 
CNN-LSTM hybrid model for predict-
ing HEVC CU inter-mode partitions 

Predictive coding in HEVC 
Rate-distortion performance, Com-

plexity reduction 

[13] 

Machine Learning-based CU partition 
methods: Deep CNN and online SVM 
methods for reducing complexity in in-

ter-mode HEVC 

CU partitioning in HEVC 
Complexity reduction, Encoding du-

ration reduction 

[14] 
CNN-LSTM learning method for sim-

plifying HEVC 
Video coding 

Complexity reduction, Bjøntegaard 
Delta-Rate, BD-PSNR improvement 

[15] 
Deep CNN model for FVC using Rapid 

quantum tunneling QT partitioning 
Video coding 

Intra-mode encoding time, Bitrate 
performance improvement 

[16] 
Deep CNN-based solution for HEVC 

intra frame coding 
Video coding Encoding speed improvement 

[17] 
Enhanced Deep CNN (EDCNN) for in-

loop filtering in HEVC 
In-loop filtering in HEVC 

PSNR improvement, Rejection De-
tection enhancement 

[18] 
WSE-DCNN Deep CNN model for 

VVC in-loop filtering 
In-loop filtering in VVC 

Bjontegaard Delta-Rate reduction, 
BD-PSNR enhancement 

[19] 
Enhanced DAG-SVM model for CU 

partition determination in H.266/VVC 
CU partitioning in VVC 

Efficiency improvement in video 
coding 

[20] 
Lightweight multi attention recursive 
residual CNN for in-loop filtering in 

video coding 
In-loop filtering in video coding Bit error rate reduction 

[21] 
Deep learning approach for SAO filter-

ing operations in HEVC 
SAO filtering in HEVC 

SSIM, BD-BR, BD-PSNR im-
provement 

 

2.Proposed methodology 

This section presents the proposed methodology for 
enhancing video compression through the integration of a 
Residual Deep Convolutional Neural Network (RDCNN) 
as a replacement for the conventional VVC loop filtering 
module. The methodology is organized into three main 
phases: 

2.1. Framework Configuration and Training Parameters 

The deep learning framework is initially configured 
for offline training, utilizing the TensorFlow-GPU plat-

form to optimize computational efficiency for processing 
high-dimensional video data. In this configuration, a 
batch size of 128 is employed to balance computational 
efficiency and the capacity to capture complex data pat-
terns. The training process consists of 50 epochs, ensur-
ing adequate learning while mitigating the risk of overfit-
ting. A learning rate of 0.001 is maintained to facilitate 
stable convergence, allowing the model to learn effective-
ly from the provided data. Additionally, a weight decay 
of 0.1 is applied after 10 epochs as a regularization strat-
egy. This approach enables the model to initially learn 
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without regularization for potentially better performance, 
followed by stabilization through regularization tech-
niques. The Adam optimization algorithm [27] is utilized 
for its adaptive learning rate capabilities, allowing for in-
dividual adjustment of the learning rate for each parame-
ter, thereby facilitating faster convergence and stabiliza-
tion during training. 

2.2. Feature Extraction and Post-Training Prediction 

In this phase, the CNN is specifically designed to ex-
tract significant features from video frames, focusing on 
attributes such as luminance, chrominance, and motion 
vectors. These features are critical for video content in-
ference, which informs the development of optimal filter-
ing strategies. As shown in Figure 1, we introduce the 
Residual Deep Convolutional Neural Network (RDCNN) 
model as a replacement for the conventional VVC loop 
filtering module. This module encompasses functionali-
ties for deblocking filtering (DBF), sample adaptive off-
set (SAO), and adaptive loop filtering (ALF). The prima-
ry objective of the RDCNN is to enhance visual appear-
ance while preserving the advantages of the coding pro-

cess. The feature extraction process begins with the input 
of raw video frames into the CNN. During training, the 
model learns to identify and represent these attributes 
through multiple convolutional layers, where the features 
are progressively refined. The architecture includes sev-
eral convolutional layers, followed by activation func-
tions such as ReLU (Rectified Linear Unit) to introduce 
non-linearity, and pooling layers to reduce spatial dimen-
sions while preserving essential features. Upon comple-
tion of training, the CNN is capable of accurately predict-
ing optimal filtering decisions for each video frame dur-
ing the encoding process. This prediction involves ana-
lyzing the extracted features to dynamically adjust filter-
ing intensity and orientation, thereby guiding the encoder 
in determining appropriate compression levels and 
preservation strategies. By leveraging the RDCNN’s ca-
pabilities, we achieve a refined balance between video 
quality and bitrate, ultimately resulting in higher-quality 
videos that are compressed at lower bitrates. This synergy 
of deep learning techniques with traditional video coding 
methods significantly enhances compression efficiency 
and effectiveness. 

