(39-2) 18 * << * >> *Russian * English * Content * All Issues
License plate recognition algorithm on the basis of  a connected components method and a hierarchical temporal memory model
  Yu.A. Bolotova, V.G. Spitsyn, M.N. Rudometkina
   
  Tomsk Polytechnic University
   
  DOI: 10.18287/0134-2452-2015-39-2-275-280
Full text of article: Russian language.
 PDF
  PDF
Abstract:
This paper proposes a license plate  recognition algorithm that consists of three major steps: image preprocessing,  segmentation, and recognition, which works efficiently with day- and nighttime  images, as well as with the license plate being tilted.
Pre-filtration allows  the sequential binarization to be conducted efficiently. Typically, the license  plate segmentation is realized by a histogram method with the preliminary plate  de-rotation to the horizontal position, thus deteriorating the original image  quality. In this paper the segmentation is implemented by a connected  components method, enabling the rotation and a consequent loss of quality to be  avoided. The hierarchical temporal network shows good results in rotated  symbols recognition. The proposed method can be used in a similar way for  segmentation and recognition of various text data. The proposed algorithms can  also be used for distorted text segmentation and recognition.
Keywords:
hierarchical temporal  memory, temporal grouping, license plate detection.
Citation:
Bolotova YA, Spitsyn VG, Rudometkina MN. License plate recognition algorithm on the basis of a connected components method and a hierarchical temporal memory model. Computer Optics 2015; 39(2): 275-280. DOI: 10.18287/0134-2452-2015-39-2-275-280.
References:
  - Jia, W.J. Region-based license plate detection / W.J. Jia, H.F. Zhang,  X.J. He // Journal of Network and Computer Applications. – 2007. –  Vol. 30(4). – P. 1324-1333.
- Zheng, L.H. Accuracy enhancement for license plate recognition / L.H. Zheng,  X.J. He, B. Samali, L.T. Yang // Proceedings of the International  Conference on Computer and Information Technology. – 2010. – P. 511-615.
- Han, C.C. License plate detection and recognition  using a dual-camera module in a large space / C.C. Han, C.T. Hsieh,  Y.N. Chen, G.F. Ho, K.C. Fan, C.L. Tsai // 41st Annual IEEE  International Carnahan Conference on Security Technology. – 2007. – P. 307-312. 
- Glumov, N.I. Method of  rapid correlation using ternary templates for object recognition in images / N.I. Glumov,  E.V. Mjasnikov, V.N. Kopenkov, M.A. Chicheva // Computer Optics.  – 2008. – Vol. 32(3). – P. 277-282. – (In Russian).
- Caner, H. Efficient embedded neural network-based license plate recognition system / H. Caner,  H.S. Gecim, A.Z. Alkar // IEEE  Transactions on Vehicular Technology. – 2008. – Vol. 57(5). –  P. 2675-2683.
- Park, S.H. Locating car license plate using neural networks / S.H. Park, K.I. Kim,  K. Jung, H.J. Kim // Electronics Letters. – 1999. – Vol. 35(17).  – P. 1475-1477.
- Otsu, N. A  threshold selection method from gray-scale histogram / N. Otsu  // IEEE Transactions on System, Man, and Cybernetics. – 1979. – P. 62-66.
- Sterganov, M. Methodology of allocation the connected components in binary barcode  images / M. Sterganov // Proceedings 20th International Conference on Computer  Graphics and Vision. – 2010. – P. 169-174. – (In  Russian).
- Hawkins, J. Hierarchical temporal memory  concepts, theory and terminology [Electronical Resource] / J. Hawkins, D. George.  – URL: http://www.nimenta.com/htm-overview/education /Numenta_HTM_concepts.pdf  (request date 19.11.2014).
- Bolotova, Yu.A. Analysis of hierarchically-temporal dependencies  for handwritten symbols and gesture recognition / Yu.A. Bolotova,  V.G. Spitsyn // Proceedings of 7-th International Forum on Strategic Technology  (IFOST). – 2012. – P. 1-6. 
- Shridhar, M. License plate recognition  using SKIPSM / M. Shridhar, F.M. Waltz, J.W.V. Miller,  G. Houle, L. Bijnagte, R. Dibble // Proceedings of SPIE. The  International society for Optical Engineering. – 2001. – Vol. 4189. –  P. 72-79.
- Kennady, C.N. A feature based approach for license plate recognition of Indian number  plates / C.N. Kennady, S.T. Subramanian, K. Parasuraman // IEEE  International Conference on Computational Intelligence and Computing Research.  – 2010. – P. 1-4.
- Dehshibi, M.M. Persian Vehicle License Plate  Recognition Using Multiclass AdaBoost / M.M. Dehshibi, R. Allahverdi // International Journal of Computer & Electrical Engineering.  – 2012. – Vol. 4(3). – P. 355.
- Chang, S.-L. Automatic license plate recognition / S.-L. Chang, L.-S. Chen,  Y.-Ch. Chung, S.-W. Chen // IEEE Transactions on Intelligent Transportation  Systems. – 2004. – Vol. 5(1). – P. 42-53.
- Sun, G. A new recognition method of vehicle license plate  base on genetic neural network / G. Sun, C. Zhang, W. Zou, G. Yu  // 5th IEEE Conference on Industrial Electronics and Applications. – 2010. – P. 1662-1666.
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20