Heuristic algorithm for finding approximate  solution 
        of steiner problem based on  physical analogies
        A.V. Lisin, R.T. Faizullin 
 PDF, 1066 kB
 PDF, 1066 kB
Full text of article: Russian language.
DOI: 10.18287/0134-2452-2013-37-4-503-510
Pages: 503-510.
Abstract:
The article contains  analyze of existent methods for  solving Steiner problem that use physical analogies. Algorithm for construction  of minimal Steiner trees based on existent solutions and Delaunay triangulation  for initial approximation is suggested. Done comparison of suggested algorithm  output and one with exponential complexity, which produces exact results.
Key words:
steiner problem,  heuristic algorithm, Delaunay triangulation.
References:
  - Courant, R. What is Mathematics / R. Courant, H. Robbins. – Oxford University  Press, 1996. – 556 p.
- Hwang, F. The Steiner Tree Problem / F.K. Hwang,  D.S. Richards, P. Winter // Annals of Discrete mathematics. – 1992. –  Vol. 53. 
 
- Yang, Z.-X. Geometry Experiment Algorithm  Steiner Minimal Tree Problem / Z.-X. Yang, X.-Y. Kia, J.-Y. Hao,  Y.-P. Gao // Journal of Applied Mathematics. – 2013. – Vol. 2013. – P. 1-10.
 
- Bogachenko, N.F. Mechanical analogies in Steiner problem  / N.F. Bogachenko, R.T. Faizullin // Mathematical structures and modeling.  – 2002. – Vol. 9. – P. 1-8. – (In Russian).
 
- Gilbert, E.N. Steiner  Minimal Trees / E.N. Gilbert, H.O. Pollak // Journal on Applied Mathematics. – 1968. –  Vol. 16. – P. 323-345.
 
- Cormen, T. Introduction to Algorithms, / T.H. Cormen,  C.E. Leiserson, R.L. Rivest, C. Stein. – 2nd edition. – Moscow: “Williams”  Publisher, 2012. –1296 p. – (In Russian).
 
- Skvortsov, A.V. Delaunay Triangulation and its Applications  / A.V. Skvortsov. – Tomsk: “Tomsk University  Press” Publisher, 2002. – 128 p. – (In Russian).
 
- Marcelo, Z.N. An Interactive Pro-gramme for Steiner trees [Electronic resource]. URL:  http://arxiv.org/abs/1210.7788 (accessed: 28.08.2013)
 
- Bern, M.W. The Shortest-Network Problem / M.W. Bern,  R.L. Graham // In the World of Science. – 1989. – Vol. 3 – (In  Russian).
- Du, D.Z. An approach for proving lower bounds: Solution of Gilbert–Pollak’s  conjuncture on Steiner ratio. / D.Z. Du, F.K. Hwang // Proc. 31-st  Annual Symp. On Found. Of Comput. Sci. – 1990. – P. 76-85. 
  
  © 2009, IPSI RAS
Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20