(27) * << * >> * Russian * English * Content * All Issues

Optical pure vortices and hypergeometrical modes

V.V. Kotlyar 1, 2, S.N. Khonina 1, 2, A.A. Almazov 1, 2, V.A. Soifer 1, 2
1Image Processing Systems Institute of RAS
2Samara State Aerospace University(SSAU)

 PDF, 125 kB

Pages: 21-27.

Full text of article: Russian language.

A countable set of linearly independent solutions of a paraxial wave equation (such as the Schrödinger equation), which are called hypergeometric modes, is obtained. These solutions describe pure optical vortices and can be formed by illumination of a spiral phase plate by a plane wave. These modes differ from the known paraxial modes in that their radius increases as a square root of the distance covered, and that they all propagate with the same phase velocity.

hypergeometrical mode, paraxial wave equation, Schrödinger equation, optical vortex.

Kotlyar VV, Khonina SN, Almazov AA, Soifer VA. Optical pure vortices and hypergeometrical modes. Computer Optics 2005; 27: 21-27.

This work was financially supported by the Russian-American program “Basic Research and Higher Education” (grant CRDF REC-SA-014-02) and a grant from the President of the Russian Federation NSh1007.2003.01, as well as a grant from the Russian Foundation for Basic Research 05-01-96505.


  1. Siegman AE. Lasers. Sausalito, CA, University Science Books; 1986. ISBN: 0-935702-11-3. 
  2. Miller W Jr. Symmetry and separation of variables. Reading, Massachusetts: Addison-Wesley Pub; 1977. 
  3. Durnin J, Miceli JJ, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58: 1499-1501. DOI: 10.1103/PhysRevLett.58.1499. 
  4. Bandres MA, Gutiérrez-Vega JC. Ince-Gaussian beams. Opt Lett 2004; 29(2): 144-146. DOI: 10.1364/OL.29.000144. 
  5. Bandres MA, Gutiérrez-Vega JC. Ince-Gaussian modes of the paraxial wave equation and stable resonators. J Opt Soc Am A 2004; 21(5): 873-880. DOI: 10.1364/JOSAA.21.000873. 
  6. Bandres MA. Elegant Ince-Gaussian beams. Opt Lett 2004; 29(15): 1724-1726. DOI: 10.1364/OL.29.001724. 
  7. Bandres MA, Gutiérrez-Vega JC. Higher-order complex source for elegant Laguerre-Gaussian waves. Opt Lett 2004; 29(19): 2213-2215. DOI: 10.1364/OL.29.002213. 
  8. Schwarz UT, Bandres MA, Gutiérrez-Vega JC. Observation of Ince-Gaussian modes in stable resonators. Opt Lett 2004; 29(16): 1870-1872. DOI: 10.1364/OL.29.001870. 
  9. Abramochkin EG, Volostnikov VG. Generalized Gaussian beams. J Opt A: Pure Appl Opt 2004; 6: S157-S161. DOI: 10.1088/1464-4258/6/5/001. 
  10. Khonina SN, Kotlyar VV, Shinkaryev MV, Soifer VA, Uspleniev GV. The phase rotor filter. J Mod Opt 1992; 39(5): 1147-1154. DOI: 10.1080/09500349214551151. 
  11. Beijersbergen MW, Coerwinkel RPC, Kristiensen M, Woerdman JP. Helical-wave front laser beams produced with a spiral phase plate. Opt Commun 1994; 112(5-6): 321-327. DOI: 10.1016/0030-4018(94)90638-6. 
  12. Oemrawsingh SSR, Van Houwelingen JAM, Eliel ER, Woerdman JP, Verstegen EJK, Kloosterboer JG, Hooft GW. Production and characterization of spiral phase plates for optical wavelengths. Appl Opt 2004; 43(3): 688-694. DOI: 10.1364/AO.43.000688. 
  13. Soskin MS, Gorshkov UN, Vasnetsov MV. Topological charge and angular momentum of light beams carrying optical vortices. Phys Rev A 1997; 56(5): 4064-4075. DOI: 10.1103/PhysRevA.56.4064. 
  14. Kotlyar VV, Almazov AA, Khonina SN, Soifer VA, Elfstrom H, Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J Opt Soc Am A 2005; 22(5): 849-861. DOI: 10.1364/JOSAA.22.000849. 
  15. Allen L, Beijersbergen MV, Spreeuw RJC, Woerdman JP. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45: 8185-8189. DOI: 10.1103/physreva.45.8185. 
  16. Khonina SN, Kotlyar VV, Soifer VA, Pääkkönen P, Simonen J, Turunen J. An analysis of the angular momentum of a light field in terms of angular harmonics. J Mod Opt 2001; 48(10): 1543-1557. DOI: 10.1080/09500340108231783. 
  17. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Turunen J. Measuring the light field orbital angular momentum using DOE. Optical Memory and Neural Networks 2001; 10(4): 241-255. 
  18. Wright EM, Arlt J, Dholakia K. Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams. Phys Rev A 2000; 63: 013608. DOI: 10.1103/PhysRevA.63.013608.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20