Methods for on-line testing of characteristics of diffractive and conformal optical elements during the manufacturing process
A.G. Poleshchuk, V.P. Korolkov, R.K. Nasyrov, V.N. Khomutov, A.S. Konchenko


Institute of Automation and Electrometry SB RAS, Novosibirsk, Russia

Full text of article: Russian language.


Development of dedicated methods for nondestructive testing of microstructured optical elements is a prerequisite for the wide-scale manufacturing of diffractive, micro-optical and conformal elements. A variety of approaches to the characterization of diverse types of microstructured optical elements were developed at the laboratory of Diffractive Optics at IAE SB RAS. These methods are intended to test wavefront errors, etch depth and diffraction efficiency during and after the manufacturing of elements with binary and multi-level surface profile. The review of the developed techniques and measuring circuits given in the work takes into account specific features of the elements' parameters and application areas. Testing results for the manufactured elements are discussed.

diffractive optical elements characterization, errors of wavefront, etch depth measurement, scanning mirror reflectometry, diffraction efficiency measurement.

Poleshchuk AG, Korolkov VP, Nasyrov RK, Khomutov VN, Konchenko AS. Methods for on-line testing of characteristics of diffractive and conformal optical elements during the manufacturing process. Computer Optics 2016; 40(6): 818-829. DOI: 10.18287/2412-6179-2016-40-6-818-829.