 
Fig. 1. The proposed model 

2.3. Rate Distortion Optimization (RDO) Strategy 

The Rate Distortion Optimization (RDO) technique is 
a critical component of our video coding methodology, 
guiding the effective application of the RDCNN in-loop 
filters across the entire video frame. The RDO criterion is 
mathematically represented as 

J = D + λR (1) 

where J is the overall cost function, D represents the dis-
tortion between the original and reconstructed frames, 
and R denotes the number of bits used for coding. The 
Lagrange multiplier (λ) adjusts the balance between these 
two components, enabling a controlled trade-off between 

video quality and bitrate. During the encoding process, 
the RDO mechanism evaluates potential filtering strate-
gies generated by the CNN in conjunction with the over-
all distortion and bitrate. By optimizing this trade-off, the 
RDO technique ensures that the chosen filtering methods 
enhance visual quality while adhering to bitrate con-
straints. The application of RDO is particularly vital in 
scenarios where maintaining quality is essential, as it 
helps to prevent significant quality degradation that can 
arise from excessive compression. 

The effectiveness of the RDO strategy is further en-
hanced by iterative optimization, allowing the encoder to 
refine its filtering decisions based on the outcomes of 
previous iterations. This iterative process contributes to 
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improved visual quality in the final compressed output, 
ensuring that the advantages of the RDCNN’s deep learn-
ing capabilities are fully realized in the video coding 
framework. 

3. RDCNN architecture 

In the Residual CNN (ResCNN) architecture, 
adapted from the widely recognized ResNet architecture 
introduced by He et al. [29], each layer plays a crucial 
role in feature extraction and the filtering process, tai-
lored specifically for enhancing video frames in Versatile 
Video Coding (VVC). While the original ResNet archi-
tecture was designed for image classification tasks, we 
have modified it to better capture both spatial and tem-
poral dependencies in video data, which are essential for 
making accurate predictions regarding optimal filtering 
decisions. Below, we detail the contribution of each layer 
to the enhancement of video frames in VVC, with partic-
ular emphasis on residual layers. 

Input Layer: This layer receives preprocessed video 
frames that have been standardized and normalized, de-
noted as X. It initiates the network, where raw pixel data 
is passed into subsequent layers for processing. 

Convolutional Layers: These layers, represented as 
Conv(𝑋, 𝑊) are responsible for extracting spatial features 
from the input frames. The architecture includes a total of 
five convolutional layers, each with 64 filters, set with 
padding='same' and using ReLU activation. Here, W rep-
resents the filters applied to the data, with each filter de-
signed to detect specific patterns within the frames. The 
convolution operation is defined as: 

Y = ∑i=0
k−1  Xi⋅Wi, (2) 

where Xi represents the input values, Wi denotes the filter 
weights, and Y is the resulting feature map. Deconvolu-
tion layers are not required in this architecture because 
the task does not involve frame upscaling or reconstruc-
tion. Instead, the architecture focuses on making pixel-
wise filtering decisions, maintaining spatial alignment 
through the convolutional and residual layers without 
needing deconvolution. 

Residual Layers: Inspired by the ResNet architecture 
[29], these layers learn the residual function F(X, {Wi}), 
capturing the difference between the input and the desired 
output. The residual connections help the network bypass 
vanishing gradients and enable deeper network training 
by learning the identity function. The output of a residual 
block is expressed as: 

Y = F(X,{Wi}) + X. (3) 

Activation Functions: ReLU (Rectified Linear Unit), 
defined as g(X) = max(0, X), introduces non-linearity into 
the network, allowing it to learn complex patterns. ReLU is 
widely used due to its simplicity and efficiency in mitigating 
the vanishing gradient problem. Fan Zhang's study [28] fur-
ther highlights ReLU’s efficacy in enhancing video coding 
efficiency through CNN-based post-processing techniques.  

