Methods for digital analysis of human vascular system.          Literature  review
  N.Yu. Ilyasova  
 PDF, 1759 kB
 PDF, 1759 kB
Full text of article: Russian language.
DOI: 10.18287/0134-2452-2013-37-4-511-535
Pages: 511-535.
Abstract:
A review of key  approaches to the digital analysis of the human vascular system images is  given. We outline major stages of diagnostic image processing and analyze  different approaches to the extraction and quantification of blood vessel  morphological features.
Key words:
human vascular system, image  processing.
References:
  - Teng, T. Progress towards  automated diabetic ocular screening: a  review of image analysis and intelligent systems for diabetic retinopathy / T. Teng,  D. Claremont, M. Lefley // Med. Biol. Eng. Comput. – 2002. – Vol. 40(1).  – P. 2-13. 
 
- Heneghan, C. Characterization of  changes in blood vessel width and tortuosity in retinopathy of prematurity  using image analysis / C. Heneghan,  J. Flynn, M. O'Keefe, M. Cahill // Med. Image. Anal. – 2002. – Vol. 6(4). – P. 407-29. 
 
- Cheung, C.S. Computer-assisted image analysis of temporal retinal  vessel width and tortuosity in retinopathy of prematurity for the assessment of  disease severity and treatment outcome / C.S. Cheung,  Z. Butty, N.N. Tehrani, W.C. Lam // J  AAPOS. – 2011. – Vol. 15(4). – P. 374-380. 
 
- Haddouche, A. Detection of the foveal avascular zone on retinal angiograms using Markov  random fields / A. Haddouche, M. Adel, M. Rasigni, J. Conrath, S. Bourennane // Digital Signal Processing. – 2010. – Vol. 20(1).  – P. 149-154. 
 
- Grisan, E.  A divide et impera strategy for automatic classification of retinal vessels  into arteries and veins / E. Grisan, A. Ruggeri  // Engineering in Medicine and Biology Society 2003 / Proceedings of  the 25th Annual International Conference of the IEEE. –  2003. – Vol. 891. – P. 890-893. 
 
- Lowell, J. Measurement of  retinal vessel widths from fundus images based on 2-D Modeling / J. Lowell, A. Hunter, D. Steel,  A. Basu, R. Ryder, R.L. Kennedy  // IEEE Trans Med Imaging. – 2004. –  Vol 3(10). – P. 1196-1204. 
 
- Foracchia, M. Extraction and quantitative description of vessel features  in hypertensive retinopathy fundus images / M. Foracchia // Book Abstracts / 2nd International  Workshop on Computer Assisted Fundus Image Analysis. – 2001. – P. 6. 
 
- Kose, C. A personal identification system using retinal vasculature in retinal fundus  images / C. Kose, C. Ikibas // Expert Systems with Applications. – 2011.  – Vol. 38(11). – P. 13670-13681. 
 
- Fraz, M.M. Blood vessel segmentation methodologies in retinal images / M.M. Fraz, P. Remagnino,  A. Hoppe, B. Uyyanonvara, A.R. Rudnicka, C.G. Owen, S.A. Barman  // Comput Methods Programs Biomed. – 2012. – Vol. 108(1). – P. 407-433.
 
- Winder, R.J. Algorithms for digital image processing in diabetic  retinopathy / R.J. Winder, P.J. Morrow, I.N. McRitchie, J.R. Bailie,  P.M. Hart // Computerized Medical  Imaging and Graphics. – 2009. – Vol. 33(8). – P. 608-622. 
 
- Felkel, P. Vessel tracking in peripheral CTA datasets – an overview / P. Felkel, R. Wegenkittl,  A. Kanitsar. – Computer Graphics (Spring Conference on), 2001. – P. 232-239. 
 
- Buhler, K. Geometric methods for vessel visualization and quantification – a Survay / K. Buhler,  P. Felkel, A.L. Cruz // Geometric Modelling for Scientific  Visualization. – 2003. – P. 399-421. 
 
- Kirbas, C. A review of vessel extraction  techniques and algorithms / C. Kirbas,  F. Quek // ACM Computing. – 2004. – Vol. 36(2). – P. 81-121. 
 
- Mabrouk, M.S. Survey of retinal image segmentation  and registration / M.S. Mabrouk,   N.H. Solouma, Y.M. Kadah  // GVIP Journal. – 2006. –  Vol. 6(2). – P. 1-11. 
 
- Faust, O.R.A.U. Algorithms for the automated detection of diabetic  retinopathy using digital fundus images: a review / O.R.A.U. Faust, E.Y.K. Ng, K.-H. Ng, J.S. Suri  // Journal of Medical Systems. – 2012. – Vol. 36(1). – P. 145-57. 
 
- Akita, K. A computer method of understanding ocular fundus images / K. Akita, H. Kuga // Pattern  Recognition. – 1982. – Vol. 15. – P. 431-443.
 
- Thackray, B.D. Semi-automatic segmentation of vascular network  images using a rotating structuring element (rose) with mathematical morphology  and dual feature thresholding / B.D. Thackray, A.C. Nelson // IEEE Trans. Med. Imaging. – 1993. – Vol. 12(3). – P. 385-392. 
 
- American Academy of Ophthalmology, Ophthalmic Pathology // in Basic and Clinical  Science Courses. – section 11, 179,1991. 
 
- Staal, J.J. Ridge based vessel segmentation in color images of the retina / J.J. Staal,  M.D. Abramoff, M. Niemeijer, M.A. Viergever, and B. van  Ginneken // IEEE Transactions on Medical Imaging. – 2004. – Vol. 23(4). – P. 501-509. 
 
- Gangaputra, S.  Retinal vessel caliber among people with acquired  immunodeficiency syndrome: relationships with disease-associated factors and  mortality / P.S. Kalyani, A.A. Fawzi, M.L. Van Natta, L.D. Hubbard, R.P. Danis, J.E. Thorne, G.N.  Holland // Am. J. Ophthalmol.  – 2012. – Vol. 153(3). – P. 434-444. 
 
- Gelman, R. Diagnosis of Plus Disease in  Retinopathy of Prematurity Using Retinal Image multiScale Analysis / R. Gelman,  M.E. Martinez-Perez, D.K. Vanderveen,  A. Moskowitz, A.B. Fulton // Investigative Ophthalmology and Visual  Science. – 2005. – Vol. 46(12). – P. 4734-4738.
 
- Stanton, A.Vascular  network changes in the retina with age and hypertension / A.V. Stanton,  B. Wasan, A. Cerutti, S. Ford, R. Marsh, P.P. Sever, S.A. Thom,  A.D. Hughes // J. Hypertens. – 1995. – Vol. 13(12). – P. 1724-1728. 
 
- Chapman, N. Computer algorithms for the automated measurement of retinal arteriolar  diameters / N. Witt, X. Gao, A.A. Bharath, A.V. Stanton, S.A. Thom, A.D. Hughes  // Br. J. Ophthalmol. – 2001. – Vol. 85(1). – P. 74-79. 
 
- Wong, T.Y. Retinal microvascular abnormalities and incident stroke: the atherosclerosis  risk in communities study / T.Y. Wong, R. Klein, D.J. Couper,  L.S. Cooper, E.  Shahar, L.D.  Hubbard , M.R.  Wofford, A.R.  Sharrett // Lancet. – 2001.  – Vol. 358(9288). – P. 1134-1140. 
 
