(39-2) 14 * << * >> *Russian * English * Content * All Issues
  Quasiparallel algorithm for error-free convolution computation using  reduced  Mersenne-Lucas codes
    V.M. Chernov
   
  Image Processing Systems  Institute, Russian Academy of Sciences,
Samara State Aerospace University
   
  DOI: 10.18287/0134-2452-2015-39-2-241-248
 
Full text of article: Russian language.
 PDF
  PDF
Abstract:
In this paper a new “error-free” algorithm for discrete  circular convolution calculation is proposed. The algorithm is based on a new  type of discrete orthogonal transforms for which there exist efficient  multiplication-free implementations. The structure of these transforms is  associated with the representation of data in the redundant number system  associated with Lucas numbers. 
Keywords:
discrete cyclic  convolution, number-theoretical transforms Fibonacci and Lucas numbers,  “error-free” calculations.
Citation:
Chernov VM. Quasiparallel  algorithm for error-free convolution computation using reduced Mersenne–Lucas  codes. Computer Optics 2015; 39(2): 241-248. DOI: 10.18287/0134-2452-2015-39-2-241-248.
References:
  - Stein JY. Digital Signal  Processing: A Computer Science Perspective. New York: John Wiley & Sons, Inc; 2002.
-  Naudin C. Algorithmique Algébrique  [In French]. Paris:  Masson; 1992. 
- Nussbaumer  HJ. Fast Fourier Transform and Convolution Algorithms. Berlin:  Springer-Verlag; 1982.
- Schoenhage  A, Strassen V. Schnelle multiplikation grosser Zahlen [In German]. Computing  1966; 7(3/4): 281-92. 
- Blahut  RE. Fast Algorithms for Digital Signal Processing. Reading:Addison-Wesley Inc; 1985.
- Rader  CM. Discrete convolution via Mersenne transform. IEEE Trans Comp 1972; C-21:  1269-1273. 
- Hoggatt  VE. Fibonacci and Lucas Numbers. Fibonacci Association edition; 1972.
- Vajda  S. Fibonacci&Lukas numbers and Golden Section. Theory and applications. Chichester: Elis Horwood Ltd; 1989.
- Zeckendorf  E. Représentation des nombres naturels par une somme de nombres de Fibonacci ou  de nombres de Lucas [In French]. Fibonacci Quarterly 1972; 10, 179-182
- Freitag  HT, Phillips GM. Elements of Zeckendorf Arithmetic, Applications of Fibonacci  Numbers 1998; 7; 129-132. 
- Chernov V.  Fast algorithm for "error-free" convolution computation using  Mersenne-Lucas codes. Chaos, Solitons and Fractals 2006; 29;. 372-380. 
- Chernov VM., Pershina MV.  "Error-free" calculation of the convolution using generalized  Mersenne and Fermat transforms over algebraic fields.1997. Lecture Notes in Computer Science. 1296, LNCS, pp. 621-628.
-   Katai I,  Kovacs B. Kanonische Zahlensysteme  in der Theorie der Quadratischen Zahlen [In German]. Acta Scientiarum Mathematicarum (Szeged)  1980; 42; 99-107.
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20