A four-zone reflective  azimuthal micropolarizer
  S.S.  Stafeev, A.G. Nalimov, M.V. Kotlyar, L. O’Faolain
   
  Image  Processing Systems Institute, 
    Russian Academy of Sciences, Samara, Russia,
     Samara State Aerospace University, Samara, Russia,
   School of Physics and Astronomy of the University of St. Andrews, Scotland 
Full text of article: Russian language.
 PDF
  PDF
Abstract:
In this paper, we have designed and fabricated  a four-zone binary subwavelength  reflective micropolarizer. The 100×100-µm micropolarizer  grating was synthesized by electron-beam lithography. FDTD-based numerical  simulation and experimental characterization have shown the micropolarizer to  be capable of transforming a linearly polarized incident Gaussian beam of  wavelength 532 nm into an azimuthally polarized beam. 
Keywords:
polarization, diffraction gratings, subwavelength structures.
Citation:
Stafeev  SS, Nalimov AG, Kotlyar MV, O’Faolain L. A four-zone reflective azimuthal  micropolarizer. Computer Optics 2015; 39(5): 709-15. DOI: 10.18287/0134-2452-2015-39-5-709-715.
References:
  - Kotlyar VV,  Zalyalov OK. Design of diffractive optical elements modulating polarization.  Optik 1996; 103(3): 125-30.
- Bomzon Z, Kleiner V, Hasman  E. Pancharatnam-Berry phase in space-variant polarization-state manipulations  with subwavelength gratings. Optics Letters 2001; 26(18): 1424-6. doi:  10.1364/OL.26.001424. 
 Bomzon  Z, Biener G, Kleiner V, Hasman E. Radially and azimuthally  polarized beams generated by space-variant dielectric subwavelength gratings.  Optics Letters 2002; 27(5): 285-7. doi: 10.1364/OL.27.000285.
 
- Lerman GM, Levy U. Generation of a radially  polarized light beam using space-variant subwavelength gratings at 1064 nm.  Optics Letters 2008; 33(23): 2782-4. doi: 10.1364/OL.33.002782. 
 
- Kämpfe T, Sixt P, Renaud D, Lagrange A, Perrin F, Parriaux O. Segmented  subwavelength silicon gratings manufactured by high productivity  microelectronic technologies for linear to radial/azimuthal polarization  conversion. Optical Engineering 2014; 53(10): 107105. doi:10.1117/1.OE.53.10.107105.
 
- Ghadyani  Z, Vartiainen I, Harder I, Iff W, Berger A, Lindlein N, Kuittinen M. Concentric  ring metal grating for generating radially polarized light. Applied Optics  2011; 50(16): 2451-7. doi:10.1364/AO.50.002451.
 
- Nalimov  AG, O'Faolain L, Stafeev SS, Shanina MI, Kotlyar VV. Reflected four-zones  subwavelenghth mictooptics element for polarization conversion from linear to radial.  Computer Optics 2014; 38(2): 229-36.
 
- Stafeev  S, O’Faolain L, Kotlyar V, Nalimov A. Tight focus of light using micropolarizer  and microlens. Applied Optics 2015; 54(14): 4388-94. DOI: 10.1364/AO.54.004388.
 
- Helseth  LE. Optical vortices in focal regions. Optics Communications 2004; 229: 85-91. doi:10.1016/j.optcom.2003.10.043.
 
- Zhang  Z, Pu J, Wang X. Tight focusing of radially and azimuthally polarized vortex  beams through a uniaxial birefringent crystal. Applied Optics 2008; 47(12):  1963-7. doi: 10.1364/AO.47.001963.
 
- Kotlyar VV, Kovalev AA Nonparaxial propagation of a Gaussian optical  vortex with initial radial polarization. Journal of the Optical Society of America  A 2010; 27(3): 372-80. DOI: 10.1364/JOSAA.27.000372.
 
- Hao  X, Kuang C, Wang T, Liu X. Phase encoding for sharper focus of the azimuthally  polarized beam. Optics Letters 2010; 35(23): 3928-30. doi: 10.1364/OL.35.003928.
 
- Wang  S, Li X, Zhou J, Gu M. Ultralong pure longitudinal magnetization needle induced  by annular vortex binary optics. Optics Letters 2014; 39(17): 5022-5. doi:  10.1364/OL.39.005022.
 
- Nie  Z, Ding W, Li D, Zhang X, Wang Y, Song Y. Spherical and sub-wavelength  longitudinal magnetization generated by 4π tightly focusing radially polarized vortex  beams. Optics Express 2015; 23(2):  690-701. doi: 10.1364/OE.23.000690.
 
- Chen Z, Zhao D. 4Pi focusing of spatially  modulated radially polarized vortex beams. Optics Letters 2012; 37(8): 1286-8. doi: 10.1364/OL.37.001286. 
 
- Li  X, Venugopalan P, Ren H, Hong M, Gu M. Super-resolved pure-transverse focal  fields with an enhanced energy density through focus of an azimuthally  polarized first-order vortex beam. Optics Letters 2014; 39(20): 5961-4. doi:  10.1364/OL.39.005961.
 
- Dorn R,  Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Physical  Review Letters 2003; 91: 233901.
-   Alferov SV, Karpeev SV, Khonina SN, Moiseev  OYu.  Experimental study of focusing of inhomogeneously polarized beams generated  using sector polarizing plates. Computer  Optics 2014; 38(1): 57-64. 
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20