- McClintic, B.R. The relationship between retinal microvascular abnormalities  and coronary heart disease: a review / B.R. McClintic, J.I. McClintic,  J.D. Bisognano, R.C. Block // Am. J. Med. – 2010. – Vol. 123(4).  – P. 374.e1-374.e7. 
 
- Chaudhuri, S. Detection of Blood Vessels in Retinal Images Using Two-Dimensional Matched  Filters / S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, M. Goldbaum // IEEE  Transactions on Medical Imaging. – 1989. – Vol. 8(3). – P. 263-269. 
 
- Goldbaum, M. Automated diagnosis and image understanding with  object extraction, object classification, and inferencing in retinal images / M. Goldbaum, S. Moezzi, A. Taylor,  S. Chatterjee, J. Boyd, E. Hunter, R. Jain // IEEE conference on ICIP. – 1996. – Vol. 3. – P. 695-698.
 
- Li, Q. Colour Retinal Image Segmentation For Computer-aided  Fundus Diagnosis Department of Computing / Qin  Li. – The Hong Kong Polytechnic University, 2010. – 126 p.
 
- Pai, R. Automated Diagnosis of Retinal Images Using Evidential Reasoning / R. Pai,  A. Hoover, M. Goldbaum. – International Conference on SENG, 2002. 
- Abramoff, M. Web-based screening for  diabetic retinopathy in a primary care population: The eye check project / M. Abramoff,  M. Suttorp // Telemedicine and e-Health. – 2005. – Vol. 11(6). – P. 668-674. 
 
- Niemeijer, M. Automatic detection of red  lesions in digital color fundus photographs / M. Niemeijer, B. van  Ginneken, J. Staal, M.S.A.S. Schulten, M.D. Abramoff // IEEE  Transactions on Medical Imaging. – 2005.– Vol. 24(5). – P. 584-592. 
 
- Soares, J. Retinal vessel  segmentation using the 2-d gabor wavelet and supervised classification / J. Soares,  J. Leandro, R. Cesar, H. Jelinek, M. Cree // IEEE  Transactions of Medical Imaging. – 2006. – Vol. 25(9). – P. 1214-1222. 
 
- Sussman, E.J. Diagnosis of diabetic eye disease / E.J. Sussman,  W.G. Tsiaras, K.A. Soper // J. Am. Med. Assoc. – 1982.– Vol. 247.  – P. 3231-3234. 
 
- Klonoff, D. An economic analysis of interventions for diabetes / D. Klonoff, D. Schwartz  // Diabetes Care. – 2000. – Vol. 23(3). – P. 390-404. 
 
- Bresnick, G. A screening approach to the surveillance of patients  with diabetes for the presence of vision-threatening retinopathy / G. Bresnick,  D. Mukamel, J. Dickinson, D. Cole // Opthalmology. – 2000. –  Vol. 107(1). – P. 19-24. 
 
- Wilkinson, C.P. Proposed international clinical diabetic retinopathy  and diabetic macular edema disease severity scales / C.P. Wilkinson, F.L. Ferris,  R.E. Klein, P.P. Lee, C.D. Agardh, M. Davis, D. Dills,  R. Pararajasegaram, A. Kampik, J.T. Verdaguer // Ophthalmology.  – 2003. – Vol. 110(9). – P. 1677-1682. 
 
- Hutchins, G.M. Tortuosity as an index of the age and diameter increase  of coronary collateral vessels in patients after acute myocardial infarction /  G.M. Hutchins, M.M. Miner, B.H. Bulkley // Am. J. Cardiol.  – 1978. – Vol. 41(2). – P. 210-215. 
 
- Miller, R.G. Retinal vessel diameter and the  incidence of coronary artery disease in type 1 diabetes / R.G. Miller,  C.T. Prince, R. Klein, T.J. Orchard // Am. J. Ophthalmol. – 2009. – Vol. 147(4). – P. 653-660.
- Ugurbas, S.C. Comparison of UK and US screening criteria for detection  of retinopathy of prematurity in a developing nation / S.C. Ugurbas, H. Gulcan,  H. Canan, H. Ankarali, B. Torer, Y.A. Akova // J. AAPOS.  – 2010. – Vol. 14(6). – P. 506-520. 
 
- Wilson, C.M. Digital image analysis in retinopathy of prematurity:  A comparison of vessel selection methods / C.M. Wilson, K. Wong, N. Jeffery, K.D. Cocker, A. Ells,  A.R. Fielder // J. AAPOS. – 2012. – Vol. 16 – P. 223-228. 
 
- Ghodasra, D.H. The rate of change  in retinal vessel width and tortuosity in eyes at risk for retinopathy of  prematurity / D.H. Ghodasra, A. Thuangtong, K.A. Karp, G.S. Ying,  M.D. Mills, C.A. Wilson, A.R. Fielder, G.E. Quinn // J. AAPOS.  – 2012. – Vol. 16(5). – P. 431-446. 
 
- Tereshchenko, A.V. Digital technology for diagnostics  of retinopathy of prematurity / A.V. Tereshchenko, M.S. Tereshchenkova,  Y.A. White, I.G. Trifanenkova, Y.A. Yudina // Kuban science medical  Herald. – 2011. – № 1. – С. 79-82. 
- Mintz-Hittner, H.A. Treatment of retinopathy of prematurity with  vascular endothelial growth factor inhibitors / H.A. Mintz-Hittner //  Early Human Development. – 2012. – Vol. 88(12). – P. 937-1041. 
 
- Jomier, J. Aylward,  quantification of retinopathy of prematurity via vessel segmentation / J.  Jomier, K.D. Wallace, R. Stephen // In: MICCAI 2013 proceedings. – 2003. – Vol. 62879,  LNCS 2879. – P. 620-626.
 
- Grunwald, L. The rate of retinal vessel  dilation in severe retinopathy of prematurity requiring treatment / L. Grunwald,  D.M. Mills, S. Keegan, K.A. Karp, G.E. Quinn,  Y. Gui-Shuang, J.E. Grunwald // Am. J. Ophthalmol. – 2009. –  Vol. 147 (6). – P. 1086-1091. 
 
- Shah, D.N. Semiautomated digital image analysis of posterior pole vessels in retinopathy  of prematurity / D.N. Shah, С.M. Wilson,  G.S. Ying, K.A. Karp, A.R. Fielder, J. Ng, M.D. Mills,  G.E. Quinn // J. AAPOS. – 2009. – Vol. 13(5). – P. 504-516. 
 
- Wallace, D.K. Computer-automated quantification of plus disease in  retinopathy of prematurity / D.K. Wallace, J. Jomier, S.R. Aylward, M.B. Landers // J. AAPOS. –  2003. – Vol. 7(2). – P. 126-130. 
 
- Adjeroh, D.A. Texton-based segmentation of  retinal vessels/ D.A. Adjeroh, A. Kandaswamy, J.V. Odom // J. Opt. Soc. Am. A: Opt. Image Sci. Vis. (OSA-A). – 2007. – Vol. 24(5).  – P. 1384-1393.
 
