Defocus and numerical focusing in interference microscopy with wide time-varying spectrum of illumination field
A.A. Grebenyuk, V.P. Ryabukho


Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia,
Saratov State University, Saratov, Russia

Full text of article: Russian language.


This paper presents an analysis of the influence of illumination with wide temporal spectrum on the properties of a defocused interference signal and numerically focused imaging in interference microscopy. It is shown that the differences in defocus influence on different spectral components of a signal with wide temporal spectrum may lead to degradation of the images of defocused sample parts, in spite of the use of numerical focusing. The magnitude of these effects depends on the temporal spectrum width, the numerical aperture of the imaging system and the amount of defocus. The influence of these effects on the properties of numerically focused imaging in Fourier domain optical coherence tomography/microscopy is considered.

interference microscopy, optical coherence tomography, image reconstruction techniques, numerical focusing.

Grebenyuk AA, Ryabukho VP. Defocus and numerical focusing in interference microscopy with wide temporal spectrum of illumination field. Computer Optics 2016; 40(6): 772-780. DOI: 10.18287/2412-6179-2016-40-6-772-780.


  1. Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Applied Optics 1999; 38(34): 6994-7001. DOI: 10.1364/AO.38.006994.
  2. Mann CJ, Yu L, Lo C-M, Kim MK. High-resolution quantitative phase-contrast microscopy by digital holography. Optics Express 2005; 13(22): 8693-8698. DOI: 10.1364/OPEX.13.008693.
  3. Dubois F, Requena M-LN, Minetti C, Monnom O, Istasse E. Partial spatial coherence effects in digital holographic microscopy with a laser source. Applied Optics 2004; 43(5): 1131-1139. DOI: 10.1364/AO.43.001131.
  4. Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection. Applied Optics 2008; 47(4): A52-A61. DOI: 10.1364/AO.47.000A52.
  5. Massatsch P, Charrière F, Cuche E, Marquet P, Depeursinge CD. Time-domain optical coherence tomography with digital holographic microscopy. Applied Optics 2005; 44(10): 1806-1812. DOI: 10.1364/AO.44.001806.
  6. Min G, Kim JW, Choi WJ, Lee BH. Numerical correction of distorted images in full-field optical coherence tomography. Measurement Science and Technology 2012; 23(3): 035403. DOI: 10.1088/0957-0233/23/3/035403.
  7. Yu LF, Kim MK. Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method. Optics Letters 2005; 30(16): 2092-2094. DOI: 10.1364/OL.30.002092.
  8. Ralston TS, Marks DL, Carney PS, Boppart SA. Interferometric synthetic aperture microscopy. Nature Physics 2007; 3: 129-134. DOI: 10.1038/nphys514.
  9. Marks DL, Ralston TS, Boppart SA, Carney PS. Inverse scattering for frequency-scanned full-field optical coherence tomography. JOSA A 2007; 24(4): 1034-1041. DOI: 10.1364/JOSAA.24.001034.
  10. Hillmann D, Lührs C, Bonin T, Koch P, Hüttmann G. Holoscopy-holographic optical coherence tomography. Optics Letters 2011; 36(13): 2390-2392. DOI: 10.1364/OL.36.002390.
  11. Shabanov DV, Geliknov GV, Gelikonov VM. Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization. Laser Physics Letters 2009; 6(10): 753-758. DOI: 10.1002/lapl.200910052.
  12. Kumar A, Drexler W, Leitgeb RA. Subaperture correlation based digital adaptive optics for full field optical coherence tomography. Optics Express 2013; 21(9): 10850-10866. DOI: 10.1364/OE.21.010850.
  13. Kumar A, Drexler W, Leitgeb RA. Numerical focusing methods for full field OCT: a comparison based on a common signal model. Optics Express 2014; 22(13): 16061-16078. DOI: 10.1364/OE.22.016061.
  14. Grebenyuk AA, Ryabukho VP. Numerical correction of coherence gate in full-field swept-source interference microscopy. Optics Letters 2012; 37(13): 2529-2531. DOI: 10.1364/OL.37.002529.
  15. Grebenyuk AA, Ryabukho VP. Numerical reconstruction of 3D image in Fourier domain confocal optical coherence microscopy. Proceedings of the International Conference on Advanced Laser Technologies 2012. Bern Open Publishing 2013. DOI: 10.12684/alt.1.60.
  16. Grebenyuk A, Federici A, Ryabukho V, Dubois A. Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination. Applied Optics 2014; 53(8): 1697-1708. DOI: 10.1364/AO.53.001697.
  17. Talaikova NA, Grebenyuk AA, Kalyanov AL, Ryabukho VP. Numerical focusing in diffraction phase microscopy. Proc. SPIE 2016; 9917: 99171V. DOI: 10.1117/12.2229881.
  18. Dubois A, Moneron G, Boccara C. Thermal-light full-field optical coherence tomography in the 1.2 µm wavelength region. Optics Communications 2006; 266(2): 738-743. DOI: 10.1016/j.optcom.2006.05.016.
  19. Federici A, Dubois A. Full-field optical coherence microscopy with optimized ultrahigh spatial resolution. Optics Letters 2015; 40(22): 5347-5350. DOI: 10.1364/OL.40.005347.
  20. Pham HV, Edwards C, Goddard LL, Popescu G. Fast phase reconstruction in white light diffraction phase microscopy. Applied Optics 2013; 52(1): A97-A101. DOI: 10.1364/AO.52.000A97.
  21. Edwards C, Bhaduri B, Nguyen T, Griffin BG, Pham H, Kim T, Popescu G, Goddard LL. Effects of spatial coherence in diffraction phase microscopy. Optics Express 2014; 22(5): 5133-5146. DOI: 10.1364/OE.22.005133.
  22. Grebenyuk AA, Ryabukho VP. Theoretical model of volumetric objects imaging in a microscope. Proc SPIE 2012; 8430: 84301B. DOI: 10.1117/12.922198.
  23. Grebenyuk AA, Ryabukho VP. Coherence effects of thick objects imaging in interference microscopy. Proc SPIE 2012; 8427: 84271M. DOI: 10.1117/12.922108.
  24. Grebenyuk AA, Ryabukho VP. Theory of imaging and coherence effects in full-field optical coherence microscopy. in: Dubois A, ed. Handbook of full-field optical coherence microscopy. Singapore: Pan Stanford Publishing; 2016. Chap 2: 53-89. ISBN: 9789814669160.
  25. Grebenyuk AA, Ryabukho VP. Numerical focusing in digital holographic microscopy with partially spatially coherent illumination in transmission. Proc SPIE 2014; 9031: 903119. DOI: 10.1117/12.2052837.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20