A converter of  circularly polarized laser beams into cylindrical vector beams based on  anisotropic crystals
  V.D. Paranin, S.V. Karpeev, A.P. Krasnov
   
  Samara State  Aerospace University, Samara,   Russia,
   Image  Processing Systems Institute, Russian Academy of Sciences, Samara, Russia 
Full text of article: Russian language.
 PDF
  PDF
Abstract:
An optical system for converting circularly polarized laser beams into  cylindrical vector beams on the basis of anisotropic crystals has been  developed. Polarization properties and the structure of the resulting beams  have been experimentally characterized. The analysis has revealed differences  in the azimuthal and radial polarization of Gaussian modes and Bessel beams.  Ranges of variation of the optical system parameters to form different types of  polarizations with different amplitude and phase distributions have been  identified. 
Keywords:
diffractive optics,  birefringent crystal, cylindrical vector beams, azimuthal polarization, radial  polarization, higher-order laser modes.
Citation:
Paranin VD, Karpeev SV,  Krasnov AP. A converter of circularly polarized laser beams into  cylindrical vector beams based on anisotropic crystals. Computer Optics 2015;  39(5): 644-53. – DOI: 10.18287/0134-2452-2015-39-5-644-653.
References:
  - Zhan Q. Cylindrical vector beams:  from mathematical concepts to applications. Advances in Optics and Photonics  2009; 1: 1-57.
- Oron R, Blit S, Davidson N, Friesem  AA. The formation of laser beams with pure azimuthal or radial polarization. Applied  Physics Letters 2000; 77(21): 3322-4.
- Machavariani G, Lumer Y, Moshe I,  Meir A, Jackel S, Davidson N. Birefringence-induced bifocusing for selection of  radially or azimuthally polarized laser modes. Applied Optics 2007; 46:  3304-10.
- Yonezawa K, Kozawa Y, Sato S.  Compact laser with radial polarization using birefringent laser medium.  Japanese Journal of Applied Physics 2007; 46: 5160-3.
- Machavariani G, Lumer Y, Moshe I,  Meir A, Jackel S, Davidson N. Birefringence-induced bifocusing for selection of  radially or azimuthally polarized laser modes. Applied Optics 2007; 46:  3304-10.
- Tidwell SC, Ford DH, Kimura WD. Generating radially  polarized beams interferometrically. Applied Optics 1990; 29: 2234-9.
- Passilly N, de Saint Denis R,  Aït-Ameur K, Treussart F, Hierle R, Roch J-F. Simple interferometric technique  for generation of a radially polarized light beam. J Opt Soc Am A 2005; 22(5):  984-91.
- Khonina SN, Karpeev SV.  Grating-based optical scheme for the universal generation of inhomogeneously  polarized laser beams. Applied Optics 2010; 49(10): 1734-8.
- Venkatakrishnan K, Tan B. Generation  of radially polarized beam for laser micromachining. Journal of Laser Micro/Nanoengineering  2012; 7(3): 274-8.
- Fadeyeva T, Shvedov V, Shostka N,  Alexeyev C, Volyar A. Natural shaping of the cylindrically polarized beams.  Optics Letters 2010; 35(22): 3787-9.
- Loussert C, Brasselet E. Efficient  scalar and vectorial singular beam shaping using homogeneous anisotropic media.  Optics Letters 2010; 35(1): 7-9.
- Fadeyeva TA, Shvedov VG, Izdebskaya  YV, Volyar AV, Brasselet E, Neshev DN, Desyatnikov AS, Krolikowski W, Kivshar  YS. Spatially engineered polarization states and optical vortices in uniaxial  crystals. Optics Express 2010; 18(10): 10848-63.
- Khonina SN, Volotovskiy SG,  Kharitonov SI. Features of nonparaxial propagation of Gaussian and Bessel beams  along the axis of the crystal (in Russian). Computer Optics 2013; 37(3):  297-306.
- Kozawa Y, Sato S. Sharper focal spot  formed by higher-order radially polarized laser beams. J Opt Soc Am A 2007; 24:  1793-8.
- Khonina SN, Alferov SV, Karpeev SV.  Strengthening the longitudinal component of the sharply focused electric field  by means of higher-order laser beams. Optics Letters 2013; 38(17): 3223-6.
- Tian B, Pu J. Tight focusing of a  double-ring-shaped, azimuthally polarized beam. Optics Letters 2011; 36(11):  2014-6.
- Soifer VA, Kotlyar VV, Kazanskiy NL,  Doskolovich LL, Kharitonov SI, Khonina SN, Pavelyev VS, Skidanov RV, Volkov AV,  Golovashkin DL, Solovyev VS, Usplenyev GV. Methods for Computer Design of  Diffractive Optical Elements. Ed. by Soifer   VA. New York: John Wiley & Sons, Inc; 2002.
- Golovashkin DL, Kotlyar VV, Soifer VA,  Doskolovich LL, Kazanskiy NL, Pavelyev VS, Khonina SN, Skidanov RV. Computer  Design of Diffractive Optics. Ed. by Soifer   VA. Cambridge: Woodhead Publishing Limited; 2012.
- Khonina SN, Karpeev SV. Generating  inhomogeneously polarized higher-order laser beams by use of DOEs beams. J Opt  Soc Am A 2011; 28(10): 2115-23.
- Khonina SN, Karpeev SV, Alferov SV.  Polarization converter for higher-order laser beams using a single binary  diffractive optical element as beam splitter. Optics Letters 2012; 37(12):  2385-7.
- Khonina SN, Karpeev SV, Alferov SV,  Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial  crystals. Journal of Optics 2015; 17(6): 065001-11.
- Tidwell SC, Ford DH, Kimura WD. Generating radially  polarized beams interferometrically. Applied Optics 1990; 29: 2234-9.
- Khonina SN, Karpeev SV. Generating  inhomogeneously polarized higher-order laser beams by use of DOEs beams. J Opt  Soc Am A 2011; 28(10): 2115-23.
- Khonina SN, Karpeev SV, Alferov SV.  Polarization converter for higher-order laser beams using a single binary  diffractive optical element as beam splitter. Optics Letters  2012; 37(12): 2385-7.
- Khonina SN, Karpeev SV.  Grating-based optical scheme for the universal generation of inhomogeneously  polarized laser beams. Applied Optics 2010; 49(10): 1734-8.
- Khonina SN, Kharitonov SI. An analog  of the Rayleigh-Sommerfeld integral for anisotropic and gyrotropic media.  Journal of Modern Optics 2013; 60(10): 814-22.
-   Prudnikov AP, Brychkov YuA, Marichev OI. Integrals  and Series. Volume 2: Special Functions. CRC Press; 1998. 
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20