- Hoover, A. Locating blood  vessels in retinal images by piecewise threshold probing of amatchedfilter  response / A. Hoover, V. Kouznetsova, M. Goldbaum // IEEE Trans  Med Imaging. – 2000. – Vol. 19(3). – P. 203-210. 
 
- Newey, V.R.  Online artery diameter measurement in ultrasound images using artificial neural  networks / V.R. Newey, D.K. Nassiri // Ultrasound Med. Biol. – 2002. – Vol. 28(2). – P. 209-216. 
- Jan, J. Retinal image analysis aimed at blood vessel tree segmentation and early  detection of neural-layer deterioration / J. Jan, J. Odstrcilik, J. Gazarek,  R. Kolar // Computerized Medical Imaging  and Graphics. – 2012. – Vol. 36(6). – P. 431-441.
- heng, G.G. An automatic diabetic retinal image screening system book chapter in medical  data mining and knowledge discovery / G.G. Kheng, H.S. Wynne, M. Li,  H. Wang // Edited by Krzysztof Cios. – 2001. – Vol. 29. – P. 181-210. 
 Iqbal, M.I. Detection of vascular intersection in retina fundus image  using modified cross point number and neural network technique / A.M.  Aibinu, M.  Nilsson, I.B.  Tijani more authors // Int.  Conf. Comput. Commun. Eng.  – 2008. – P. 241-246.
- A new supervised method for blood vessel segmentation in retinal images by  using gray-level and moment invariants-based features / D. Marin, A. Aquino,  M.E. Gegundez-Arias, J.M. Bravo // IEEE Transactions on Medical  Imaging. – 2011. – Vol. 30(1). – P. 146-158. 
 
- Nearest-neighbor methods in learning and vision: theory and practice / S. Gregory,  D. Trevor, I. Piotr // Neural Information Processing / MIT Press,  2006. 
- Beck, T. Robust model-based centerline extraction of vessels in CTA data / T. Beck,  C. Biermann, D. Fritz, R. Dillmann // Proceedings of SPIE. –  2009. – Vol. 7259. – 72593O(9 pp). – doi:10.1117/12.810753. 
 
- Sinthanayothin, C. Automated localisation of the optic disc, fovea, and  retinal blood vessels from digital colour fundus images / C. Sinthanayothin,  J. Boyce, H. Cook, T. Williamson // British Journal of  Ophthalmology. – 1999. – Vol. 83(8). – P. 902-910. 
 
- Niemeijer, M. Comparative study of retinal vessel segmentation  methods on a new publicly available database / M. Niemeijer, J.J. Staal,  B. van Ginneken, M. Loog, M.D. Abrаmoff // SPIE Medical imaging. – 2004. – Vol. 5370.  – P. 648-656. 
 
- Ablameyko, S.V. Fast method of extraction of the network of vessels  on gray angiography images / S.V. Ablameyko, A.M. Nedzved, A.M. Belotserkovsky,  T.M. Lehmann // Artificial Intelligence. – 2006. – Vol. 2 – P. 206-211. 
 
- Rangayyan, R. Detection of the optic nerve head in fundus images of  the retina with gabor filters and phase portrait analysis / R. Rangayyan,  X. Zhu, F. Ayres, A. Ells // Journal of Digital Imaging. – 2010.  – Vol. 23(4). – P. 438-453.
 
- Liu, Z.Q. Handwriting  Recognition: Soft Computing and Probabilistic Approaches / Z.Q. Liu,  J. Cai, R. Buse // Studies in Fuzziness and Soft Computing / Berlin, Heidelberg,   New York: Springer, 2003. – Vol. 133.  – P. 31-57. 
 
- Deemter, J.H. Simultaneous detection of lines and edges using  compound gabor filters / J.H. Deemter, J.M.H. Du Buf // International  Journal of Pattern Recognition and Artificial Intelligence. – 2000. – Vol. 14(6).  – P. 757-777. 
 
- Ricci, E. Retinal blood vessel  segmentation using line operators and support vector classification / E. Ricci,  R. Perfetti // IEEE Transactions on Medical Imaging. – 2007. – Vol. 26(10).  – P. 1357-1365. 
 
- Mookiaha, M.R.K. Data mining technique for automated diagnosis of  glaucoma using higher order spectra and wavelet energy features / M.R.K. Mookiaha,  U.R. Acharyaa, C.M. Lima, A. Petznickb, S. Jasjit // Knowledge-Based Systems. – 2012. – Vol. 33. – P. 73-82. 
 
- Xu, L. A  novel method for blood vessel detection from retinal images / L. Xu, S. Luo // BioMedical Engineering. – 2010. – Vol. 9(1).  – P. 9-14. 
 
- Osareh, A. Automatic blood  vessel segmentation in color images of retina / A. Osareh, B.   Shadgar // Iranian Journal Of Science And Technology Transaction. – 2009. –  Vol. 23(B2). – P. 191-206. 
 
- Martinez-Perez, M.E.  Retinal blood vessel segmentation by means of scale-space analysis and region  growing / M.E. Martinez-Perez, A.D. Hughes, A.V. Stanton, S.A. Thom,  A.A. Bharath, K.H. Parker. –Proc. 2nd MICCAI, 1999. – Vol. 1679.  – P. 90-97. – ISBN:3-540-66503-X. 
 
- Martinez-Perez, M.E. Segmentation of  blood vessels from red-free and fluorescein  retinal images / M.E. Martinez-Perez, A.D. Hughes, S.A. Thom,  A.A.  Bharath, K.H.  Parker // Medical Image  Analysis. – 2007. – Vol. 11(1). – P. 47-61. 
 
- Tolias, Y.A. A fuzzy vessel tracking algorithm for retinal images  based on fuzzy clustering / Y.A. Tolias, S.M. Panas // IEEE Transactions  on Medical Imaging. – 1998. – Vol. 17(2). – P. 263-273.
 
- Salem, S.A. Segmentation of retinal blood vessels using a novel  clustering algorithm (RACAL) with a partial supervision strategy / S.A. Salem,  N.A. Salem, A.K. Nandi // Medical and Biological Engineering and  Computing. – 2007. – Vol. 45(3). – P. 261-273.
 
- Kande, G.B.  Unsupervised fuzzy based vessel segmentation in pathological digital fundus  images / G.B. Kande, P.V. Subbaiah, T.S. Savithri // Journal of  Medical Systems. – 2010. – Vol. 34(5). – P. 849-858. 
 
- Villalobos-Castaldi, F. A fast, efficient  and automated method to extract vessels from fundus images / F. Villalobos-Castaldi,  E. Felipe-Riverуn, L.  Sánchez-Fernández // Journal of  Visualization. – 2010. – Vol. 13(3). – P. 263-270. 
 
- Ng, J. Maximum  likelihood estimation of vessel parameters from scale space analysis / J. Ng,  S.T. Clay, S.A. Barman, A.R. Fielder, M.J. Moseley, K.H. Parker,  C. Paterson // Image and Vision Computing. – 2010. – Vol. 28(1). – P. 55-63.
 
- Condurache, A. P. Segmentation of retinal vessels with a hysteresis binary-classification paradigm / A.P. Condurache,  A. Mertins // Computerized Medical Imaging and Graphics. – 2012. – Vol. 36(4). – P. 325-335. 
 
