(39-2) 16 * << * >> *Russian * English * Content * All Issues
Object  recognition in radar images using conjugation indices and support subspaces
D.A. Zherdev, N.L. Kazanskiy, V.A. Fursov
   
  Image Processing Systems  Institute, Russian Academy of Sciences,
      Samara State Aerospace University
   
  DOI: 10.18287/0134-2452-2015-39-2-255-264
Full text of article: Russian language.
 PDF
  PDF
Abstract:
We  suggest an object recognition method based on synthetic aperture radar images.  The so-called conjugation index between the vector under recognition and a  subspace composed of vectors of a training set has been used as a distance  function. The processes of clustering have been constructed using support  subspaces. Different processes of the training set resampling through the  exclusion of vague vectors from the set using the conjugation index have been  discussed. The dependence of the recognition quality on the support subspace  dimension has been analyzed. The results of experiments demonstrate that the  proposed method provides a higher recognition quality than that offered by the  support vector method (SVM). 
Keywords:
digital image  processing, synthetic aperture radar (SAR) image, MSTAR, recognition,  conjugation index, support vector method (SVM).
Citation:
Zherdev DA, Kazanskiy NL, Fursov VA. Object recognition in radar images using conjugation indices and support subspaces. Computer Optics 2015; 39(2): 255-264. DOI: 10.18287/0134-2452-2015-39-2-255-264.
References:
  - Moving and Stationary Target  Acquisition and Recognition (MSTAR) Public Dataset [Electronic resource]. –  URL: https://www.sdms.afrl.af.mil/index.php?collection=mstar (request date  01.03.2015).
- Zhao, Qu. Synthetic  aperture radar automatic target recognition with three strategies of learning  and representation / Qu. Zhao, J. C. Principe, V.L. Brennan, D. Xu,  Zh. Wang // Optical Engineering. – 2000. – Vol. 39(5). – P. 1230-1244.
- Diemunsch, J.R. MSTAR model-based automatic target recognition: search technology for a  robust ATR / J.R. Diemunsch, J. Wissinger // Proceedings of SPIE 3370,  Algorithms for Synthetic Aperture Radar Imagery V. – 1998. – P. 481-492.
- Gallant, J.F. Automatic Target Recognition for Synthetic Aperture Radar / J.F. Gallant  // The Royal Canadian Air Force Journal. – 2013. – Vol. 2. – P. 8-18.
- Amoon, M. Automatic  target recognition of synthetic aperture radar (SAR) images based on optimal  selection of Zernike moments features / M. Amoon, G. Rezairad // IET  Computer Vision. – 2013. – Vol. 8(2). – P. 77-85.
- Novak, L.M. The Automatic  Target-Recognition System in SAIP / L.M. Novak, G.J. Owirka, W.S. Brower,  A.L Weaver // Lincoln  Laboratory Journal. – 1997. – Vol. 10(2). – P. 187-202.
- Fulgham, D.A. DARPA Looks Anew at Hidden Targets / D.A. Fulgham // Aviation Week and  Space Technol. – 1997. – Vol. 146(1). – P. 56-57.
- Ross, T.D. Standard SAR ATR Evaluation Experiments using the MSTAR Public Release Data Set  / T.D. Ross, S.W. Worrell, V.J. Velten, J.C. Mossing, M.L. Bryant  // Proceedings of SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V.  – 1998. – P. 566-573.
- Mossing, J.C. An Evaluation  of SAR ATR Algorithm Performance Sensitivity to MSTAR Extended Operating Conditions  / J.C. Mossing, T.D. Ross // Proceedings of SPIE 3370, Algorithms for  Synthetic Aperture Radar Imagery V. – 1998. – P. 554-565.
- Keydel, E.R. MSTAR Extended Operating Conditions a Tutorial / E.R. Keydel, S.W. Lee,  J.T. Moore // Proceedings of SPIE 2757, Algorithms for Synthetic Aperture  Radar Imagery III. – 1996. – P. 228-242.
- Sun, Y. Adaptive Boosting for  Synthetic Aperture Radar Automatic Target Recognition / Y. Sun, Z. Liu,  S. Todorovic, J. Li // Aerospace and Electronic Systems, IEEE  Transactions on. – 2007. – Vol. 43(1). – P. 112-125.
- Fursov, V.A. Thematic  classification of hyperspectral images using conjugacy indicator / V.A. Fursov,  S.A. Bibikov, O.A. Bajda // Computer Optics. – 2014. – Vol. 38(1).  – P. 154-158. – ISSN 0134-2452.
- Zherdev, D.A. Object recognition by the  radar signatures of electromagnetic field scattering on base of support  subspaces method / D.A. Zherdev, N.L. Kazanskiy, V.A. Fursov // Computer Optics. – 2014. – Vol. 38(3). –  P. 503-510. – ISSN 0134-2452. 
- Kottke, D.P. A Design for HMM-Based SAR ATR / D.P. Kottke, P.D. Fiore, K.L. Brown,  J.K. Fwu // Proceedings of SPIE 3370, Algorithms for Synthetic Aperture  Radar Imagery V. – 1998. – P. 541-551.
- Rosin, P.L. Unimodal thresholding / P.L. Rosin // Pattern Recognition. – 2001. – V. 34(11).  – P. 2083-2096.
- Bishop,  Ch.M. Pattern Recognition and Machine Learning / Ch.M. Bishop.  – New York:  Springer, 2006. – 738 p.
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20