Influence of the discreteness of synthetic and digital holograms on their imaging properties
S.N. Koreshev, D.S. Smorodinov, O.V. Nikanorov


St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia

Full text of article: Russian language.


We study in which way the discreteness of synthetic and digital holograms affects their imaging properties, i.e. the structure and quality of the image under restoration. We establish and substantiate requirements to the relationship between the basic parameters of synthesis or recording of a discrete hologram - operating wavelength, the angle of incidence of the reference wave, the size of the minimal object feature, and the hologram sampling period to ensure the matching between the object structures and the reconstructed image. We also examine the possibility of easing these requirements, provided either by modifying the structure of the hologram, or using a frequency substitution effect, characteristic of the discrete structures.

holography, synthetic hologram, digital hologram, discrete structure, imaging properties, method of representation, binarization.

Koreshev SN, Smorodinov DS, Nikanorov OV. Influence of the discreteness of synthetic and digital holograms on their imaging properties. Computer Optics 2016; 40(6): 793-801. DOI: 10.18287/2412-6179-2016-40-6-793-801.


  1. Koreshev SN, Ratushnyj VP. Using the method of holography to obtain images of two-dimensional objects when solving problems of high-resolution photolithography. J Opt Techn 2004; 71(10): 673-679. DOI: 10.1364/JOT.71.000673.
  2. Lesem LV, Hirsch PM, Jordan JA Jr. The kinoform: A new wavefront reconstruction device. IBM Journal of Research and Development 1969; 13(2): 150-155. DOI: 10.1147/rd.132.0150.
  3. Collier RJ, Burkhardt ChB, Lin LH. Optical holography. Bell Telephone Laboratories; 1971.
  4. Koreshev SN, Nikanorov OV, Gromov AD. Method of syntehsizing hologram projectors based on breaking down the structure of an object into typical elements, and a software package for implementing it. J Opt Techn 2012; 79(12): 769-774. DOI: 10.1364/JOT.79.000769.
  5. Koreshev SN, Nikanorov OV, Smorodinov DS. Imaging properties of discrete holograms. I. How the discreteness of a hologram affects image recontruction. J Opt Techn 2014; 81(3): 123-127. DOI: 10.1364/JOT.81.000123.
  6. Landsberg GS. Optika [In Russian]. Moscow: “Fizmatlit” Publisher; 2003.
  7. Koreshev SN, Semyonov GB. The diffraction efficiency and some of the features of the spectra of discrete holograms [In Russian]. Optics and Spectroscopy 1976; 41(2): 310-313.
  8. Yaroslavsky LP, Merzlyakov NS. Methods of digital holography [In Russian]. Moscow: “Nauka” Publisher; 1977.
  9. Zhang Y, Lu Q, Ge B. Elimination of zero-order diffraction in digital off-axis holography. Optics communications 2004, 240(4-6), 261-267. DOI: 10.1016/j.opt­com.2004.06.040.
  10. Koreshev SN, Smorodinov DS, Nikanorov OV. Imaging properties of discrete holograms. II. How structural modification of the holoram and a high spatial carrier frequency of the hologram structure that exceeds the Nyquist frequency affects the image reconstruction. J Opt Techn 2014; 81(4): 204-208. DOI: 10.1364/JOT.81.000204.
  11. Khovanova NA, Khovanov IA. Methods of analysis of time series [In Russian]. Saratov: "GosUNTs Kolledzh" Publisher; 2001.
  12. Koreshev SN, Smorodinov DS, Nikanorov OV, Gromov AD. How the method of representing an object affects the imaging properties of synthesized holograms. J Opt Techn 2015: 82(4): 246-251. DOI: 10.1364/JOT.82.000246.
  13. Johnson S. Stephen Johnson on Digital Photography. O'Reilly Media, Incorporated; 2006. ISBN: 978-0-596-52370-1.
  14. Slinger CW, Cameron CD, Coomber SD, Miller RJ, Payne DA, Smith AP, Smith MG, Stanley M, Watson PJ. Recent developments in computer-generated holography. Proc SPIE 2004; 5209: 27-41. DOI: 10.1117/12.526690.
  15. Koreshev SN, Smorodinov DS, Nikanorov OV, Gromov AD. Intensity equalization for elements for binary-object images reconstructed using synthesized hologram projectors. Optics and Spectroscopy 2013; 114(2): 288-292. DOI: 10.1134/S0030400X13020136.
  16. Koreshev SN. The diffraction efficiency of discrete binary phase holograms. Optics and Spectroscopy [In Russian], 1978, 44(1), 39-42.
  17. Koreshev SN, Smorodinov DS, Nikanorov OV, Gromov AD. Synthesizing hologram–projectors for photolithography on nonplanar surfaces. J Opt Techn 2015; 82(2): 90-94. DOI: 10.1364/JOT.82.000090.
  18. Shehonin AA, ed., Tsukanova GI, Karpova GV, Bagdasarova OV, Karpov VG, Krivopustova EV, Yezhova KV. Applied Optics. Part 2: Study Guide [In Russian]. Saint-Petersburg: "SPbGITMO (TU)" Publisher, 2003.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20