- Adel, M. Statistical-based tracking  technique for linear structures detection: Application to vessel segmentation  in medical images / M.  Adel,  A. Moussaoui, M. Rasigni,  S. Bourennane, L. Hamami // IEEE  Signal Process. – 2010. – Vol. 17(6). – P. 555-558. – ISSN 1070-9908. 
 
- Xinge, Y.  Segmentation of retinal blood vessels using the radial projection and  semi-supervised approach / Y. Xinge, Q. Peng, Y. Yuan, Y. Cheung,  J. Lei // Pattern Recognition. – 2011. – Vol. 44(10-11). – P. 2314-2324. 
 
- Kochner, B.  Course tracking and contour extraction of retinal vessels from color fundus  photographs: Most efficient use of steerable filters from model based image  analysis / B. Kochner, D. Schuhmann, M. Michaelis,  G. Mann, K.H. Englmeier // Proc. SPIE Medical Imaging. – 1998. – Vol. 3338.  – P. 755-761. 
 
- Sukkaew, L. Automatic extraction of the structure of the retinal blood vessel network of  premature infants / L.B. Uyyanonvara, S.A. Barman, A. Fielder,  K. Cocker // Journal of the Medical Association of Thailand. – 2007. – Vol. 90(9).  – P. 1780-1792. 
 
- Yao, C. Automated retinal blood vessels segmentation based on  simplified PCNN and fast 2D-Otsu algorithm / C. Yao, H.-j. Chen //  Journal of Central   South University  of Technology. – 2009. – Vol. 16. – P. 640-646. 
 
- Cinsdikici, M.G. Detection of blood vessels in ophthalmoscope images  using MF/ant (matched filter/ant colony) algorithm / M.G. Cinsdikici, D. Aydin  // Computer Methods and Programs in Biomedicine. – 2009. – Vol. 96(2). –  P. 85-95. 
 
- Bankhead, P. Fast retinal vessel  detection and measurement using wavelets and edge location refinement / P. Bankhead,  C.N. Scholfield, J.G. McGeown, T.M. Curties // PLoS ONE. –  2012. – Vol. 7(3). – P. 1-12. 
 
- Gang, L. Detection and Measurement of Retinal Vessels in Fundus Images Using Amplitude  Modified Second-Order Gaussian Filter / L. Gang, O. Chutatape, S.M. Krishnan  // IEEE Tran. Biomedical Engineering. – 2002. – Vol. 49(2). – P. 168-172. 
 
- Al-Rawi, M. An improved matched filter for  blood vessel detection of digital retinal images / M. Al-Rawi, M. Qutaishat,  M. Arrar // Computers in Biology and Medicine. – 2007. – Vol. 37(2).  – P. 262-267. 
 
- Zhang, B.  Retinal vessel extraction by matched filter with first-order derivative of  Gaussian / B. Zhang, L. Zhang, L. Zhang, F. Karray //  Computers in Biology and Medicine. – 2010. – Vol. 40(4). – P. 438-445. 
 
- Zana, F. Registration Algorithm of Eye  Fundus Images Using Vessels Detection and Hough Transform / F. Zana, J.C. Klein  // IEEE Transactions on Medical Imaging. – 1999. – Vol. 18(5). – P. 419-428. 
 
- Zana, F.  Segmentation of vessel-like patterns using mathematical morphology and  curvature evaluation / F. Zana, J.C. Klein // IEEE Trans Image  Processing. – 2002. – Vol. 10(7). – P. 1010-1019. 
 
- Ayala, G. Different averages of a fuzzy set with an application to vessel segmentation /  G. Ayala, T. Leon, V. Zapater // IEEE Transactions on Fuzzy  Systems. – 2005. – Vol. 13(3). – P. 384-393. 
 
- Miri, M.S. Retinal image analysis using curvelet transform  and multistructure elements morphology by reconstruction / M.S. Miri, A. Mahloojifar // IEEE Transactions on Biomedical Engineering. – 2011. –  Vol. 58(5). – P. 1183-1192. 
 
- Calvo, D. Automatic detection and characterisation of retinal vessel tree bifurcations  and crossovers in eye fundus images / M. Ortega, M.G. Penedo, J. Rouco  // Computer Methods and Programs in Biomedicine. – 2011. – Vol. 103(1). – P. 28-38. 
 
- Fraz, M.M. An approach to localize the retinal blood vessels using bit planes and  centerline detection / M.M. Fraz, S.A. Barman, P. Remagnino, A. Hoppe,  A. Basit, B. Uyyanonvara, A.R. Rudnicka, C.G. Owen //  Comput Methods Programs Biomed. – 2012. – Vol. 108(2). – P. 600-616. 
 
- Bouraoui, B. 3D segmentation of coronary arteries based on advanced  mathematical morphology techniques / B. Bouraoui, C. Ronse, J. Baruthio,  N. Passat, P. Germain // Computerized Medical Imaging and Graphics. –  2010. – Vol. 34(5). – P. 377-387. 
 
- Yang, Y. An automatic hybrid method for retinal blood vessel extraction / Y. Yang,  S. Huang, N. Rao // International Journal of Applied Mathematics and  Computer Science. – 2008. – Vol. 18(3). – P. 399-407. 
 
- Sun, K. Morphological multiscale enhancement, fuzzy filter and watershed for vascular  tree extraction in angiogram / K. Sun, Z. Chen, S. Jiang, Y. Wang  // Journal of Medical Systems. – 2011. – Vol. 35(5). – P. 811-824. 
 
- Nasonov, A.V. Application of the method of morphological amoebas to blood vessels in the eye  detection fundus images / A. Nasonov, A.A. Chernomorets, A.S. Krylov,  A.S. Rodin // DSPA'2011. – 2011. – Vol. 2. – P. 158-161.
 
- Mendonca, A.M. Segmentation of retinal blood vessels by combining  the detection of centerlines and morphological reconstruction / A.M. Mendonca,  A. Campilho // IEEE Transactions on Medical Imaging. – 2006. – Vol. 25(9).  – P. 1200-1213. 
 
- Li, Q. Vessel segmentation and width estimation in retinal images using multiscale  production of matched filter responses / Q. Li, Y. Jane, D. Zhang  / Expert Systems with Applications.  – 2012. – Vol. 39(9). – P. 7600-7610. 
 
- Nguyen, U.T.V. An effective  retinal blood vessel segmentation method using multi-scale line detection /  U.T.V. Nguyen, A. Bhuiyan, L.A.F. Park, K. Ramamohanarao //  Pattern Recognition. – 2013. – Vol. 46(3). – P. 703-715. 
 
- Moghimirad, E. Retinal vessel  segmentation using a multi-scale medialness function / E. Moghimirad, S.H. Rezatofighi,  H. Soltanian-Zadeh // Computers in Biology and Medicine. – 2012. – Vol. 42(1).  – P. 50-60. 
 
- Läthén, G. Blood vessel segmentation using multi-scale quadrature  filtering / G. Läthén, J. Jonasson, M. Borga // Pattern  Recognition Letters. – 2010. – Vol. 31(8). – P. 762-767. 
 