  1. Korolkov VP, Nasyrov RK, Poleshchuk AG, Arapov YD, Ivanov AF. Conformal optical elements for correcting wavefront distortions in YAG: Nd3+ active elements. Quantum Electron 2013; 43(2): 117-121. DOI: 10.1070/QE2013v043n02ABEH015034.
  2. Volkov AV. Testing of surface profile parameters of diffractive optical elements using diffractive test structures [In Russian]. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matemati­cheskie Nauki 2001; 12: 179-185. DOI: 10.14498/vsgtu80.
  3. Gale MT, Lang GK, Raynor JM, Schütz H, Prongué D. Fabrication of kinoform structures for optical computing. Appl Opt 1992; 31(26): 5712-5715. DOI: 10.1364/AO.31.005712.
  4. Korolkov VP, Malyshev AI, Nikitin VG, Cherkashin VV, Poleshchuk AG, Kharissov AA. Application of gray-scale LDW-glass masks for fabrication of high-efficiency DOEs. Proc SPIE 1999; 3633: 129-138. DOI: 10.1117/12.349316.
  5. Kley E.B. Continuous profile writing by electron and optical lithography. Microelectronic Engineering 1997; 34(3-4): 261-298. DOI: 10.1016/S0167-9317(97)00186-X.
  6. Blough CG, Rossi M, Mack SK, Michaels RL. Single-point diamond turning and replication of visible and near-infrared diffractive optical elements. Appl Opt 1997; 36(20): 4848-4654. DOI: 10.1364/AO.36.004648.
  7. Abdulkadyrov M, Semenov A. Modern ways for production of astronomical and space mirrors. Photonics 2015; 3: 62-79.
  8. Poleshchuk AG, Churin EG, Koronkevich VP, Korolkov VP, Kharisov AA, Cherkashin VA, Kirianov VP, Kirianov AV, Kokarev SA, Verhoglad AG. Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure. Appl Opt 1999; 38(8): 1295-1301. DOI: 10.1364/AO.38.001295.
  9. Wang D, Chongtai L, Yuqing Xi, Tao C, Hongkai L, Jizhou W. Fabrication technology of the centrosymmetric continuous relief diffractive optical elements. Physics Procedia 2011; 18: 95-99. DOI: 10.1016/j.phpro.2011.06.065.
  10. Pruss C, Reichelt S, Tiziani HJ, Korolkov VP. Metrological features of diffractive high-efficiency objectives for laser interferometry. Proc SPIE 2002; 4900: 873-884. DOI: 10.1117/12.484473.
  11. Volkov AV, Moiseev OY, Poletaev SD. Precision laser recording on a molybdenum films for diffractive microrelief formation. Computer Optics 2013; 37(2): 220-225.
  12. Abramov YuF, Kir’yanov VP, Kir’yanov AV, Kokarev SA, Kruchinin DYu, Chugui YuV, Yakovlev OB. Modernizing the optical divider production of the Ural Optomechanical Factory on the basis of up-to-date laser-computer and photolithographic technologies. Journal of Optical Technology 2006; 73(8): 544-547.
  13. Koronkevich VP, Korolkov VP, Poleshchuk AG, Kharisov AA, Cherkashin VV. Synthesis of Diffractive Optical Elements in a Polar Coordinate System: Fabrication Errors and Their Measurement [In Russian]. Avtometriya 1997; 6: 42-56.
  14. Koronkevich VP, Korolkov VP, Poleshchuk AG, Kharisov AA, Cherkashin VV. Accuracy of fabrication of diffractive optical elements by means of laser writing systems with circular scanning [In Russian]. Computer Optics 1997; 17: 63-74.
  15. Poleshchuk AG, Cherkashin VV, Kharisov AA,  Korolkov VP, Koronkevich VP. Accuracy potential of circular laser writing of DOEs. Proc of SPIE 1998; 3348: 58-68. DOI: 10.1117/12.302509.
  16. Poleshchuk AG, Khomutov VN, Matochkin AE, Nasyrov RK, Cherkashin VV. Laser interferometers for control of optical surface shape. Photonics 2016; 4: 38-51.
  17. Poleshchuk AG, Korolkov VP, Cherkashin VV, Reichelt S, Burge JH. Methods for minimizing the errors in direct laser writing of diffractive optical elements [In Russian]. Avtometriya 2002; 38(3): 3-19.
  18. Polyshuk A, Matochkin A. Laser testing methods for aspheric optics [In Russian]. Photonica 2011; 2: 38-44.
  19. Burge JH, Anderson DS, Ketelsen DA, West SC. Null test optics for the MMT and Magellan 6.5-m ƒ/1.25 primary mirrors. Proc SPIE 1994; 2199: 658-669. DOI: 10.1117/12.269063.
  20. Poleshchuk AG, Burge JH, Churin EG. Design and application of CGH for simultaneous generation several specified wavefronts. EOS Topical Meeting on Diffractive Optics, Jena, Germany, 23-25 August 1999; 22: 155-156.
  21. Beyerlein M, Lindlein N, Schwider J. Dual-wave-front computer-generated holograms for quasi-absolute testing of aspherics. Appl Opt 2002; 41(13): 2440-2447. DOI: 10.1364/AO.41.002440.
  22. Reichelt S, Pruss C, and Tiziani HJ. Absolute interferometric test of aspheres by use of twin computer-generated holograms. Appl Opt 2003; 42(22): 4468-4479. DOI: 10.1364/AO.42.004468.
  23. Gao G, Lehan J, Griesmann U. Dual-CGH interferometry test for X-ray mirror mandrels. Proc SPIE 2009; 7389: 73891B. DOI: 10.1117/12.830659.
  24. Ping S, Jianshe M, Qiaofeng T, Guoguo K, Yi L, Guofan J. Computer generated hologram null test of a freeform optical surface with rectangular aperture. Opt Eng 2012; 51(2): 025801. DOI: 10.1117/1.OE.51.2.025801.
  25. Poleshchuk AG, Nasyrov RK. Aspherical wavefront shaping with combined computer generated holograms. Opt Eng 2013; 52(9): 091709. DOI: 10.1117/1.OE.52.9.091709.
  26. Korolkov VP, Konchenko AS. Spectrophotometric method for measuring the groove depth of calibration reflection gratings. Optoelectronics, Instrumentation and Data Processing 2012; 48(2): 211-217.
  27. Korolkov VP, Konchenko AS, Cherkashin VV, Mironnikov NG, Poleshchuk AG. Etch depth mapping of phase binary computer-generated holograms by means of specular spectroscopic scatterometry. Opt Eng 2013; 52(9): 091722. DOI: 10.1117/1.OE.52.9.091722.
  28. Korolkov VP, Ostapenko SV. Characterization of profilograms of piecewise-continuous diffraction microrelief. Journal of Optical Technology 2009; 76(7): 402-407. DOI: 10.1364/JOT.76.000402.
  29. Poleshchuk AG. Fabrication of high-efficiency diffractive optical elements using half-tone and photorastered technologies [In Russian]. Avtometriya 1991; 6: 54-61.
  30. Xinhui N, Nickhil J, Junwei B, Spanos CJ. Specular Spectroscopic Scatterometry. IEEE Transactions on Semiconductor Manufacturing 2001; 14(2): 97-111. DOI: 10.1109/66.920722.
  31. Piegari A, Masetti E. Thin film thickness measurement: a comparison of various techniques. Thin Solid Films 1985; 124(3-4): 249-257. DOI: 10.1016/0040-6090(85)90273-1.
  32. Babin SV, Doskolovich LL, Kadomin II, Kadomina EA, Kazansky NL. Trapezoidal diffraction grating profile parameters estimation based on polynomial approximations of the reflected field. Computer Optics 2009; 33(2): 156-161.
  33. Kruchinin DYu, Yakovlev OB. Study of the angular errors of circular optical scales fabricated by means of the CLWS-300 laser image generator. Journal of Optical Technology 2011; 78(6): 383-385.
  34. Kir’yanov VP, Nikitin VG. Measurement of efficiency of diffractive optical elements by scanning method [In Russian]. Avtometriya 2004; 40(5): 82-93.
  35. Cai W, Zhou P, Zhao C, and Burge JH. Diffractive optics calibrator: measurement of etching variations for binary computer-generated holograms. Applied Optics 2014; 53(11): 2477-2486. DOI: 10.1364/AO.53.002477.
  36. Khomutov VN, Poleshchuk AG, Cherkashin VV. Measurement of diffraction efficiency of DOE in many diffractive orders. Computer Optics 2011; 35(2): 196-202.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20