Pooling Layers: These layers, denoted as Pool(X), 
reduce the spatial dimensions of the feature maps, thus 
lowering computational complexity and preventing over-
fitting. Max pooling is used to select the maximum value 
within a designated region of the feature map: 

Y = Max(Xi). (4) 

Fully Connected Layers: After feature extraction, 
fully connected layers FC(X, W, b)) are used to make fi-
nal predictions for pixel-wise filtering decisions, deter-
mining the intensity and direction of filtering. These lay-
ers are not intended for spatial reconstruction, but rather 
for making adjustments to each pixel during the compres-
sion process. The output is computed as: 

Y = WX + b, (5) 

where W denotes the weight matrix, X signifies the input 
vector, and b represents the bias vector. 

Output Layer: The output layer generates the final 
filtering predictions for each pixel in the video frame. 
These decisions influence filtering strength and direction 
during the encoding process, enhancing visual quality 
while maintaining bitrate efficiency. 

Our Residual Deep Convolutional Neural Network 
(RDCNN) architecture synergizes convolutional and re-
sidual layers to effectively extract features from video 
frames and predict optimal filtering decisions. By har-
nessing the principles of residual learning, the architec-
ture significantly improves the compression efficiency of 
Versatile Video Coding (VVC), enabling the delivery of 
higher-quality video at lower bitrates. The model em-
ploys the Adam optimizer, which is renowned for its 
adaptive learning capabilities, facilitating stable conver-
gence during training. To ensure pixel-level accuracy in 
filtering predictions, we utilize the Mean Squared Error 
(MSE) as the loss function. This approach aligns the 
model’s outputs with the ground truth values, thereby en-
hancing the model's precision in video compression tasks 
and reinforcing the integrity of the visual content. 

4. Data collection and preprocessing 

The proposed method is trained using the publicly 
available BVI-DVC dataset [26], which comprises 800 
video sequences spanning resolutions from 270p to 
2160p. This dataset is specifically designed for training 
CNN-based video compression systems, emphasizing 
machine learning tools that enhance conventional coding 
architectures, including spatial resolution and bit depth 
up-sampling, post-processing, and in-loop filtering. 80% 
of these sequences are designated for training, while the 
remaining 20 % are held for validation. Employing a ran-
dom-access scenario, the VVC VTM-22.2 test model [25] 
compresses these sequences using various QP values (29, 
35, 38, 40, and 41), resulting in reconstruction video im-
ages with both luma and chroma components. These im-
ages are then divided into 64×64 patches in a randomized 
manner.  
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5. Results 

During the evaluation, particular emphasis is placed 
on the loss curve (Fig. 2), which shows the model's grad-
ual improvement in performance as training progresses. 
The decrease in the loss values reflects the model's ability 
to iteratively optimize its parameters and improve its per-
formance through each training epoch. This optimization 
occurs within the context of training the Convolutional 
Neural Network (CNN) as an in-loop filter for Versatile 
Video Coding (VVC).  

 
Fig. 2. Loss function 

The effectiveness of the proposed filter was evaluated 
on a diverse set of YUV video files, including 
BUS_352×288, CREW_352×288, HAR-
BOUR_352×288_30, MOBILE_352×288_30, SOC-
CER_352×288, and stefan_cif. These sequences, com-
monly used as benchmarks in video processing and en-
coding, have a resolution of 352×288 pixels and a frame 
rate of 30 frames per second. The evaluation followed the 
configurations outlined in the encod-
er_randomaccess_vtm.cfg file, to ensure uniform testing 
conditions, we conducted experiments across various QP 
values (29, 35, 38, 40, and 41), allowing bitrate to vary 
accordingly with each QP. This approach provided a bal-
anced comparison of the impact of QP on video quality 
and compression efficiency under consistent encoding 
settings. This approach systematically explores the im-
pact of different QP settings on video encoding quality 
and efficiency. Higher QP values, like 41, result in higher 
compression rates but may introduce more visible arti-
facts. In contrast, lower QP values, such as 29, preserve 
more detail but at the cost of larger file sizes. Maintaining 
a fixed bit rate ensures that the observed differences are 
solely due to QP variations, allowing for a clear compari-
son of the encoding performance under different condi-
tions. The analysis, conducted over 10 frames for each 
sequence, revealed a compression ratio of approximately 
15.36, which corresponds to the lower quantization pa-
rameter (QP) values used in the experiments. This indi-
cates a significant reduction in video size while maintain-
ing acceptable quality levels. The YUV Peak Signal-to-
Noise Ratio (PSNR) was employed as the primary metric 
for evaluating video quality, with compression ratios var-
ying depending on the PSNR achieved for each video. As 