- Frangi, A.F. Multiscale vessel  enhancement filtering, in: Medical Image Computing and Computer-Assisted  Interventation / A.F. Frangi, W.J. Niessen, K.L. Vincken, M.A. Viergever.  – MICCAI’98, 1998. – Vol. 1496. – P. 130-137. 
- Wink, O. Multiscale vessel  tracking / O. Wink, W.J. Niessen, M.A. Viergever // IEEE Trans  Med Imaging. – 2004. – Vol. 23(1). – P. 130-133. 
 
- Sofka, M.  Retinal vessel centerline extraction using multiscale matched filters,  confidence and edge measures / M. Sofka, C.V. Stewart // IEEE  Transactions on Medical Imaging. – 2006. – Vol. 25(12). – P. 1531-1546. 
 
- Anzalone, A. A modular  supervised algorithm for vessel segmentation in red-free retinal images / A. Anzalone,  F. Bizzarri, M. Parodi, M. Storace // Computers in Biology and Medicine.  – 2008. – Vol. 38(8). – P. 913-922. 
 
- Biesdorf, A. Segmentation and quantification of the aortic arch using  joint 3D model-based segmentation and elastic image registration / A. Biesdorf,  K. Rohr, D. Feng, H. von Tengg-Kobligk, F. Rengier, D. Böckler,  H.U. Kauczor, S. Wörz // Medical Image Analysis. – 2012. – Vol. 16(6).  – P. 1187-1201. 
 
- Vermeer, K.A. A model based method for retinal  blood vessel detection / K.A. Vermeer, F.M. Vos, H.G. Lemij,  A.M. Vossepoel // Comput Biol Med. – 2004. – Vol. 34(3). – P. 209-219. 
 
- Mahadevan, V. Robust model-based vasculature detection in noisy  biomedical images / V. Mahadevan, H. Narasimha-Iyer, B. Roysam,  H.L. Tanenbaum // IEEE Transactions on Information Technology in  Biomedicine. – 2004. – Vol. 8(3). – P. 360-376. 
 
- Can, A.  Rapid automated tracing and feature extraction from retinal fundus images using  direct exploratory algorithms / A. Can, J.N. Turner, H.L. Tanenbaum,  B. Roysam // IEEE Transactions  on Information Technology in Biomedicine. – 1999. – Vol. 3(2). – P. 125-138. 
 
- NarasimhaIyer, H. Improved detection of the  central reflex in retinal vessels using a generalized dual-gaussian model and  robust hypothesis testing / H. Narasimha-Iyer, V. Mahadevan, J.M. Beach,  B. Roysam // IEEE Transactions on Information Technology in Biomedicine. –  2008. – Vol. 12(3). – P. 406-410.
 
- Wang, L. Analysis of retinal vasculature using a multiresolution Hermite model / L. Wang, A. Bhalerao, R. Wilson // IEEE  Transactions on Medical Imaging. – 2007. – Vol. 26(2). – P. 137-152.
 
- Narasimha-Iyer, H. Automatic identification of retinal arteries and  veins from dual-wavelength images using structural and functional features / H. Narasimha-Iyer,  J.M. Beach, B. Khoobehi, B. Roysam // IEEE Transactions on  Biomedical Engineering. – 2007. – Vol. 54. – P. 1427-1435. 
 
- Xiaohong, G.  A method of vessel tracking for vessel diameter measurement on retinal images /  G. Xiaohong, A. Bharath, A. Stanton, A. Hughes, N. Chapman,  S. Thom // International Conference on Image Processing. – 2001. – Vol. 2.  – P. 881-884. 
 
- Lam, B.S.Y. General retinal vessel segmentation using regularization-based multiconcavity  modeling / B.S.Y. Lam, G. Yongsheng, A.W.C. Liew // IEEE  Transactions on Medical Imaging. – 2010. – Vol. 29(7). – P. 1369-1381. 
 
- Zhu, T. Fourier cross-sectional profile  for vessel detection on retinal images / V. Mahadevan, H. Narasimha-Iyer,  B. Roysam // Computerized Medical Imaging and Graphics. – 2010. – Vol. 34(3).  – P. 203-212.
 
- Kovesi, P. Phase congruency detects corners and  edges / P. Kovesi. – The Australian Pattern Recognition Societys  Conference: DICTA2003, 2003. – P. 309-318.
 
- Osareh, A. Color morphology  and snakes for optic disc localization / A. Osareh, М. Mirmehdi, B. Thomas, R. Markham // Pattern Recognition. – 2002. – Vol. 1.  – P. 743-746. 
 
- Xu, J. Optic disk feature extraction via modified  deformable model technique for glaucoma analysis / J. Xu, O. Chutatape,  E. Sung, C. Zheng, Paul Chew Tec Kuan // Pattern Recognition. – 2007.  – Vol. 40(7). – P. 2063-2076. 
 
- Hsiao, H.K. novel optic disc detection scheme on retinal images  / H.K. Hsiao, C.C. Liu, C.Y. Yu, S.W. Kuo, S.S. Yu  // Expert Systems with Applications. – 2012. – Vol. 39(12).– P. 10600-10606. 
 
- Espona, L. A snake for retinal vessel segmentation / L. Espona,  M.J. Carreira, M. Ortega, M.G. Penedo // Proceedings of the 3rd Iberian  conference on Pattern Recognition and Image Analysis / International Conference  on Pattern Recognition, 2007. – Vol. 4478. – P. 178-185. 
 
- Espona, L. Retinal vessel tree segmentation using a deformable  contour model / L. Espona, M.J. Carreira, M.G. Penedo, M. Ortega.  – ICPR International Conference on Pattern Recognition, 2008. – Vol. 5197 – P. 683-690. 
 
- Al-Diri, B. A ribbon of twins for extracting vessel boundaries /  B. Al-Diri, A. Hunter. – EMBEC'05 The 3rd European Medical and  Biological Engineering Conference, 2005. – Vol. 11(1).
 
- Al-Diri, B. An active contour model for segmenting and measuring  retinal vessels / B. Al-Diri, A. Hunter, D. Steel // IEEE Transactions  on Medical Imaging. – 2009. – Vol. 28(9).– P. 1488-1497. 
 
- Al-Diri, B. REVIEW – a reference data set for  retinal vessel profiles, in: Engineering in Medicine and Biology Society / B. Al-Diri,  A. Hunter, D. Steel, M. Habib, T. Hudaib, S. Berry.  – EMBS Annual International Conference of the IEEE, 2008. – Vol. 2008. –  P. 2262-2265. 
 
- Jiang, X. Structural performance evaluation of curvilinear  structure detection algorithms with application to retinal vessel segmentation  / M. Lambers, H. Bunke // Pattern Recognition Letters. – 2012. – Vol. 33(15).  – P. 2048-2056. 
 
- Zhang, Y. Detection of retinal blood vessels based on  nonlinear projections / Y. Zhang, W. Hsu, M. Lee // Journal of  Signal Processing Systems. – 2009. – Vol. 55(1-3). – P. 103-112. 
 
- Tong, C.S. Variational image binarization and its multi-scale  realizations / C.S. Tong, Y. Zhang, N. Zheng  // Journal of Mathematical Imaging and Vision. – 2005. – Vol. 23(2). – P. 185-198. 
 
- Lam, B.Y. A novel vessel  segmentation algorithm for pathological retina images based on the divergence  of vector fields / B.Y. Lam, Y. Hong // IEEE Transactions on Medical  Imaging. – 2008. – Vol. 27(2). – P. 237-246. 
 
