Model for quolity loss rating of graphic image after lossy compression, focused on image recognition systems
E.M. Lapshenkov

Full text of article: Russian language.

This article is devoted to development of model, and model-based method for quality loss rating of graphic image after lossy compression. Developed method is focused on rating of errors of objects edge detection on graphic image, and so it can be used at adjustment of image codec in machine vision systems.

Key words:
machine vision, object recognition, lossy compression, quality loss rating.


  1. Dyakonov, V. MATLAB R2006/2007/2008 + Simulink 5/6/7. Using foundations. Most detailed description of last versions of MATLAB, new features of simulink / V. Dyakonov. – Moscow: “Solon-Press” Publisher, 2008. – 799 p.
  2. Parker, J.R. Algorithms for Image Processing and Computer Vision / J.R. Parker. – New York: John Wiley & Sons, Inc., 1997. – P. 23-29.
  3. Lim, J.S. Two-Dimensional Signal and Image Processing / J.S. Lim. – Englewood Cliffs, NJ, Prentice Hall, 1990. – P. 478-488.
  4. Vatolin, D.S. Data compression methods. Structure of archivers, compression of images and video / D. Vatolin, A. Ratushnyak, M. Smirnov, V. Yukin. – Moscow: “Dia­log-MIFI” Publisher, 2003. – 384 p. – ISBN 5-86404-170-x. – (in Russian).
  5. Wang, Z. Image Quality Assessment: From Error Visibility to Structural Similarity / Z. Wang, A.C. Bovik // IEEE Transactions on image processing. – 2004. – N 4 – P. 600-612.
  6. Wang, Z. Multi-scale structural similarity for image quality assessment / Z. Wang, E.P. Simoncelli, A.C. Bovik. – Proceedings of 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific group, 2003.
  7. Bovik, A.C. Content-weighted video quality assessment using a three-component image model / A.C. Bovik, Ch. Li // Journal of Electronic Imaging. – 2010. –  Vol. 19(1). – P. 011003-1–011003-9.
  8. Lapshenkov, E.M. Possible methods of loss rating after image compression in optical flow detection systems / E.M. Lapshenkov. – Collected papers of scientific conference «Relivant problems of instrument-making, of information science, of socio-economic sciences», 2010. – P. 52-56.
  9. Sirota, A.A. Two-staged algorithm for detecting and rating the object cutout on the images in case of additive noise and deformed distortions / A.A. Sirota, A.I. Soloma­tin, E.V. Voronova // Computer Optics. – 2010. – Vol. 34, N 1. – P. 109-117.
  10. Information technology – digital compression and coding of continues – tone still images – requirements and guidelines // International telecommunication union. – 1992.
  11. Canny, J. A Computational Approach to Edge Detection // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 1986. – N 6. – P. 679-698.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20