On a problem of numerical sectioning in ophthalmology
A.V. Razgulin, N.G. Iroshnikov, A.V. Larichev,  S.D. Pavlov, T.E. Romanenko
   
  Lomonosov  Moscow State University, Computational Mathematics and Cybernetics Faculty, Moscow,  Russia,
  Lomonosov Moscow State University,  Physics Faculty, Moscow, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
We consider a problem of  eye-fundus image reconstruction  from different-depth fundus sections based on an image stack, with the images obtained via imaging system's  fast refocusing as superposition of 3D object sections and blurred images of  adjacent-depth sections. An implicit iterative regularization method in the  Fourier plane is used for 3D deconvolution. The results of mathematical modeling have demonstrated that the  numerical sectioning shows promise when processing ophthalmological images  distorted by various types of noise. 
Keywords:
sectioning, 3D  deconvolution, convolution, fundus, iterative  regularization method.
Citation:
Razgulin AV,  Iroshnikov NG, Larichev AV, Pavlov SD, Romanenko TE. On a problem  of numerical sectioning in ophthalmology. Computer Optics 2015; 39(5): 777-86. DOI:  10.18287/0134-2452-2015-39-5- 777-786.
References:
  - Diabetes in America. 2nd ed. Bethesda, MD: National Institutes of Health,  National Institute of Diabetes and Digestive and Kidney Diseases; 1995. 
- Bursell SE, Cavallerano JD,  Cavallerano AA, Clermont AC, Birkmire-Peters D, Aiello LP, Aiello LM. Stereo  nonmydriatic digital-video color retinal imaging compared with Early Treatment  Diabetic Retinopathy Study seven standard field 35-mm stereo color photos for  determining level of diabetic retinopathy. Ophthalmology 2001; 108(3): 572-5.  DOI:10.1016/S0161-6420(00)00604-7.
- Buabbud J, Al-latayfeh M, Sun J.  Optical coherence tomography imaging for diabetic retinopathy and macular edema.  Current Diabetes Reports 2010; 10(4): 264-9. DOI: 10.1007/s11892-010-0129-z. 
- Braaf B, Vienola KV, Sheehy CK, Yang  Q, Vermeer KA, Tiruveedhula P, Arathorn DW, Roorda A, de Boer JF. Real-time eye  motion correction in phase-resolved OCT angiography with tracking SLO.  Biomedical Optics Express 2013; 4(1): 51-65. DOI: 10.1364/BOE.4.000051.
- Larichev AV, Ivanov PV, Iroshnikov  NG, Shmalhauzen VI, Otten LJ. Adaptive system for eye-fundus imaging. Quantum  Electron [In Russian]. 2002; 32: 902-8.
- Agard D. Optical sectioning microscopy: cellular  architecture in three dimensions. Ann. Rev. Biophys. Bioeng. 1984; 13: 191-219.  DOI: 10.1146/annurev.bb.13.060184.001203. 
- Castleman K. Digital Image  Processing. Pearson Education; 2007.
- Wu Q, Merchant F, Castleman K.  Microscope image processing. Academic Press; 2008.
- Matvienko AN, Novikova TN.  The translucent stratified media image processing method [In Russian]. Vestnik  Moskovskogo Universiteta. Seriya 15. Vychislitel'naya Matematika i Kibernetika  1988; 4: 33-7.
- Bruce M, Butte M. Real-time GPU-based 3D deconvolution.  Optics Express 2013; 21(4): 4766-73. DOI: 10.1364/OE.21.004766.
- Zanella R, Zanghirati G, Cavicchioli R, Zanni L, Boccacci P, Bertero M,  Vicidomini G. Towards real-time image deconvolution: application to confocal  and STED microscopy. Scientific Reports 2013; 3(2523). DOI:10.1038/srep02523.
- Bakushinskiy AB, Goncharskiy AV. Iterative methods  of solving ill-posed problems [In Russian]. Moscow: “Nauka” Publisher; 1989. 
- Denisov AM. Introduction to the  inverse problems theory [In Russian]. Moscow:  Publisher of Moscow   University; 1994. 
- Tikhonov AN,  Arsenin VY. Ill-posed problems solving methods [in Russian]. Moscow: “Nauka” Publisher; 1986. 
- Ilyasova NYu. Methods for digital  analysis of human vascular system. Literature review. Computer Optics 2013;  37(4) 511-35. 
- Iroshnikov N,  Larichev A, Razgulin A, Starostin A. A modified bispectral image reconstruction  method in ophthalmology. Computational Mathematics and Modeling 2015; 26(4): 534-45.  DOI: 10.1007/s10598-015-9290-1.
- Krylov AS, Nasonov AV, Semashko AS, Chernomorets  AA, Sergeev VV,. Akopyan VS, Rodin AS, Semenova   NS.  Computer analysis of fundus images [In Russian]. SPb: Proceedings of the  VIII Russian-Bavarian conference on biomedical engineering; 2012: 129-33. 
-   Nasonova  AA, Krylov AS. Allocation of blood vessels on the  fundus image and its quality evaluation [In Russian]. Biotekhnosphera 2014; 2:  24-5.
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20