- Ramlugun, G.S. Small retinal vessels extraction towards proliferative  diabetic retinopathy screening / G.S. Ramlugun, V.K. Nagarajan, C. Chakraborty  // Expert Systems with Applications. – 2012. – Vol. 39(1). – P. 1141-1146. 
 
- Rapantzikos, K. Detection and segmentation of  drusen deposits on human retina: potential in the diagnosis of age-related  macular degeneration / K. Rapantzikos, M. Zervakis, K. Balas //  Med Imaging Anal. – 2003. – Vol. 7(1). – P. 95-108. 
 
- Azemin, M.Z. Robust methodology for fractal analysis of the retinal  vasculature / M.Z. Azemin, D.K. Kumar, T.Y. Wong, R. Kawasaki,  P. Mitchell, J.J. Wang // IEEE Transactions on Medical Imaging. –  2011. – Vol. 30(2). – P. 243-250. 
 
- Patasius, M. Recursive  Algorithm for Blood Vessel Detection in Eye Fundus Images / M. Patasius,  V. Marozas, D. Jegelevieius, A. Lukosevieius // IFMBEProceedings  – 2009. – Vol. 25(11). – P. 212-215. 
 
- Ilyasova, N.Yu. Information  technologies of image analysis in medical diagnostics / N.Yu. Ilyasova, A.V. Kupriyanov,  A.G. Khramov. – Moscow:  "Radio i svyaz" Publisher, 2012. – 424 p.
 
- Korepanov, A.O. A method of allocating the Central lines of blood vessels of the diagnostic images / A.O. Korepanov, N.Yu. Ilyasova, M. Chikulaev // Computer Optics. – 2006. – Vol. 29. – P. 146-151.
 
- Aylward, S.R. Intensity ridge and widths for tabular object segmentation  and registration / S.R. Aylward, S. Pizer,  E. Bullitt and D. Eberl // Wksp on Math Image Analysis. – 1996. –  Vol. 7. – P. 131-138. – ISBN: 0-8186-7367-2.
 
- Lecornu, L. Extraction of vessel contours in angiograms by simul-  taneous tracking of the two edges / L. Lecornu, C. Roux, J.J. Jacq  // Engineering in Medicine and Biology Society. – 1994. – Vol. 1. – P. 678-679.
 
- Hart, M. A method of automated coronary artey tracking in unsubtracted  angiograms / M. Hart, L. Holley // IEEE Computers  in Cardiology. – 1993. – P. 93-96.
 
- Chutatape, O. Retinal blood vessel detection  and tracking by matched Gaussian and Kalman filters / O. Chutatape, L. Zheng,  S.M. Krishman // Proceedings of IEEE EMBS. – 1998. – Vol. 6.– P. 3144-3149. 
 
- Poon, K. Live-vessel: extending livewire  for simultaneous extraction of optimal medial and boundary paths in vascular  images / K.Poon, G.Hamarneh, R.Abugharbieh // Medical Image Computing and Computer-Assisted  Intervention MICCAI-2007, 2007. – Vol. 4792 – P. 444-451. 
 
- Barrett, W.A. Interactive live-wire boundary  extraction / W.A. Barrett, E.N. Mortensen  // Medical Image Analysis. – 1997. – Vol. 1(4) – P. 331-341. 
 
- Delibasis, K.K. Automatic model-based tracing algorithm for vessel  segmentation and diameter estimation / K.K. Delibasis, A.I. Kechriniotis,  C. Tsonos, N. Assimakis // Comput. Methods Programs Biomed. – 2010. –  Vol. 100(2). – P. 108-122. 
 
- Vlachos, M. Multi-scale retinal vessel segmentation using line  tracking / M. Vlashos, E. Dermatas  // Computerized Medical Imaging and Graphics. – 2010. – Vol. 34(3). – P. 213-227. 
 
- Lalonde, Т. Non-recursive paired tracking  for vessel extraction from retinal images / M. Lalonde, L. Gagnon,  M.C. Bouchert. – Montreal:  Proceedings of the Conference Vision Interface 2000, 2000. – P. 61-68.
 
- Yin, Y. Retinal vessel  segmentation using a probabilistic tracking method / Y. Yin, M. Adel,  S. Bourennane // Pattern Recognition. –  2012. – Vol. 45(4). – P. 1235-1244. 
 
- Huang, Y. An automated computational  framework for retinal vascular network labeling and branching order analysis /  Y. Huang, J. Zhang, Y. Huang // Microvascular Research. – 2012.  – Vol. 84(2). – P. 169-177. 
 
- Gao, X. Measurement of  vessel diameters on retinal images for cardiovascular studies / X. Gao, A. Bharath,  A. Stanton, A. Hughes, N. Chapman, S. Thom. – On-line  Conference Proceedings: Medical Image Understanding and Analysis, 2001. 
 
- Liu, Y.P. Retinal arterio lar and venular phenoty pes in a  Flemish populati on: Repro ducibility and correlates / Y.P. Liu, T. Richart,  Y. Jin, H.A. Struijker-Boundierc, J.A. Staessen // Artery  Research. – 2011. – Vol. 5(2). – P. 72-79. 
 
- Wong, T.Y. Retinal vascular caliber, cardiovascular risk  factors, and inflammation: the multi-ethnic study of atherosclerosis (MESA) /  T.Y. Wong, F.M. Islam, R. Klein, B.E. Klein, M.F. Cotch,  C. Castro, A.R. Sharrett, E. Shahar // Invest. Ophthalmol. Vis.  Sci. – 2006. – Vol. 47(6). – P. 2341-2350. 
 
- Ikram, M.K. Retinal vessel diameters and risk of impaired  fasting glucose or diabetes / M.K. Ikram, J.A. Janssen, A.M. Roos,  I. Rietveld, J.C. Witteman, M.M. Breteler, A. Hofman, C.M. van  Duijn, P.T. de Jong // Diabetes. – 2006. – Vol. 55(2). – P. 506-510. 
 
- Newsom, R.S. Retinal vessel measurement: comparison between  observer and computer driven methods / R.S. Newsom, P.M. Sullivan,  S.M. Rassam, R. Jagoe, E.M. Kohner // Graefes Arch. Clin. Exp.  Ophthalmol. – 1992. – Vol. 230(3). – P. 221-225. 
 
- Hiroki, M. Tortuosity of the white matter medullary arterioles  is related to the severity of hypertension / M. Hiroki, K. Miyashita,  M. Oda // Cerebrovasc Dis. – 2002. – Vol. 13(4). – P. 242-250. 
- King, L.A. Arteriolar length-diameter (L:D) ratio: a  geometric parameter of the retinal vasculature diagnostic of hypertension /  L.A. King, A.V. Stanton, P.S. Sever, S.A. Thom, A.D. Hughes  // J. Hum. Hypertens. – 1996. – Vol. 10(6). – P. 417-418. 
- Rassam, S.M. Accurate vessel width measurement from fundus  photographs: a new concept / S.M. Rassam, V. Patel, O. Brinchmann-Hansen,  O. Engvold, E.M. Kohner // British Journal of Ophthalmology. – 1994.  – Vol. 78(1). – P. 24-29. 
 