shown in Fig. 3 through 9, the relationship between 
PSNR and compression ratio is illustrated for different 
test sequences, where higher PSNR values generally cor-
respond to lower compression ratios. 

 
Fig. 3. Proposed vs VTM22.2 on Stefan.yuv 

 
Fig. 4. Proposed vs VTM22.2 on Soccer.yuv 

 
Fig. 5. Proposed vs VTM22.2 on Mobile.yuv 

 
Fig. 6. Proposed vs VTM22.2 on Harbour.yuv 

The results presented in Tab. 2 compare the perfor-
mance of the proposed method against VTM22.2. The 
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proposed filter consistently achieved higher average 
YUV PSNR values, indicating improved video quality. 
For example, the proposed method achieved a PSNR of 
41.2 on the Stefan_cif sequence, compared to 38.4 for 
VTM22.2. 

 
Fig. 7. Proposed vs VTM22.2 on Crew.yuv 

 
Fig. 8. Proposed vs VTM22.2 on Bus.yuv 

Tab. 2. Results for all samples (Proposed vs VTM22.2) 

YUV sample 
Average YUV PNSR 

Proposed VTM 22.2 

Stefan_cif 41.2 38.4 

Soccer 39.9 38.1 

Mobile 38.2 37.3 

Harbour 38.9 36.3 

Crew 38.2 36.9 

Bus 39.9 38.1 

The Residual Deep Convolutional Neural Network 
(RDCNN) system, when integrated into the VVC frame-
work, outperformed existing methods in terms of both 
luma and chroma component compression. This im-
provement in compression efficiency translated into en-
hanced visual quality, as demonstrated in Tab. 3, where 
the proposed method surpassed the baseline VTM22.2 
and other related approaches. 

 
Fig. 9. Bar-Plot for all samples (Proposed vs VTM22.2) 

Tab. 3. Comparison with other works 

Algorithm YUV PSNR (db) 

[18] 40.0 

VTM 22.2 38.4 

Proposed 41.2 

Tab. 4 shows another comparison of the proposed ap-
proach with a number of CNN-based filtering strategies. 
Tab. 4 shows how encoding performance is compared to 
other methods using the Versatile Video Coding (VVC) ar-
chitecture in terms of minimizing RD [30, 31]. Chen et al. 
[30] presented a method that uses a dense residual convolu-
tional neural network's (DRN) in-loop filter to enhance the 
quality of reconstructed films. Using the DIV2K dataset [32] 
for training, this network is placed after the deblocking filter 
(DBF) and before SAO and ALF in the VVC VTM refer-
ence software. Furthermore, an additional in-loop filtering 
technique based on CNN is suggested [31], designed for 
both inter and intra frames, which operates in the VVC 
VTM prior to the ALFs, with the DBF and SAO disabled. 

Table. 4. Comparison of the proposed approach with a number of CNN-based filtering strategies 

  Approach [30]   Approach [31]    Proposed Approach 
Class (Y) (U) (V) (Y) (U) (V) (Y) (U) (V) 

A1 -1.27 -3.38 -5.10 0.87 0.12 0.22 -1.33 -8.66 -9.05 
A2 -2.21 -5.74 -2.88 -1.12 -0.52 -2.11 -1.10 -11.02 -8.08 
B -1.13 -4.73 -4.55 -0.83 -0.47 -1.20 -2.82 -7.78 -14.64 
C -1.39 -3.63 -4.36 -1.76 -3.64 -6.80 -2.14 -4.42 -7.57 
D -1.39 -1.96 -3.08 -2.95 -3.27 -7.35 -2.53 -5.53 -8.50 
Over all -1.47 -3.88 -3.99 -1.16 -1.56 -3.44 -2.43 -6.96 -9.43 

 