- Brinchmann-Hansen, O. Microphotometry of the blood column and light streak  on retinal vessels in fundus photographs / O. Brinchmann-Hansen, O. Engvold  // Acta Ophthalmologica. – 1986. – Vol. 64(S179). – P. 9-19. 
 
- Gao, X.W.  Quantification characterisation of arteries in  retinalimages / X.W. Gao, A. Bharath, A. Stanton, A. Hughes, N. Chapman,  S. Thom // Computer  Methods and Programs in Biomedicine. – 2000. – Vol. 63(2). – P. 133-146. 
 
- Pedersen, L. Quantitative  measurement of changes in retinal vessel diameter in ocular fundus images / L. Pedersen,  M. Grunkin, B. Ersboll, K. Madsen, M. Larsen, N. Christoffersen,  U. Skands // Pattern Recognition Letters. – 2000. – Vol. 21(13-14). –  P. 1215-1223.
 
- Wong, T.Y. A prospective  cohort study of retinal arteriolar narrowing and mortality / T.Y. Wong, M.D. Knudtson,  R. Klein [et al.] // Am. J. Epidemiol. – 2004. – Vol. 159(9). – P. 819-825. 
 
- Yiming, W. A fast method for automated detection of blood vessels in retinal images / W. Yiming,  Y. Wang, C. Lee // Signals, Systems & Computers. – 1997. – Vol. 2. – P. 1700-1704.
 
- Fathi, A. Automatic wavelet-based retinal  blood vessels segmentation and vessel diameter estimation / A. Fathi, A.R. Naghsh-Nilchi // Biomedical Signal Processing and Control. – 2013. – Vol. 8(1). – P. 71-80. 
 
- Vilser, W. Automated  measurement of retinal vascular diameter / W. Vilser, S. Klein,   P. Wulff, G. Fuchs // Fortschr. Ophthalmol. – 1991. – Vol. 88(5).   – P. 482-486.
 
- Tyrrell, J.A. 2-D/3-D model-based  method to quantify the complexity of microvasculature imaged by in vivo multiphoton  microscopy / V. Mahadeva, T. Tong, E.B. Brown, R.K. Jain, B. Roysam  // Microvascular Research. – 2005. – Vol. 70(3) – P. 165-178. 
 
- Hanssen, H. Retinal vessel  diameter, obesity and metabolic risk factors in school children (JuvenTUM 3) / H.  Hanssen , M.  Siegrist , M.  Neidig , A.  Renner , P.  Birzele , A.  Siclovan , K.  Blume , C.  Lammel , B.  Haller , A. Schmidt-Trucksäss , M. Halle // Atherosclerosis.  – 2012. – Vol. 221(1).– P. 242-248. 
 
- Saez, M. Development of an  automated system to classify retinal vessels into arteries and veins / M.  Saez, S.  González-Vázquez, M.  González-Penedo, M.A.  Barceló, M.  Pena-Seijo ,  G.  Coll de Tuero ,  A.  Pose-Reino  // Comput. Methods  Programs Biomed. – 2012. – Vol. 108(1). – P. 367-376.
 
- Mosher, A. Comparison of Retinal Vessel  Measurements in Digital vs Film Imags / A. Mosher, E.K. Klein, R. Klein,  M.D. Knudtson, N.J. Ferrier // Am. J.  Ophthalmol. – 2006. – Vol. 142(5). – P. 875-878. 
 
- Muramatsu, C. Automated selection  of major arteries and veins for measurement of arteriolar-to-venular diameter  ratio on retinal fundus images / C.  Muramatsu, Y.  Hatanaka, T.  Iwase, T.  Hara, Н.  Fujita // Computerized Medical  Imaging an Graphics. – 2011. – Vol. 35(6).– P. 472-480. 
 
- Knudtson, M.D. Revised formulas for summarizing  retinal vessel diameters / M.D. Knudtson, K.E. Lee, L.D. Hubbard,  T.Y. Wong, R. Klein,  B.E. Klein // Curr. Eye. Res. – 2003. – Vol. 27(3) – P. 143-149. 
 
- Tramontan, L. Computer estimation of the AVR parameter in diabetic  retinopathy / L. Tramontan, A. Ruggeri // IFMBE Proc. – 2009. –  Vol. 25(11) – P. 141-154. 
- Nam, H.S. Automated measurement of  retinal vessel diameters on digital fundus photographs / H.S. Nam, J.M. Hwang,  H. Chung, J.M. Seo // IFMBE Proc. – 2009. – Vol. 25(11) – P. 277-280. 
 
- Niemeijer, M. Automatic determination of the artery–vein ratio in  retinal fundus images / M. Niemeijer, B. van Ginneken, M.D. Abramoff  // Proc SPIE. – 2010.  – Vol. 7624 
 
- Niall, P.  Retinal image analysis: Concepts, applications and potential / P. Niall, M.A. Tariq, M. Thomas, J.D. Ian,  D. Baljean, I.E. Robert, Y. Kanagasingam, J.C. Ian  // Progress in Retinal and Eye Research. – 2006. – Vol. 25(1). – P. 99-127.
 
- Sharrett, L.D. Retinal arteriolar diameters and elevated blood  pressure: the atherosclerosis risk in communities study / L.D. Hubbard,  L.S. Cooper, P.D. Sorlie, R.J. Brothers, F.J. Nieto, J.L. Pinsky,  R. Klein // American Journal Epidemiology. – 1999. – Vol. 150(3) – P. 263-270. 
 
- Muramatsu, C. Automated segmentation of optic disc region on  retinal fundus photographs: comparison of contour modeling and pixel  classification methods / C. Muramatsu, T. Nakagawa, A. Sawada,  Y. Hatanaka, T. Hara, T.Yamamoto // Comput Methods Programs Biomed. – 2011. –  Vol. 101(1). – P. 23-32. MESSIDOR: Methods  for Evaluating Segmentation and Indexing techniques Dedicated to Retinal  Ophthalmology [Электронный ресурс], 2004. – http://messidor.crihan.fr/index-en.php. 
 
- Kauppi, V. DIARETDB1 diabetic retinopathy database and evaluation protocol / T. Kauppi,  V. Kalesnykiene, J.K. Kamarainen, L. Lensu, I. Sorri, A. Raninen,  R. Voutilainen, J. Pietilд, H. Kдlviдinen, H. Uusitalo. –  Medical Image Understanding and Aberystwyth (MIUA2007), 2007. – Vol. 41 - P. 61-65. 
 
- ARIA  Online, Retinal Image Archive [Электронный ресурс]: http://www.eyecharity.com/aria  online/. – 2006.
 
- The VICAVR database [Электронный ресурс]: http://www.varpa.es/vicavr.html. – 2010.
 
- Chapman, N.  Retinal vascular tree morphology: a semi-automatic quantification / N. Chapman,  M.E. Martinez-Perez, A.D. Highes, A.V. Stanton, S.A. Thorn,  A.A. Bharath, K.H. Parker // IEEE Trans. Biomedical Engineering. –  2002. – Vol. 49(8). – P. 912-917. 
 
- Dougherty, G. A quantitative index for the measurement of the tortuosity  of blood vessels / G. Dougherty, J. Varro // Medical Engineering  & Physics. – 2000. – Vol. 22(8). – P. 567-574. 
 