6. Discussion 

In light of the proposed methodology, the results ob-
tained underscore the effectiveness of integrating deep 
learning techniques, specifically the RDCNN architec-
ture, into the VVC framework for video compression en-

hancement. Through meticulous training and optimiza-
tion on the TensorFlow-GPU platform, our model 
demonstrates remarkable performance improvements 
over conventional methods. The chosen parameters, in-
cluding batch size, training epochs, and learning rate ad-
justment strategy, play pivotal roles in guiding the model 
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towards learning optimal filtering strategies for video 
frames. By leveraging the inherent capabilities of the 
Convolutional Neural Network (CNN) to extract signifi-
cant features from video frames, the proposed RDCNN 
architecture autonomously learns to discern and predict 
optimal filtering decisions. These decisions, accurately 
predicted during the encoding process, dynamically ad-
just filtering intensity and orientation, ultimately enhanc-
ing visual quality while maintaining bitrate efficiency. 
The observed convergence of loss metrics across training 
epochs further validate the model's incremental progres-
sion towards optimal performance, aligning with estab-
lished neural network training principles. Moreover, the 
detailed assessment conducted across various YUV files 
showcases consistently higher average YUV PSNR val-
ues compared to both VTM 22.2 and other related meth-
ods. This indicates not only improved compression effi-
ciency but also enhanced visual quality, which is crucial 
for diverse video processing tasks. The meticulous design 
of the RDCNN architecture, with its assortment of layers 
including residual layers, effectively captures spatial and 
temporal dependencies in video data, contributing to pre-
cise predictions concerning optimal filtering decisions. 
The comparison between the proposed method and VTM 
22.2 across various YUV samples reveals significant im-
provements in average YUV PSNR values, indicative of 
enhanced visual quality achieved by our approach. For 
instance, in the Stefan_cif sample, our proposed method 
achieves an average YUV PSNR of 41.2, surpassing 
VTM 22.2's score of 38.4. Similarly, in the Soccer sam-
ple, our method demonstrates superior performance with 
an average YUV PSNR of 39.9 compared to VTM 22.2's 
38.1. This trend persists across other samples, including 
Mobile, Harbour, Crew, and Bus, where our proposed 
method consistently outperforms VTM 22.2. Additional-
ly, we calculated the BD-rate, which further corroborates 
our findings. The overall BD-rate results indicate that the 
proposed approach enhances compression efficiency 
more effectively than the existing methods presented in 
references [30] and [31], achieving BD-rate improve-
ments of – 2.43, – 6.96, and – 9.43 for Y, U, and V, re-
spectively. These results reinforce the efficacy of our 
method, highlighting its capacity to enhance compression 
efficiency while preserving visual quality. The superior 
performance observed in comparison to the existing algo-
rithm further validates the efficacy of our approach. By 
achieving higher average YUV PSNR values and im-
proved BD-rates across multiple YUV samples, our 
method demonstrates its potential to deliver superior-
quality videos at reduced bitrates, addressing key chal-
lenges in video compression and encoding. 

7. Conclusion 

In conclusion, this work presents a novel approach to 
enhancing video compression through the integration of 
deep learning techniques, specifically leveraging a Resid-
ual Deep Convolutional Neural Network (RDCNN) mod-

el within the Versatile Video Coding (VVC) framework. 
The methodology involves configuring a deep learning 
framework for offline training with carefully selected pa-
rameters to optimize computational efficiency and 
memory usage. The use of a Convolutional Neural 
Network (CNN) for feature extraction from video 
frames, combined with the RDCNN model for in-loop 
filtering, aims to improve video quality while main-
taining efficient compression. The proposed method 
demonstrates significant advancements in compression 
efficiency and visual quality, as evidenced by the 
achieved compression ratio and the improvement in 
YUV Peak Signal-to-Noise Ratio (PSNR) across vari-
ous video sequences. The integration of deep learning 
methodologies, such as the RDCNN model, into tradi-
tional video coding processes represents a significant 
step forward in the field of video compression. By dy-
namically adjusting to input data and autonomously 
solving problems without constant human oversight, 
deep learning models like the RDCNN offer a promis-
ing solution for enhancing video compression tech-
niques. The empirical evidence presented in this work 
underscores the potential of deep learning in trans-
forming video compression, paving the way for more 
efficient and high-quality video encoding solutions. 
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