- Johnson, M.J. Robust measures of three-dimensional vascular tortuosity  based on the minimum curvature of approximating polynomial spline fits to the  vessel mid-line / M.J. Johnson , G. Dougherty // Med. Eng. Phys. –  2007. – Vol. 29(6).– P. 677-690.
 
- Spangler, K.M. Arteriolar tortuosity of the white matter in aging  and hypertension / V.R. Challa, D.M. Moody, M.A. Bell // A microradiographic  study. J. Neuropathol. Exp. Neurol. – 1994. – Vol. 53(1). – P. 22-26. 
 
- Hart, W.E. Measurement and classification of retinal vascular tortuosity / W.E. Hart,  M. Goldbaum, B.  Côté, P. Kube, M.R. Nelson // International Journal of  Medical Informatics. – 1999. – Vol. 53(2-3). – P. 239-252. 
 
- Capowski, J.J. A numeric index based on spatial frequency for the  tortuosity of retinal vessels and its application to plus disease in retinopathy  of prematurity / J.J. Capowski, J.A. Kylstra, S.F. Freedman //  Retina. – 1995. – Vol. 15(6) – P. 490-500. 
 
- Swanson, C. Semiautomated computer analysis of vessel growth in  preterm infants without and with ROP / C. Swanson, K.D. Cocker,  K.H. Parker, M.J. Moseley, A.R. Fielder // Br. J. Ophthalmol.  – 2003. – Vol. 87(12). – P. 1474-1477. 
 
- Ilyasova, N.Yu. Biomechanical  characteristics of blood vessels for digital image analysis fundus /  N.Yu. Ilyasova, A.V. Kupriyanov, N.A. Gavrilova, G.A. Shilkin, N.I.  Lanevskaya // Biomehanika glaza. – 2002. – P. 18-30.  
- Lotmar, W. Measurement of vessel tortuosity on  fundus photographs / W. Lotmar, A. Freiburghaus,  D. Bracher // Graefe’s Arch. Clin. Exp Ophthalmol. – 1979. – Vol. 221(1).  – P. 49-57.
 
- Bracher, D. Changes in peripapillary tortuosity of the central retinal  arteries in newborns / D. Bracher // Graefe’s Arch. Clin. Exp Ophthalmol.  – 1982. – Vol. 218(4). – P. 211-217.
 
- Brinkman, A.M. Variability of human coronary artery geometry: an  angiographic study of the left anterior descending arteries of 30 autopsy hearts / A.M.  Brinkman, P.B.  Baker, W.P.  Newman, R.  Vigorito, M.H.  Friedman // Ann Biomed Eng. – 1994. – Vol. 22(1). – P. 34-44. 
 
- Smedby, O. Tortuosity and atherosclerosis in the femoral artery: what is cause and what is  effect / O. Smedby, L. Bergstrand // Ann. Biomed. Eng. – 1996. – Vol. 24(4). – P. 474-480. 
 
- Smedby, O. Two-dimensional tortuosity of the superficial femoral artery in early  atherosclerosis / O. Smedby, N.  Högman, S.  Nilsson, U.  Erikson, A.G.  Olsson, G.  Walldius // J. Vasc. Res. – 1993. – Vol. 30(4). – P. 181-191. 
 
- Kimball, B. Angiographic features associated with acute coronary artery occlusion during  elective angioplasty / B. Kimball, , S. Bui, N. Dafopoulos. J. Can  // Cardiol. – 1990. – Vol. 6(8) – P. 327-332. 
 
- Cheung, C.Y. Retinal  Vascular Tortuosity, Blood Pressure, and Cardiovascular  Risk / C.Y.  Cheung, Y. Zheng, W. Hsu,  M.L. Lee, Q.P. Lau, P. Mitchell, J.J. Wang, R. Klein,  T.Y. Wong // Ophthalmology. – 2011. – Vol. 118(5).  – P. 812-818. 
 
- Martin Rodriguez, Z. Improved characterisation of aortic tortuosity / Z. Martin Rodriguez,  P. Kenny, L. Gaynor // Med. Eng. Phys. – 2011. – Vol. 33(6). –  P. 712-719.
 
- Wenn, C.M. Arterial tortuosity / C.M. Wenn, D.L Newman // Phys. Eng. Sci. Med. –  1990. – Vol. 13(2) – P. 67-70. 
 
- Kaupp, A. Automatic evaluation of retinal vessel width and tortuosity in digital ?uorescein angiograms, Invest / A. Kaupp, H. Toonen,  S. Wolf, K. Schulte, R. Effert, D. Meyer-Ebrecht, M. Reim  // Ophthalmol. – 1991. – Vol. 84. –P. 952-987. 
 
- Bullitt, E. Analyzing attributes of vessel populations / E. Bullitt,  K.E. Muller, I. Jung, W. Lin, S. Aylward // Med. Image  Anal. – 2005. – Vol. 9(1). – P. 39-49. 
 
- Grisan, E A novel method for the automatic evaluation of  retinal vessel tortuosity / E.  Grisan , M.  Foracchia , A.  Ruggeri  // IEEE Trans. Med.  Imaging  Proc. – 2008. – P. 310-319. 
 
- Chandrinos, K.V. Image processing techniques for the  quantification of atherosclerotic changes / K.V. Chandrinos, R.B. Fisher,  P.E. Trahanias // Proc. MEDICO98 / Cyprus: Limassol, 1998.
 
- Kylstra, J.A. The  relationship between retinal vessel tortuosity, diameter and transmural  pressure / T. Wierzbicki, M.L. Wolbarsht, M.B. Landers III, E. Stefansson  // Clin. Exp. Ophthalmol. – 1986.  – Vol. 224(5).– P. 477-480. 
 
- Sasongko, M.B. Alterations in retinal microvascular geometry in young type 1 diabetes / J.J. Wang,  K.C. Donaghue, N. Cheung, A.J. Jenkins, P. Benitez-Aguirre,  J.J. Wang // Diabetes  Care. – 2010. – Vol. 33(6). – P. 1331-1336. 
 
- Leung, H. Does hormone replacement  therapy influence retinal microvascular  caliber? / H. Leung, J.J. Wang,  E. Rochtchina, T.Y. Wong, R. Klein, P. Mitchell //  Microvascular Research. – 2004. – Vol. 67(1). – P. 48-54. 
 
- Gregson, P.H. Automated grading of venous beading / Z. Shen,  R.C. Scott, V. Kozousek // Computers And Biomedical. – 1995. – Vol. 28(4).  – P. 291-304. 
 
- Hunter, A. Non-linear Filtering for vascular  segmentation and detection of  venous beading / A. Hunter, J. Lowell, D. Steel, A. Basu  and R. Ryder  // Tech. report, University of Durham. – 2003. – P.100-104. 
- Abrаmoff, M.D. Evaluation of a system for automatic detection of diabetic retinopathy from  color fundus photographs in a large population of patients with diabetes / M.D. Abrаmoff,  M. Niemeijer, M.S. Suttorp-Schulten, M.A. Viergever, S.R. Russell,  B. van Ginneken // Diabetes Care. – 2008. – Vol. 31(2). – P. 193-198. 
  
  © 2009, IPSI RAS
Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20